Machine Learning with Group Theory

Kenji Fukumizu
The Institute of Statistical Mathematics

Machine Learning Summer School 2024
March 11, 2024 @ OIST

Symmetry is everywhere

In Design

Aoi, Mon (Shogun family)

Cloisters, University of Glasgow

In Nature

Reflection

Crystal lattice

[Thürlemann et al. J. Chem. Theory Comput. 2022]

Atomic configuration/static potential

Transformations for symmetry

Reflection/flip

Rotation

Shift

Symmetry and Geometry

- Symmetry or the associated transforms is mathematically formulated as a "group" or "symmetry group" as a part of algebra.
- Core of geometry
- Geometry

Euclidean geometry
Non-Euclidean geometry
Projective geometry

1872 Klein's Erlangen program A unified characterization of geometries based on group transformations.
\rightarrow Strong impact on geometry as well as researches of mathematics

Symmetry and Machine Learning

- Symmetry in the geometry of data

Shifts and rotations

- ML methods should make use of symmetry/groups Approaches
- Data augmentation: training with transformed data

- Embed the symmetry in the architecture \rightarrow Convolutional Neural Networks

Aims of this lecture

- Selected topics on ML methods to handle the symmetry in data through group theory.
(Not a comprehensive review of the existing researches.)
- Basics of group theory as the foundation.
- NN architecture to use symmetry: Group equivariant convolutional neural networks.
- Representation learning through group theory.

Outline of This Lecture

1. Introduction: symmetry and machine learning
2. Group theory I: Basics
3. Equivariant architecture: Group convolutional NN
4. Group theory II: Group representation and Fourier Transform
5. Representation Learning through Group Action

Outline of This Lecture

1. Introduction: symmetry and machine learning

2. Group theory I: Basics
3. Equivariant architecture: Group convolutional NN
4. Group theory II: Group representation and Fourier Transform
5. Representation Learning through Group Action

Group

- Symmetry/Symmetry transformations are formulated by "group" mathematically.
- Def. Group

A non-empty set G with is a binary operation (denoted by .) is a group if the following three properties hold:
(1) (Associativity) $\quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ for any $a, b, c \in G$.
(2) (Identity) There is $e \in G$ such that $a \cdot e=e \cdot a=a$ for any $a \in G$.
(3) (Inverse) For any $a \in G$, there is $b \in G$ such that $a \cdot b=b \cdot a=e$. Such b is denoted by a^{-1}.

* '. ' is often omitted, and $a b$ is used.
- Example 1. The non-zero real numbers $\mathbb{R}^{\times}=\{a \in \mathbb{R} \mid a \neq 0\}$ is a group under multiplication. This is a commutative group, i.e. $a b=b a$.

A commutative group is also called an Abelian group.

- Example 2. The integers with addition $(\mathbb{Z},+)$, the product $\left(\mathbb{Z}^{n},+\right)$, Euclidian space $\left(\mathbb{R}^{n},+\right)$ are all Abelian groups.

$$
a+b=b+a .
$$

If the operation is addition (and thus commutative), the group is called an additive group.

The identity and inverse are denoted by 0 and $-a$, respectively, for additive groups.

- Example 3. Cyclic group $\mathbb{Z}_{n}:=\mathbb{Z} / n \mathbb{Z}$ (integers $\bmod n$ with additive operation). $\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \ldots, \overline{n-1}\}$ (n elements). Additive Abelian group.

$$
\overline{1} \in \mathbb{Z}_{n} . \quad \overline{1}+\overline{1}=\overline{2}, \overline{2}+\overline{1}=\overline{3}, \overline{3}+\overline{1}=\overline{4}, \ldots, \overline{n-1}+\overline{1}=\overline{0}
$$

- \mathbb{Z}_{n} is also denoted by C_{n}, which is often considered as a multiplicative group: $C_{n}=\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}\right\}$

$$
\zeta:=e^{i \frac{2 \pi}{n}}
$$

- Example 4. The $n \times n$ nonsingular matrices is a group under multiplication. This is called the general linear group and denoted by $G L(n)$.
- $G L(n)$ is non-commutative, if $n \geq 2$.

For two matrices A and B, generally $A B \neq B A$.

Some basic definitions on groups

- Subgroup

Let G be a group. A subset H in G is a subgroup if H is also a group under the binary operation of G. Denoted by $H<G$.

- Example 1: $m \mathbb{Z}$ (the multiples of m) is a subgroup of \mathbb{Z}.
- Example 2: If $m \ell=n, \mathbb{Z}_{m}<\mathbb{Z}_{n}$.

$$
\mathbb{Z}_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}, \quad H:=\{\overline{0}, \overline{3}\}<\mathbb{Z}_{6} . \quad H \cong \mathbb{Z}_{2}, \quad \overline{3}+\overline{3}=\overline{0} .
$$

- Example 3: $O(n)$ (orthogonal group) and $S O(n)$ are subgroups of $G L(n)$.
- Direct product

The direct product $G_{1} \times G_{2}$ of groups G_{1} and G_{2} is $\left\{\left(g_{1}, g_{2}\right) \mid g_{1} \in G_{1}, g_{2} \in G_{2}\right\}$ with the operation

$$
\left(g_{1}, g_{2}\right) \cdot\left(h_{1}, h_{2}\right)=\left(g_{1} \cdot h_{1}, g_{2} \cdot h_{2}\right)
$$

- Homomorphism

Let G_{1} and G_{2} be groups. A map $\varphi: G_{1} \rightarrow G_{2}$ is a homomorphism if

$$
\varphi(g \cdot h)=\varphi(g) \cdot \varphi(h)
$$

for any $g, h \in G$.
Example. $\varphi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{3}, m(\bmod 6) \mapsto m(\bmod 3)$

- Isomorphism

A group homomorphism $\varphi: G_{1} \rightarrow G_{2}$ is an isomorphism if it is bijective.
If there is an isomorphism $\varphi: G_{1} \rightarrow G_{2}$, we write $G_{1} \cong G_{2}$. They are essentially the same group.

Example.

$$
\mathbb{Z}_{6} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3}, \quad n \bmod 6 \mapsto(n \bmod 2, n \bmod 3) \quad \text { Excercise: Confirm this. }
$$

Symmetric group

Symmetric group \mathfrak{S}_{n} is the group of the permutations on n items.

- \mathfrak{S}_{n} is non-commutative if $n \geq 3$, and $\left|\mathfrak{S}_{n}\right|=n$!
- Example. \mathfrak{S}_{3} \mathfrak{S}_{3} contains C_{3} or \mathbb{Z}_{3} (cyclic group of order 3) as a subgroup.

$$
\begin{gathered}
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \quad \tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
\tau \sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \quad \sigma \tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
\end{gathered}
$$

Euclidean motions

Euclidean group $E(n)$: the isometries of a Euclidean space \mathbb{R}^{n}.

