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Disclaimer – Warning ….

This talk is NOT about how amazing machine 

learning is. 

I am sure you are already convinced of that.

I am NOT going to show any videos of fancy 

applications of ML. 

I will talk more about the “WHY” of ML than about 

the “HOWTO”.

I wish to focus on understanding the principles 

underlying Machine Learning.



High level view of

(Statistical)  Machine Learning

“The purpose of science is 

to find meaningful simplicity 

in the midst of 

disorderly complexity”

Herbert Simon



More concretely

 Statistical learning is concerned with algorithms that 

detect meaningful regularities in large complex data 

sets.

 We focus on data that is too complex for humans to 

figure out its meaningful regularities.

 We consider the task of finding such regularities  from 

random samples of the data population.



How is learning handled in nature (1)?

Bait Shyness in rats



Successful animal learning

The Bait Shyness phenomena in rats:

Poisoned baits are not effective against rats.

When rats encounter poisoned food, 

they learn very fast the causal relationship

between the taste and smell of the food 
and sickness that follows a few hours 
later.



How is learning handled in nature 

(2)?Pigeon Superstition (Skinner 1948)



What is the source of difference?

 In what way are the rats “smarter” than 

the pigeons?



Bait shyness and inductive bias

Garcia et al (1989) :
Replace the stimulus associated with the 
poisonous baits  by making a sound 
when they taste it (rather than having a 
slightly different taste or smell). 

How well do the rats pick the relation of 
sickness to bait in this experiment?



Surprisingly (?)

The rats fail to detect the 
association!

They do not refrain from eating 
when the same warning sound 
occurs again. 



What about “improved rats”?

 Why aren’t there rats that will also pay 

attention to the noise when they are 

eating?

 And to light, and temperature, time-of-

day, and so on?

 Wouldn’t such “improved rats” survive 

better?



Second thoughts about our  

improved rats

 But then every tasting of food will be an 

“outlier” in some respect….

 How will they know which tasting should 

be blamed for the sickness?



The crucial component –

 The rats are “genetically engineered” to 

pay attention to the taste and smell of 

food but not to the noise they hear while 

eating.

 Leaners need of some prior knowledge

about the task they are trying to solve.



The Basic No Free Lunch  principle

No learning algorithm can be guaranteed 

to succeed on all learnable tasks.

Any learning algorithm has a limited 

scope of phenomena that it can capture, 

(an inherent inductive bias).

No learning is possible without applying 

prior knowledge.

There can be no best learner.



The No Free Lunch theorem

For every learning algorithm,

there exists a perfectly predictable labelling 

rule such that, 

if training data is labelled according to that 

rule, 

the expected error of the algorithm (having 

access to examples labeled by that rule)

is as bad as that of a random coin toss.



Naive user view of machine 

learning

“I’ll give you my data, you’ll crank up your 

machine and return meaningful insight”

“It does not work?”

“I can give you more data”

“Still doesn’t work?”

“ I’ll try another advisor” ....



The missing component

The necessity of domain-specific prior 

knowledge.



The modeling of prior knowledge 

A central challenge for machine learning: 

How should one model prior knowledge?

We need tools that are, at the same time,

 Understandable to the domain expert

And

Useful for the design of learning 

paradigms.



Common tools for modeling PK (1)

Hypothesis classes  – restrict the set of 

potential predictors.

For example, commit to predicting with a linear 

decision rule. Namely, 

Assign weights to each attribute

(Blood Pressure, BMR, Age, Exercise, etc.)

Predict probability of heart attack as a weighted 

sum of these attribute values.



Common tools for modeling PK (2)

Apply regularization principles:

 Description length

 Margins

 Sparsity

 Low norm



Common tools for modeling PK (3)

Kernels, or, similarity functions-

Aimed to express prior knowledge regarding 

how likely are two domain element to have 

the same label. 

Example:

Define a Facebook kernel over people by 

2#(Common Facebook friends)

(#(Facebook friends of p)+#(Facebook friends of q))
K(p,q)= 



Common tools for modeling PK 

(4)

 Architecture of a Neural Network

 Prior ``likelihood probability” over the set 

of possible models (Bayesian Learning).