- consists of the composition of rotations, translations, and reflections.
- can be written by a pair (R, a), where $R \in O(n)$ (rotation and reflections) and shift $a \in \mathbb{R}^{n}$.

Special Euclidean group $\operatorname{SE}(n)$:
$S E(n)$ consists of the rigid motions in \mathbb{R}^{n}.
An element is given by an arbitrary composition of translations and rotations (but not reflections).

- $S E(2)$

Rotation: $R_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \in S O(2)$
Shift: $a \in \mathbb{R}^{2}$

$$
\left(R_{\eta}, b\right) \cdot\left(R_{\theta}, a\right)=\left(R_{\eta+\theta}, R_{\eta} a+b\right)
$$

- $E(n)(n \geq 2)$ is non-commutative.
(Note: $S O(2)$ is commutative)

- $E(n)$ is realized by $(n+1) \times(n+1)$ matrices

$$
\begin{aligned}
& \left\{\left(\begin{array}{cc}
A & a \\
0 & 1
\end{array}\right): A \in O(n), b \in \mathbb{R}^{n}\right\} \\
& \left(\begin{array}{ll}
B & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
A & a \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
B A & B a+b \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Matrix multiplication is compatible with the group operation.

Normal subgroup

A subgroup N of G is called normal if $g h g^{-1} \in N$ for any $h \in N$ and $g \in G$. Often denoted by $N \triangleleft G$.

- Conjugate operation $g N^{-1}$ does not change N.
- G / N (cosets) has a natural group structure. (See Appendix)
- Any subgroup in a commutative group is normal.
- Example:
$\mathbb{R}^{n} \triangleleft E(n)$ (normal subgroup).

$$
\left(\begin{array}{ll}
A & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
I_{n} & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
A & a \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
I_{n} & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
A^{-1} & -A^{-1} a \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & A b \\
0 & 1
\end{array}\right)
$$

- $E(n) / \mathbb{R}^{n} \cong O(n)$
- $E(n) \neq \mathbb{R}^{n} \times O(n) \quad$ In the direct product $G_{1} \times G_{2}, G_{1}$ and G_{2} must be commutative.
- $E(n) \cong \mathbb{R}^{n} \rtimes O(n)$ (Semidirect product) \rightarrow Explained in the next slide.

Semidirect Product (Intuition)

- Example 1: $\mathfrak{S}_{3} \cong \mathbb{Z}_{3} \rtimes \mathbb{Z}_{2}$

$$
\begin{gathered}
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \text { generates } \mathbb{Z}_{3} ; \quad \tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \text { generates } \mathbb{Z}_{2} \\
\mathfrak{S}_{3}=\left\{\begin{array}{ll}
\left.1, \sigma, \sigma^{2}, \tau, \sigma \tau, \sigma^{2} \tau\right\} \quad \sigma^{\ell} \tau^{m} \quad(\ell=0,1,2 ; m=0,1) \\
\tau \sigma \tau^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\sigma^{2} \quad \sqsupseteq \text { Change in } \mathbb{Z}_{3}
\end{array}, ~\right.
\end{gathered}
$$

- Example 2: $S E(2) \cong \mathbb{R}^{2} \rtimes S O(2)$

$$
\begin{aligned}
S E(2)= & \left\{\left(a, R_{\theta}\right) \mid a \in \mathbb{R}^{2}, R_{\theta} \in S O(2)\right\} \\
& \left(0, R_{\theta}\right)\left(a, I_{2}\right)\left(0, R_{\theta}\right)^{-1}=\left(R_{\theta} a, I_{2}\right) \Leftarrow \text { Change in } \mathbb{R}^{2}
\end{aligned}
$$

- Semidirect product: $G=N \rtimes K$

For $N \triangleleft G$ (normal) and $K<G$ (subgroup), specify $\phi_{k}: H \ni h \mapsto k h k^{-1} \in H$. Then, we have a unique expression $h k$ or $(h, k)(h \in N, k \in K)$.
(See Appendix for more rigorous definition.)

A little bit coming back to ML or geometry... Group action

Def.
G : group, X : set. An action of G on X is a mapping $\alpha: G \times X \rightarrow X$ such that
i) $\alpha(e, x)=x$
ii) $\alpha(h g, x)=\alpha(h, \alpha(g, x))$
for any $x \in X$ and $g, h \in G$.

- We often use the notation $g \circ x:=\alpha(g, x)$.

i') $e \circ x=x$
$i i ') h \circ(g \circ x)=(h g) \circ x$
- A group representation $\rho: G \rightarrow G L(V)$ defines a linear group action: $V=X$ and $g \circ x=\rho(g) x$.

Invariance and Equivariance

Def. Invariance and Equivariance
A group G acts on two sets X and $Y . \varphi: X \rightarrow Y$.

- φ is invariant to the group action if

$$
\varphi(g \circ x)=\varphi(x)
$$

for any $g \in G$ and $x \in X$.

- φ is equivariant to the group action if

$$
\varphi(g \circ x)=g \circ \varphi(x)
$$

for any $g \in G$ and $x \in X$.

Invariance and equivariance in ML

Invariant
object classification

Equivariant
segmentation

From "Groups, Representations \& Equivariant maps" by Maurice Weiler (University of Amsterdam)

-What are the advantages?

- Various data has symmetry and group actions.
- Image: shifts, SO(2)-rotation, \cdots
- Spherical data: SO(3)-rotations
- Graphs: permutation/graph isomorphism
- Incorporating such group actions should be
 useful for the compact representation:
- Data: Low dimensional expression
- Model: Smaller models, efficient learning

- Approaches to invariance/equivariance ML
- Data augmentation:

For invariant/equivariant learning, transform the training data with the known group actions.

- Easily extendable to non-group cases.
- Needs many training data.
- Architecture:

Equivariant Neural Networks (CNN, G-CNN, etc)
Impose the symmetry in the architecture of the networks.

- Representation learning:

Learn the symmetry in the latent representation automatically

- Group representation/Fourier transform

Invariance vs Equivariance

- Equivariance is usually more focused.
- Invariance can be added only at the end.

If Ψ_{ℓ} 's are all equivariant, adding an invariant layer Φ in final layer

$$
\Phi \circ \Psi_{L} \circ \cdots \circ \Psi_{1}(x)
$$

makes an invariant mapping.
$\because) \Phi \circ \Psi(g x)=\Phi(g \Psi(x))=\Phi \circ \Psi(x)$

- Invariance is a special type of equivariance.
$\Phi: X \rightarrow Y \quad G$ acts on X and Y, but action on Y is trivial: $g \circ y=y g \in G$ and $y \in Y$.
Then, equivariance means invariance: $\Phi(g \circ x)=\Phi(x)$.

Group representation Linear group action

- Group representation: overview

- The group representation is a mathematical tool to describe a group in terms of linear transformations of a vector space.
- It reduces various group-theoretic problems to linear algebra/matrix theory.
- Typical cases
- Finite groups: Uses finite dimensional linear algebra, so developed most.
- Abelian groups: This corresponds to the Fourier analysis.
- Compact group: Extension of Fourier analysis is possible.
- Lie groups: Used often in physics and chemistry (not covered in this lecture).
- Representation
- Def. G : group. V : vector space. $G L(V)$: invertible linear transformations of V.
$\rho: G \rightarrow G L(V)$ is a representation of G on V if ρ is a group homomorphism, i.e., $\rho(a b)=\rho(a) \rho(b)$ for any $a, b \in G$.
- We often write (ρ, V) to specify a representation.
- When $\operatorname{dim} V$ is finite,
V can be \mathbb{R}^{n} and $G L(V)$ is $G L(n ; \mathbb{R})$.
- $\operatorname{dim} V$ is called dimensionality or degree of the representation.

- V may be a vector space over \mathbb{C}.

It may cause a simpler expression.

$$
\begin{gathered}
\rho \\
(\rho(a))(\rho(b)) \\
\text { Matrices }
\end{gathered}
$$

- Example: \mathfrak{S}_{3}
$\sigma=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=(123) \quad$ cycle of order 3
$\tau=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)=(23) \quad$ reflection of order 2
- σ and τ generate \mathfrak{S}_{3}

$$
\mathfrak{S}_{3}=\left\{e, \sigma, \sigma^{2}, \tau, \tau, \sigma^{2} \tau\right\}
$$

- A representation ρ of $\operatorname{dim} 2$ is defined by

$$
\left\{\begin{array}{l}
\rho(\sigma)=\left(\begin{array}{cc}
\cos (-2 / 3 \pi) & -\sin (-2 / 3 \pi) \\
\sin (-2 / 3 \pi) & \cos (-2 / 3 \pi)
\end{array}\right)=\left(\begin{array}{cc}
-\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & -\sqrt{3} / 2
\end{array}\right) \\
\rho(\tau)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{array}\right.
$$

Regular representation

Simply, shift of functions. A building-block of CNN.

Def. G : group. $V:=\{f: G \rightarrow \mathbb{R}\}$ functions on G.

$$
L_{g}: V \rightarrow V, f \mapsto f\left(g^{-1} \cdot\right)
$$

L_{g} is a representation, i.e. linear and $L_{g h}=L_{g} \circ L_{h}$. This group representation is called regular representation.

$$
\because\left(L_{g h} f\right)(x)=f\left((g h)^{-1} x\right)=f\left(h^{-1} g^{-1} x\right)=\left(L_{h} f\right)\left(g^{-1} x\right)=L_{g}\left(L_{h} f\right)(x) \text {. }
$$

Outline of This Lecture

1. Introduction: symmetry and machine learning

2. Group theory I: Basics
3. Equivariant architecture: Group convolutional NN
4. Group theory II: Group representation and Fourier Transform
5. Representation Learning through Group Action

Convolutional Neural Networks

- CNN (Wei Zhang et al 1988; Yann LeCun 1989)
- The earliest NN model to realize translation-equivariance.
- Convolution layer + Pooling layer trained by back-propagation.
- Inspired by the biological neural networks of early visual cortex.

- Origin: Neocognitron (Fukushima 1980) Backprop was not used.

31

Signal is expressed by a function $f[i, j]$ on the pixels

- Convolutional layer
- 2D gray-scale images $(W \times H)$ (for simplicity).

A spatial filter of small size $(3 \times 3$ or $5 \times 5) \psi_{[a, b]}$ is used.

$$
\begin{aligned}
& h_{[i, j]}^{\text {out }}=\sum_{i-a \in\{0, \pm 1\}} \sum_{j-b \in\{0, \pm 1\}} \psi_{[i-a, j-b]} f_{[a, b]}^{I n} \\
& f_{[i, j]}^{O u t}=\phi\left(h_{[i, j]}^{O u t}+\theta\right) \quad \phi: \text { activation function }
\end{aligned}
$$

- 2D Color images, "channel" dimension is added.

In the first layer, RGB makes 3 channels.
Each output channel k uses its own filter $\psi_{[a, b, c]}^{k}$

$$
h_{[i, j, k]}^{O u t}=\sum_{a} \sum_{b} \sum_{c=1}^{m_{C}} \psi_{[i-a, j-b, c]}^{k} f_{[a, b, c]}^{I n}
$$

Often, 0 is padded beyond the boundary.
$\sum_{a \in \mathbb{Z}^{2}} \sum_{b \in \mathbb{Z}^{2}}$ is okay.

- Pooling layer (Subsampling/down-sampling)
- Spatial size is reduced.
- Take a representative value in a small neighbor.
- Max pooling is the most popular
- Average pooling, ℓ_{2}-norm pooling, etc.
- Usually done for each channel (\#channels unchanged)
- Fully connected layer
- After several convolutional and pooling layers, a fully connected layer is used in the last layer.
- Invariance/equivariance can be achieved

Translation Equivariance of CNN

- Convolutional layer
- Ψf : mapping of f with convolution kernel ψ
- Shift by $s=\left[s_{W}, s_{H}\right] . \quad\left(L_{s} f\right)_{[i, j]}:=f\left(i-s_{W}, j-s_{H}\right)$.

$$
\text { Prop. } \quad L_{s}(\Psi f)=\Psi\left(L_{s} f\right)
$$

- Equivariance: Convolution and translation are commutative.
(Proof) Shown for the case of single channel (gray-scale).

$$
\begin{aligned}
L_{S}(\Psi f) & {[i, j]=(\Psi f)\left(i-s_{W}, j-s_{H}\right) } \\
& =\sum_{a} \sum_{b} \psi_{\left[i-s_{W}-a, j-s_{W}-b\right]} f_{[a, b]} \\
& =\sum_{a^{\prime}} \sum_{b^{\prime}} \psi_{\left[i-a^{\prime}, j-b^{\prime}\right]} f_{\left[a^{\prime}-s_{W}, b^{\prime}-s_{H}\right]} \\
& =\sum_{a^{\prime}} \sum_{b^{\prime}} \psi_{\left[i-a^{\prime}, j-b^{\prime}\right]}\left(L_{s} f\right)\left[a^{\prime}, b^{\prime}\right]=\Psi\left(L_{s} f\right)[i, j]
\end{aligned} \quad a^{\prime}:=a+s_{W}, b^{\prime}:=b+s_{H}
$$

- Activation

Prop. $\quad \phi\left(L_{s} f\right)=L_{s} \phi(f) . \quad$ [Equivariant]