Some formal discussion



Some typical classification 

prediction tasks

 Medical Diagnosis (Patient info High/Low 

risk).

 Sequence-based classifications of proteins.

 Detection of fraudulent use of credit cards.

 Stock market prediction (today’s news

tomorrow’s market trend).



The formal setup 

(for label prediction tasks)
 Domain set – X

 Labe set  - Y (often {0,1})

 Learner’s input -

Training sample S=((x1,y1), …(xm, ym))

 Learner’s output –

prediction rule h: X Y



Data generation 

and measures of success

 An unknown distribution D generates

instances (x1, x2, …) independently.

 An unknown function f: X  Y labels them.

 The error of a classifier h is the probability 

(over D) that it will fail, h(x) ≠ f(x)



Empirical Risk Minimization (ERM)

Given a labeled sample 

S=((x1,y1), …(xm, ym))

and some candidate classifier h,

Define the empirical error of h as 

LS(h) =|{i : h(xi) ≠ f(xi)}|/m

(the proportion of sample points on which 

h errs)

ERM – find h the minimizes LS(h).



Not so simple – Risk of Overfitting
 Given any training sample 

S=((x1,y1), …(xm, ym))

 Let,

h(x)=yi if x=xi for some i ≤ m

and h(x)=0 for any other x.

 Clearly LS(h) =0.

 It is also pretty obvious that in many 

cases this h has high error probability.



Failure of ERM

Ground truth f ERM generated h



First type of prior knowledge –

Hypothesis classes

 A hypothesis class H is a set of 

hypothesis. We re-define the ERM rule 

by searching only inside such a 

prescribed H.

 ERMH(S) picks a classifier h in H that 

minimizes the empirical error over 

members of H



Our first theorem 

Theorem: (Guaranteed success for ERMH)

Let H be a finite class, and assume further 

that the unknown labeling rule, f, is a 

member of H.

Then for every ε, δ >0, if m> log(|H|/δ)/ ε,

With probability > 1- δ over S of size m 

samples i.i.d. by D and labeled by f,

Any ERMH(S) has error below ε.



Not only finite classes

 The same holds for the case that X is the 

real line and H is the class of all 

intervals.

 More generally – the guarantee holds for 

every H of finite VC-dimension



A formal definition of learnability

H is PAC Learnable  if 

there is a function mH : (0,1)2
 N 

and a learning algorithm A, 

such that for every distribution D over X, 

every ε, δ >0 and every f in H, 

for samples S of size m>mH(ε, δ) 

generated by D and labeled by f, 

Pr[LD(A(S)) > ε] < δ



More realistic setups

Relaxing the realizability assumption.

We wish to model scenarios in which the

learner does not have a priori knowledge

of a class to which the true classifier  

belongs.

 Furthermore, scenarios in which the labels

are not fully determined by the instance 

attributes.



General loss functions

Our learning formalism applies well 

beyond counting classification errors.

Let Z be any domain set.

and l : H x Z  R quantify the loss of a 

“model” h on an instance z.

Given a probability distribution P over Z

Let LP(h) = Exz~P(l (h, z))



Examples of such losses

 The 0-1 classification loss:

l (h, (x,y))= 0 if h(x)=y and 1 otherwise.

Regression square  loss:

l (h, (x,y)) = (y-h(x))2

 K-means clustering loss:

l (c1, …ck), z)= mini (ci –z)2



confusion matrix loss

Real  

predict
Cat Dog Horse Car

Cat 0 0.2 0.4 1

Dog 0.2 0 0,3 1

Horse 0.4 0.3 0 1

Car 1 1 1 0



Agnostic PAC learnability

H is Agnostic PAC Learnable  if 

there is a function mH : (0,1)2
 N 

and a learning algorithm A, 

such that for every distribution P over XxY

and every ε, δ >0, 

for samples S of size m>mH(ε, δ) 

generated by P, 

Pr[LP(A(S)) < Inf[h in H] LP(h) + ε] < δ



Absolute vs “Regret” loss

Note the difference in setup:

 Realizable setup: 

 We make assumptions (a model in our class is 

100% correct)

 We get strong results (small loss)

 Agnostic setup: 

 We make no assumptions.