- Applying activation ϕ is just a change of the value, so it is obvious.
- Pooling layer
- Pf: Pooling of f.
- After pooling on 2×2 regions, the translation for $P f$ should be the half for f :

$$
\begin{aligned}
& P\left(L_{s}^{(2)} f\right)=L_{s}(P f) \\
& \quad L_{s}^{(2)}: \text { shift of } 2 \times\left[s_{W}, s_{H}\right] .
\end{aligned}
$$

Group equivariant Convolutional Networks

(Cohen \& Welling ICML 2016)

- G-CNN: Generalization of CNN to general group action.
- CNN (recap)
- An image can be looked at a function

$$
f: \mathbb{Z}^{2} \text { (pixels) } \rightarrow \mathbb{R}^{3}(\mathrm{RGB})
$$

- Equivariant to the group operation (shift) of \mathbb{Z}^{2}.

$$
\Psi_{\mathrm{Conv}}(f(\cdot-s))=\left(\Psi_{\mathrm{Conv}} f\right)(\cdot-s)
$$

- G-CNN
- Considers more general groups for the signal.

$$
f: G \rightarrow \mathbb{R}^{K} .
$$

- Equivariant to G.

$$
\Psi_{\mathrm{Conv}}\left(L_{g} f\right)=L_{g}\left(\Psi_{\mathrm{Conv}} f\right)
$$

G-CNN: Motivation

- Symmetries

- Many image properties are invariant to Euclidean motions (E(2), SE(2)).
- Medical images: orientation or translation is not relevant.
c.f., Orientation may be meaningful in natural images (rooms, road, etc), characters (alphabets, numbers, etc).
-3D data/360-degree images (SO(3), E(3))
- 3D scanner, rendering, estimated.
- 360-degree camera.
 https://github.com/QUVA-Lab/e2cnn?tab=readme-ov-file
- Graphs (not covered in this lecture)
- Permutation invariance
- Graphs in 3D space, e.g., molecules (SE(3))

G-CNN: Model

- Examples of group G
- p 4: 90° rotations and translations ($<S E(2)$)

$$
\left\{\left.\left(\begin{array}{ccc}
\cos \frac{r \pi}{2} & -\sin \frac{r \pi}{2} & s_{x} \\
\sin \frac{r \pi}{2} & \cos \frac{r \pi}{2} & s_{y} \\
\hdashline 0 & 0 & 1
\end{array}\right) \right\rvert\, r \in\{0,1,2,3\} ; s_{x}, s_{y} \in \mathbb{Z}\right\}
$$

$$
p 4 \cong \mathbb{Z}^{2} \rtimes S O(2,4) \quad S O(2, N): N \text {-discretization of } S O(2)
$$

- $p 4 m: \mathrm{p} 4+$ reflection.

$$
p 4 m \cong \mathbb{Z}^{2} \rtimes O(2,4)
$$

- Convolution layer in G-CNN

- General ℓ-th layer: $G \rightarrow G$ equivariant
$f \in \mathcal{F}_{\ell}:=\left\{f: G \rightarrow \mathbb{R}^{K^{(\ell)}}\right\} \quad$ signal at the ℓ-th layer
$\Psi_{\text {Gconv }}: \mathcal{F}_{\ell} \rightarrow \mathcal{F}_{\ell+1}:=\left\{\tilde{f}: G \rightarrow \mathbb{R}^{K^{(\ell+1)}}\right\}$
$\left(\Psi_{\mathrm{Gconv}} f\right)_{k^{\prime}}(g)=\sum_{h \in G} \sum_{k=1}^{K^{(\ell)}} \psi_{k^{\prime} k}\left(g^{-1} h\right) f_{k}(h)=\sum_{h \in G} \sum_{k=1}^{K^{(\ell)}}\left(L_{g} \psi_{k^{\prime} k}\right)(h) f_{k}(h)$

$$
\left(k^{\prime}=1, \ldots, \ell+1\right)
$$

- Input layer: $\mathbb{Z}^{2} \rightarrow G$ equivariant

$$
\begin{aligned}
& \text { signal } f: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{3} \quad\left(\text { Assume } G \curvearrowright \mathbb{Z}^{2}\right), \quad \text { filter } \quad \psi: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{K^{\prime} \times K} \\
& \left(\Psi_{\text {in }} f\right)_{k^{\prime}}(g)=\sum_{x \in \mathbb{Z}^{2}} \sum_{k=1}^{K} \psi_{k^{\prime} k}\left(g^{-1} \circ x\right) f_{k}(x)
\end{aligned}
$$

- Final layer: $G \rightarrow \mathbb{Z}^{2}$ equivariant

$$
\begin{aligned}
& \text { Output } \left.f: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{K} \quad \text { (Assume } G \curvearrowright \mathbb{Z}^{2}\right), \quad \text { filter } \quad \psi: G \rightarrow \mathbb{R}^{K^{\prime} \times K} \\
& \\
& \left(\Psi_{\text {fin }} f\right)_{k^{\prime}}(x)=\sum_{g \in G} \sum_{k=1}^{K} \psi_{k^{\prime} k}\left(g^{\prime-1} g_{x}\right) f_{k}\left(g^{\prime}\right)
\end{aligned}
$$

$$
\begin{array}{cccc}
\Omega=\mathbb{Z}^{2} & \Omega=p 4 & \Omega=p 4 & \Omega=\mathbb{Z}^{2} \\
\rho: \text { scalar } & \rho: \text { regular } & \rho: \text { regular } & \rho: \text { scalar }
\end{array}
$$

Veeling et al. Rotation Equivariant CNNs for Digital Pathology, MICCAI 2018

- Equivariance of G-conv layer

$$
\text { Prop. } \quad L_{g}\left(\Psi_{\mathrm{Gconv}} f\right)=\Psi_{\mathrm{Gconv}}\left(L_{g} f\right)
$$

$$
\text { Recall } \begin{aligned}
(\Psi f)_{k^{\prime}}(g) & =\sum_{h \in G} \sum_{k=1}^{K}\left(L_{g} \psi_{k^{\prime}}\right)(h) f_{k}(h) \\
& =\sum_{h \in G} \sum_{k=1}^{K} \psi_{k^{\prime} k}\left(g^{-1} h\right) f_{k}(h)
\end{aligned}
$$

Proof)
Define

$$
(f, \varphi):=\sum_{h \in G} f(h) \varphi(h) .
$$

Then, we have $\Psi_{G c o n v}(f)(u)=\left(L_{u} \psi, f\right)$,
and

$$
\Psi_{G c o n v}\left(L_{g} f\right)(u)=\left(L_{u} \psi, L_{g} f\right) .
$$

From Lemma,

$$
\begin{aligned}
& \left(L_{u} \psi, L_{g} f\right)=\left(L_{g^{-1}} L_{u} \psi, f\right)=\left(L_{g^{-1}} \psi, f\right) \\
& \quad=\Psi_{G c o n v}(f)\left(g^{-1} u\right)=L_{g}\left(\Psi_{G c o n v}(f)\right)(u) .
\end{aligned}
$$

Lemma

$$
\left(\varphi, L_{g} f\right)=\left(L_{g^{-1}} \varphi, f\right)
$$

$\because)\left(\varphi, L_{g} f\right)=\sum_{h} \varphi(h) f\left(g^{-1} h\right)$

$$
\begin{aligned}
& =\sum_{h^{\prime}} \varphi\left(g h^{\prime}\right) f\left(h^{\prime}\right) \quad h^{\prime}:=g^{-1} h \\
& =\sum_{h^{\prime}}^{\prime}\left(L_{g^{-1}} \varphi\right)\left(h^{\prime}\right) f\left(h^{\prime}\right) \\
& =\left(L_{g^{-1}} \varphi, f\right) .
\end{aligned}
$$

Applications of G-CNN

- Rotation MNIST

Random rotated MNIST images.

Network	Test Error (\%)
Larochelle et al. (2007)	10.38 ± 0.27
Sohn \& Lee (2012)	4.2
Schmidt \& Roth (2012)	3.98
Z2CNN	5.03 ± 0.0020
P4CNNRotationPooling	3.21 ± 0.0012
P4CNN	$\mathbf{2 . 2 8} \pm \mathbf{0 . 0 0 0 4}$

Cohen \& Welling ICML 2016

From "Exploring Strategies for Training Deep Neural Networks", Larochelle et al JMLR 2009

- Medical images

Lafarge et al.: Roto-translation equivariant convolutional networks: Application to histopathology image analysis. Medical Image Analysis (2021)

Application of SE(2)-equivariant CNN to medical image analysis.

Mitosis detection

Eight cases (458 mitotic figures) were used to train the models and four cases (92 mitoses) for validation. Evaluation is performed on a test set of 11 independent cases (533 mitoses), 23 cancer cases

Multi-organ nuclei segmentation

Kumar et al (2017) IEEE Trans MI.
images for training (7337 nuclei), $\times 1$ HPF images for validation (1474 nuclei) and $4 \times 2 \mathrm{HPF}$ images for testing (4130 nuclei).

Patch-based tumor detection

PCam. Veeling et al MICCAI 2018

327,680 image patches, benign/malignant
$S E(2, N):=\mathbb{R}^{2} \rtimes S O(2, N)$, where $S O(2, N)$ is N discretization of $S O(2)$

$$
|G|=O(N), \quad \text { \#weights }=O\left(N^{2}\right)
$$

Mitosis detection

Nuclei segmentation

Tumor detection

Baseline (+rot.augm) (leftmost): data augmentation by rotations Baseline: CNN (translation)
Different colors correspond to variations of training data.

- Invariance to rotations
- Test images (positive) are rotated and the prediction outputs by NN are shown.
- SE (2,N)-CNN achieves much better rotation invariance in the prediction.

Steerable CNN

(Cohen \& Welling ICLR 2017; Weiler\&Cesa NeurIPS 2019; Weiler et al NeurIPS 2018)

- Further symmetry!
- In G-CNN, the channels do not consider any symmetry so far.
- In some cases, symmetry in the channels should be considered.

Example.

Vector field and Euclid motions.
Input signal: $v: \mathbb{R}^{2} \rightarrow \mathbb{R}^{K} \quad(K=2)$
It is natural that when $x \mapsto R(\theta) x$ is applied, the vector field $v(x)$ is also rotated by $R(\theta)$.

scalar field/RGB $\rho(g)=1$

Weiler \& Cesa. General E(2)-Equivariant Steerable CNNs, NeurIPS 2021

- Steerable convolution layer

$$
E(2)=\left(\mathbb{R}^{2},+\right) \rtimes O(2), \quad g=(s, R) \in E(2), \quad s \in \mathbb{R}^{2}, R \in O(2)
$$

- c.f. Standard G-CNN

$$
(\Psi f)_{k^{\prime}}(g)=\sum_{x \in \mathbb{R}^{2}} \sum_{k=1}^{K}\left(L_{g} \psi_{k^{\prime} k}\right)(x)\left(f_{k}\right)(x)=\sum_{x} \sum_{k} \psi_{k^{\prime} k}\left(R^{-1}(x-s)\right) f_{k}(x)
$$

- Steerable convolution

$$
\begin{array}{r}
\left(\Psi_{\text {Steer }} f\right)_{k^{\prime}}(g)=\sum_{x \in \mathbb{R}^{2}} \sum_{k=1}^{K} \psi_{k^{\prime} k}\left(R^{-1}(x-s)\right) \sum_{c=1}^{K} \rho_{k c}(R) f_{c}(x) \\
\rho: O(2) \rightarrow G L\left(\mathbb{R}^{K}\right) \text { some representation of } O(2)
\end{array}
$$

- Condition of ψ for equivariance:

$$
\Psi_{\text {Steer }}\left(L_{g} f\right)=L_{g}\left(\Psi_{\text {Steer }} f\right) \quad(\text { Equivariance })
$$

if and only if

$$
\psi(g x)=\rho_{\text {out }}(g) \psi(x) \rho_{\text {in }}\left(g^{-1}\right) \quad \forall g \in E(2), x \in \mathbb{R}^{2}
$$

- Applications of $S E(2, N)$-Steerable CNN

Weiler, Hamprecht, Storath, "Learning Steerable Filters for Rotation Equivariant CNNs" CVPR 2018

1) rot MNIST

Method	Test Error (\%)	
Ours - CoeffInit, train time augmentation	$\mathbf{0 . 7 1 4} \pm \mathbf{0 . 0 2 2}$	
Ours - CoeffInit	0.880 ± 0.029	
Ours - HeInit	0.957 ± 0.025	
Marcos et al. [23] - test time augmentation	1.01	
Marcos et al. [23]	1.09	
Laptev et al. [21]	1.2	
Worrall et al. [24]	1.69	
Cohen and Welling [2] - G-CNN	$2.28 \quad \pm 0.0004$	
Schmidt and Roth [29]	4.0	
Sohn and Lee [11]	4.2	
Cohen and Welling [2] - conventional CNN	$5.03 \quad \pm 0.0020$	
Larochelle et al. [30]	10.4	± 0.27

Table 1: Test errors on the rotated MNIST dataset. We distinguish He initialization (HeInit) from the proposed initialization scheme (CoeffInit).

2) ISBI 2012 electron microscopy segmentation challenge

- Prediction of the locations of the cell boundaries in the Drosophila ventral nerve cord from EM images.
- 30 train and test slices of size $512 \times 512 \mathrm{px}$ with a binary segmentation ground truth

Raw EM image

Ground truth segmentation

Probability map by the proposed network

Accuracy. Top 6 of more than 100 entries of the leaderboard, as of Nov 13, 2017.