 We get weaker results (small added loss)



Can such learnability be 

guaranteed?

Once again, the crucial factor is the 

VC-dimension of the class H.

The fundamental theorem of statistical 

learning:

A class H is (agnostic) PAC learnable if 

and only if its VC-dimension is finite.



General Empirical loss

 For any loss l : H x Z  R as above

and a finite domain subset S, define the 

empirical loss w.r.t. S=(z1, …zm) as 

LS(h) = Σi l (h, zi)/m.

ERM_H – minimizing the empirical loss 

over the class H is guaranteed to achieve

optimal error bounds.



Success guarantee for ERM_H

 The fundamental theorem also states 

that for any learnable class H, 

the simple ERM_H paradigm achieves  

best  possible sample size guarantees.



A quantitative version of the 

fundamental theorem

The number of random labeled samples

required to guarantee ε, δ successful 

learning for a class of predictors H is 

(VCdim(H) + log(1/ δ))/ ε^2



In terms of loss guarantees:

LP(A(S)) < Inf[h in H] LP(h) + (VC(H) + log(1/ δ))/|S|

It follows that we need the training sample 

size to be at least VC(H).



The role of VC-dimension

The bound above is tight in worst case:

Such error bound always holds

But

There  may be cases (tasks/data) for which we get 

smaller error.



The VCdim of some hypotheses classes

As a rule of thumb – VC(H) is the number of 

parameters needed to `zoom in’ on a specific h 

in H:

 For linear half-spaces in R^d it is (d+1)

 For (binary) decision trees it is the tree 

depth

 For a Neural Network it is the number of 

tunable edges.



Consideration in Picking an ML 

tool

 Expressiveness

 Statistical validity

The larger/more-complex the class the 

more expressive it is, but we pay in 

statistical validity via a growing VCdim.



The Types of Errors to be 

Considered

Best regressor for 
D

Approximation Error

Estimation Error

The Class H

Training error 
minimizer

Best h (in H) for D



Learning Theory:

The fundamental dilemma…

X

Y

y=f(x)

Good models should 

enable Prediction 

of new data…

Tradeoff between accuracy and 

simplicity



Training error = 16/47



Training error = 2/47



Complexity

A
cc

u
ra

cy
 

Possible 

Models/representations

Limited data

A Fundamental Dilemma of Science:

Model Complexity vs Prediction Accuracy



Expanding H

will lower the approximation error

BUT

it will increase the estimation error

(lower statistical validity)

The model selection problem



Are we done? All solved?

So far we discussed the information 

complexity of learning - size of training 

samples.

However, there is another crucial resource:

The runtime of a learner



Different important considerations

Three crucial aspects of learning algorithms:

 Expressiveness

 Statistical validity

 Computational complexity



A crucial resource

Often, enough training examples are 

available. We still need to process them to 

get a model/hypothesis.

The simplest learning algorithm is ERM_H

How much computing does it require?



For each of the following classes the empirical risk 
minimization problem is NP-hard :

Monomials Constant width
Monotone Monomials
Half-spaces
Balls
Axis aligned Rectangles
Neural Networks
k-means clustering

Hardness-of-Optimization Results



For each of the following classes there exist some 
constant s. t. approximating the best agreement 
rate for  
h in H (on a given input sample  S ) up to this 
constant ratio,  is NP-hard :

Monomials Constant width
Monotone Monomials
Half-spaces
Balls 
Axis aligned Rectangles
Threshold Neural Networks

BD-Eiron-Long

Bartlett- BD

Hardness-of-Approximation Results



Some other classes are “easy”

 The class of Boolean Conjunctions

over binary features.

 Decision stumps in R^d



Directions for addressing 

computational hardness
 Proper VS “improper” learning.

 Boosting

 Surrogate losses.

 Algorithms with no guarantees….

(for example –SGD for DNN’s)
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