Method	$V^{\text {Rand }}$	$V^{\text {Info }}$
IAL MCCLMC	$\mathbf{0 . 9 8 7 9 2}$	$\mathbf{0 . 9 9 1 8 3}$
CASIA_MIRA	0.98788	0.99072
Ours	0.98680	0.99144
Quan et al. [26]	0.98365	0.99130
Beier et al. [27]	0.98224	0.98845
Drozdzal et al. [28]	0.98058	0.98816

Outline of This Lecture

1. Introduction: symmetry and machine learning

2. Group theory I: Basics
3. Equivariant architecture: Group convolutional NN
4. Group theory II: Group representation and Fourier Transform
5. Representation Learning through Group Action

Mapping of Group Representations

- Def.
G : group. $(\rho, V),\left(\rho^{\prime}, V^{\prime}\right)$: representations of G.
A linear map $T: V \rightarrow V^{\prime}$ is a G-linear map (or \underline{G}-map) if the following diagram
commutes for any $g \in G$;
i.e. $\rho^{\prime}(g)(T v)=T(\rho(g) v)$ for any $g \in G$.

- Some representations are essentially the same

Def. A G-map T is an isomorphism if it is invertible.
Def. Two representations are isomorphic if there is an isomorphism.

Decomposition of representation

- In some cases, a group representation can be decomposed into a direct sum of "irreducible representations".
- In matrices, it corresponds to the simultaneous (w.r.t. g) block-diagonalization of the representation matrix.
- Def. If a subspace $W \subset V$ of a representation (ρ, V) satisfies $\rho(g) W \subset W$ for any $g \in G$, then the restriction $\left.\rho\right|_{W}$ defines a representation $\left(\left.\rho\right|_{W}, W\right)$. This is called a subrepresentation of (ρ, V).

$$
\left(\begin{array}{cc}
A(g) & B(g) \\
O & D(g)
\end{array}\right)\binom{w}{0}=\binom{A(g) w}{0}
$$

- Def. A representation (ρ, V) is reducible if there is a non-trivial subrepresentation (i.e., there is $W \subset V$ such that $\rho(g) W \subset W$ and $W \neq 0, V$.)
- If a representation is not reducible, then it is called irreducible.
- Def.

The direct product of representations $\left(\rho_{1}, V_{1}\right)$ and $\left(\rho_{2}, V_{2}\right)$ is defined by

$$
\rho_{1} \oplus \rho_{2}: G \rightarrow V_{1} \oplus V_{2}, \quad g \mapsto \rho_{1}(g) \oplus \rho_{2}(g) .
$$

$$
\left(\begin{array}{cc}
\rho_{1}(g) & O \\
O & \rho_{2}(g)
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{\rho_{1}(g) v_{1}}{\rho_{2}(g) v_{2}}
$$

- Maschke's theorem

Let (ρ, V) be a finite-dimensional representation of a finite group G. Let $\left(\left.\rho\right|_{W}, W\right)(W \subset V)$ be any subrepresentation. Then there exists a subspace $U \subset V$ such that $V=W \oplus U$ and $\rho=\left.\left.\rho\right|_{W} \oplus \rho\right|_{U}$.

$$
\left(\begin{array}{cc}
\left.\rho\right|_{W}(g) & B(g) \\
0 & D(g)
\end{array}\right) \longleftrightarrow\left(\begin{array}{cc}
\left.\rho\right|_{W}(g) & 0 \\
0 & \left.\rho\right|_{U}(g)
\end{array}\right)
$$

- For a finite group, if we have a subrepresentation, we can always find a complimentary subrepresentation to give a decomposition as a direct sum.
- A representation is called completely reducible (or semisimple) if it is isomorphic to a direct sum of irreducible representations.

$$
\rho \cong \rho_{1} \oplus \rho_{2} \oplus \cdots \oplus \rho_{k}
$$

- In terms of matrices, we can make it simultaneously block-diagonal so that each block corresponds to an irreducible representation:

$$
\rho(g)=P\left(\begin{array}{cccc}
A_{1}(g) & O & \cdots & O \\
0 & A_{2}(g) & \ddots & O \\
\vdots & & \cdots & \vdots \\
O & & \cdots & A_{k}(g)
\end{array}\right) P^{-1}
$$

- For the following three classes, any finite dimensional representation is completely reducible:
- Finite group (Maschke's theorem)
- Locally compact Abelian group (SO(2), etc)
- Compact Lie groups ($O(n)$, etc).
- Example: irreducible representations of \mathfrak{S}_{3}

1) Standard representation (2 dim)

$$
\left\{\begin{array}{l}
\rho_{s t}(\sigma)=\left(\begin{array}{cc}
\cos (-2 / 3 \pi) & -\sin (-2 / 3 \pi) \\
\sin (-2 / 3 \pi) & \cos (-2 / 3 \pi)
\end{array}\right)=\left(\begin{array}{cc}
-\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & -\sqrt{3} / 2
\end{array}\right) \\
\rho_{s t}(\tau)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{array}\right.
$$

2) Alternating representation (1 dim)

$$
\rho_{\text {alt }}(g)=\operatorname{sgn}(g)
$$

3) trivial (1 dim)

$$
\rho_{e}(g)=1
$$

It is known that the above three are all the irreducible representations of $\mathfrak{\Im}_{3}$. (See, e.g., Fulton Harris)

Fourier transform and group

- Recall: Classical Discrete Fourier transform on function $\left\{0, \frac{1}{N_{N}}, \ldots, \frac{N-1}{N}\right\} \subset \mathbb{S}^{1}$.

Fourier Transform: $\quad \hat{f}_{n}=\Phi(f)(n)=\sum_{k=0}^{N-1} e^{-i 2 \pi \frac{n k}{N}} f\left(\frac{k}{N}\right)$, Inversion: $\quad f\left(\frac{k}{N}\right)=\sum_{n=0}^{N-1} e^{i 2 \pi \frac{n k}{N}} \hat{f}_{n}$.

- $\left\{0, \frac{1}{N_{N}}, \ldots, \frac{N-1}{N}\right\} \subset \mathbb{S}^{1}$ is a group $\cong \mathbb{Z}_{N}$!
- Equivariance by shift (well-known):

$$
\Phi\left(f\left(\cdot-\frac{a}{N}\right)\right)=\left(e^{i 2 \pi \frac{a}{N} n} \hat{f}_{n}\right)_{n=0}^{N}
$$

or

$$
\Phi\left(L_{a / N} f\right)=\tilde{L}_{a / N} \Phi(f)
$$

$$
\begin{aligned}
& \mathbb{Z}_{N} \text { acts on } \mathbb{C}^{N}\left(\hat{f}_{n}\right) \text { by } \\
& \left(\frac{a}{N}\right) \cdot\left(\begin{array}{c}
\hat{f}_{0} \\
\vdots \\
\hat{f}_{N-1}
\end{array}\right):=\left(\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & e^{2 \pi i \frac{a}{N}}(N-1)
\end{array}\right)\left(\begin{array}{c}
\hat{f}_{0} \\
\vdots \\
\hat{f}_{N-1}
\end{array}\right) .
\end{aligned}
$$

Equivariance!

Fourier Transform on Group

- Fourier transform is generalized to locally compact Abelian groups (See e.g. Rudin)

What serves as the frequencies? -- The irreducible representations.
Theorem. Any irreducible representation of an Abelian group on \mathbb{C}-vector space is 1 dimensional.
$\widehat{G}:=\left\{\rho_{n}: G \rightarrow \mathbb{C}\right\}$: irreducible representations of G.

$$
\begin{gathered}
\rho_{n}\left(\frac{k}{N}\right)=e^{i 2 \pi \frac{n k}{N}} \\
(n=0,1, \ldots, N-1) \text { are the }
\end{gathered}
$$

Fourier transform $\quad \hat{f}_{n}=\Phi(f)_{n}:=\sum_{g \in G} \overline{\rho_{n}(g)} f(g)$
Fourier inversion formula $f(g)=\sum_{n} \rho_{n}(g) \hat{f}_{n}$

Fourier Transform is equivariant

$$
\mathcal{F}(G) \xrightarrow{\mathrm{FT} \Phi} \mathcal{F}(\widehat{G})
$$

Prop. $\Phi\left(L_{g} f\right)_{n}=\rho_{n}(g) \Phi(f)_{n}$
So, if we define an action \tilde{L}_{g} of G on $\left(\hat{f}_{n}\right)$ by $\hat{f}_{n} \mapsto \rho_{n}(g) \hat{f}_{n}$,

$$
\Phi\left(L_{g} f\right)=\tilde{L}_{g} \Phi(f) . \quad \text { Equivariance }
$$

More generally, we define the convolution of f and g by

$$
(f * \varphi)(g)=\sum_{h \in G} f(h) \varphi\left(h^{-1} g\right)
$$

Prop. $\quad \Phi(f * \varphi)=\Phi(f) \Phi(\varphi)=\left(\hat{f}_{n} \hat{\varphi}_{n}\right)_{n}$

Outline of This Lecture

1. Introduction: symmetry and machine learning

2. Group theory I: Basics
3. Equivariant architecture: Group convolutional NN
4. Group theory II: Group representation and Fourier Transform
5. Representation Learning through Group Action

Representation Learning through Group Action

Miyato, Koyama, Fukumizu. NeurIPS 2022;
Koyama, Fukumizu., Hayashi, Miyato. ICLR 2024

Representation Learning

- Deep learning is expected to provide a good representation, which is effective to various downstream tasks.
- Group actions cause structured motions, which should be useful in extracting representations.

Feature visualization of convolutional net trained on ImageNet [Zeiler \& Fergus 2013]

Driven by implicit group action.

Decomposed representation

- Decomposed/disentangled representations
- Easier interpretation
- Control of each factor
- Aim: Learning representations from group action data $\left(x_{1}, g_{1} \circ x_{1}\right),\left(x_{2}, g_{2} \circ x_{2}\right), \ldots$
- "Group representation" gives decomposed representation.
- Related to Fourier transformation: learning-based Fourier transform

Equivariant Representation Learning

(Miyato, Koyama, F. NeurIPS 2022; Koyama, F., Hayashi, Miyato ICLR 2024)

- General Problem setting
- Some group G acts on data space \mathcal{X}.
- Observation: many examples of group action
- Paired data: $\left(x_{i}, g_{i} \circ x_{i}\right) \quad x_{i} \in \mathcal{X}, g_{i} \in G$

- Sequences: $\left(x_{i}, g_{i} \circ x_{i}, g_{i}^{2} \circ x_{i}, g_{i}^{3} \circ x_{i}, \ldots\right)$
- Triplet: $\left(x_{i}, g_{i} \circ x_{i}, g_{i}^{2} \circ x_{i}\right)$
- Various knowledge level on G or g
- G and g_{i} may be known or may be unknown. \rightarrow different types of settings.

Existing approaches to equivariant learing

- Group G and its action are explicitly known and applied to data space
- (Group) CNN: architecture adapted to a specific group
- Data augmentation : augmentation using the group action

This work

- Group action does exist, but is not known explicitly
- Not acting on the data space
- May be observed with unknown nonlinearity

Rotation in the latent space

Nonlinear observation (fisheye lens)

Hardest setting: Unsupervised Learning of Equivariant Structure from Sequences (Miyato et al. NeurlPS 2022. https://github.com/takerum)

- Unsupervised learning: Neither G or $g \in G$ is known
- Data: many sequences $\left\{\mathbf{s}^{(i)}\right\}$

$$
s_{t}^{(i)}=\left(g^{(i)}\right)^{t} \circ s_{0}^{(i)}
$$

- Generative model: sequences driven by group actions

G : group (unknown) acting on X. Sequence: $\boldsymbol{s}=\left(s_{0}, s_{1}, s_{2}, \ldots, s_{T}\right)$.
$s_{t}=g^{t} \circ s_{0} . \quad s_{t} \in X$
Each seq $\mathbf{s}^{(i)}$ has its own $g^{(i)} \in G$, but unknown.
Stationarity:
$\mathbf{s}^{(2)}=\mathbf{s}\left(g^{(2)}, s_{0}^{(2)}\right)$

Rotation, Shifts, Color rotation
A sequence \boldsymbol{s} is generated given an initial image s_{0} and a group element $g \in G$.
$g^{(i)} \in G$ is the same in a sequence.

Meta Sequential Prediction (MSP)

- Learning with Autoencoder

Enc. $\Phi: \mathcal{X} \rightarrow \mathbb{R}^{m \times a}$,
Dec. $\Psi: \mathbb{R}^{m \times a} \rightarrow \mathcal{X}$

- Learning group representation Linear transform in the latent space

$$
\Phi\left(s_{t+1}^{(i)}\right)=M^{(i)} \Phi\left(s_{t}^{(i)}\right)
$$

$M^{(i)}$: sequence-dependent matrix.

- Least square learning of $M_{\mathrm{s}}, \Phi, \Psi$

$$
\begin{aligned}
& E\left\|M_{\mathbf{s}} \Phi\left(s_{t}\right)-\Phi\left(s_{t+1}\right)\right\|^{2} \quad \text { [Equivariance constrant] } \\
& E\left\|\Psi\left(M_{\mathbf{s}}^{\ell} \Phi\left(s_{t}\right)\right)-s_{t+\ell}\right\|^{2} \quad[\text { Pred./Reconst.] }
\end{aligned}
$$

Disentanglement by Irreducible Decomposition

- Transition matrix $M_{\mathbf{s}}$ can depend on \mathbf{s} (on $g \in G, M(g)$)

$$
G \ni g \mapsto M(g) \in G L\left(\mathbf{R}^{a}\right) \quad \text { Group representation } G
$$

- Irreducible decomposition \rightarrow Simultaneous block-digonalization of $\left\{M_{s}\right\}_{s}$

Common change of bases
Each block is an irreducible representation.

Common matrix U

Disentanglement by irreducible repr.

* Spectral clustering method is applied to SBD.

Experiment 1: Effective representation

- Linear classification with learned $\Phi(x)$

Trained with only " 4 " $\rightarrow 10$ class classification for " 0 ", \cdots, " 9 ".

* SimCLR, CPC: standard methods of self-supervised learning

Experiment 2: disentanglement

Rendered image sequences:
Product group of 5 types of changes

Before SBD

Blocks obtained by simultaneous block diagonalization
(1)

Reconstruction by each block

$$
\hat{s}_{t}:=\Psi\left(M_{b}^{t} \Phi\left(s_{0}\right)\right)
$$

Neural Fourier Transform (Koymaetal|clic 2024)

- Proposed method: a nonlinear extension of Fourier transform
- Learning by the equivariance constraint.

$$
L_{g} x \approx \Psi \circ M(g) \circ \Phi(x)=\Psi \circ P^{-1} \circ\left(\begin{array}{ccc}
\rho_{1}(g) & & 0 \\
& \rho_{2}(g) & \ddots
\end{array}\right) \circ P \circ \underset{\text { Inv. Fourier Transform }}{0} \circ \Phi(x)
$$

- c.f. Classical Fourier transform on function $\left\{0, \frac{1}{N}, \ldots, \frac{N-1}{N}\right\} \subset \mathbb{S}^{1}$.

$$
\hat{f}_{n}=\Phi(f)(n)=\sum_{k=0}^{N-1} e^{-i 2 \pi \frac{k}{N}} f\left(\frac{k}{N}\right)
$$

- Equivariance: $\quad \Phi(f(\cdot-a / N))=e^{i 2 \pi \frac{a}{N} n} \hat{f}_{n} 1 \quad \ldots$

$$
\text { or } L_{a / N} f=\Phi^{-1} \circ\left(\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & e^{i 2 \pi a \frac{N-1}{N}}
\end{array}\right) \circ \Phi(f)
$$

- Neural Fourier Transform:

Trained Φ and Ψ can be interpreted as nonlinear FT and Inv FT.

- NFT works for "data", while standard FT works for functions.
- NFT learns the transforms though data (examples of actions) without knowing the group or group actions.
- It uses only necessary frequencies based on data.
- g-NFT: 3D image synthesis from 2D training images
- Data: Paired 2D images and 3D rotation (S, S^{\prime}, R). $R \in S O(3), S, S^{\prime}: 2 \mathrm{D}$ images, $S^{\prime}=R S$
- $M(g)$ Spherical harmonics. Only encoder Φ and decoder Ψ are trained.
- Testing: Provide a 2D image X_{0} (not in the training data)
and apply arbitrary 3D rotation g by $\widehat{\Psi}\left(M(g) \widehat{\Phi}\left(\mathrm{X}_{0}\right)\right)$.

Perspective projection (P)

Wrap-up

- Group theory
- Extract symmetry in nature
- Well developed mathematics
- Group representation: approach with linear algebra
- Machine leaning with group actions
- Three approaches
- Data augmentation
- Built-in architecture: (Group) convolutional neural networks
- Representation learning with group representation,
- Group CNN: Realize equivariant mapping
- Guaranteed equivariance (c.f. data augmentation)
- Compact representation
- Data: Low dimensional expression
- Model: Smaller models, efficient learning
- Equivariant representation learning
- Implicit group action
- Group or group action may not be known
- Paired or sequential data are required.
- Learning through equivariance constraint
- Achieves nonlinear extension of Fourier transform
- Data-based Fourier transform
- Extract necessary frequencies

Eod

Enjoy Okipawa!

References

- Online materials
- U Amasterdam - An Introduction to Group Equivariant Deep Learning https://uvagedl.github.io/
- Textbooks on Group Theory
- [Group Theory] J.J. Rothman. An Introduction to the Theory of Groups. Springer 1995.
- [Representation Theory] W. Fulton, J. Harris. Representation Theory. Springer 2004
- [Fourier Analysis] W. Rudin. Fourier Analysis on Groups. John Wiley\& Sons, 1991

- Papers

- Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position". Biological Cybernetics 36 (4): 193-202. doi:10.1007/BF00344251
- Zhang, Wei (1988). "Shift-invariant pattern recognition neural network and its optical architecture". Proceedings of annual conference of the Japan Society of Applied Physics.
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Backpropagation Applied to Handwritten Zip Code Recognition Archived 2020-01-10 at the Wayback Machine; AT\&T Bell Laboratories
- T. Cohen and M. Welling. Group Equivariant Convolutional Networks. ICML 2016
- Lafarge, M. W., Bekkers, E. J., Pluim, J. P. W., Duits, R., \& Veta, M. (2021). Rototranslation equivariant convolutional networks: Application to histopathology image analysis. Medical Image Analysis, 68, 101849.
https://doi.org/https://doi.org/10.1016/i.media.2020.101849
- T. Cohen and M. Welling. Steerable CNNs. ICLR 2017
- M. Weiler and G. Cesa. General E(2) - Equivariant Steerable CNNs. NeurIPS 2019
- M. Weiler, M. Geiger, M. Welling, W. Boomsma, T. Cohen. 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data. NeurIPS 2018 https://papers.nips.cc/paper files/paper/2018/hash/488e4104520c6aab692863cc1dba45 af-Abstract.htmI
- Weiler, Hamprecht, Storath, "Learning Steerable Filters for Rotation Equivariant CNNs" CVPR 2018
- T. Miyato, M. Koyama, K. Fukumizu. Unsupervised Learning of Equivariant Structure from Sequences. NeurIPS 2022
- M. Koyama, K. Fukumizu, K. Hayashi, T. Miyato. Neural Fourier Transform: A General Approach to Equivariant Representation Learning. ICLR 2024 https://openreview.net/forum? id=eOCvA8iwXH

[Theoretical analysis on invariant/equivariant neural networks]

- Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, Benjamin Bloem-Reddy. On the Benefits of Invariance in Neural Networks. https://arxiv.org/abs/2005.00178
- Akiyoshi Sannai, Masaaki Imaizumi, and Makoto Kawano. Improved generalization bounds of group invariant/equivariant deep networks via quotient feature spaces. In Uncertainty in Artificial Intelligence, pages 771-780. PMLR, 2021.
- Arash Behboodi, Gabriele Cesa, Taco Cohen. A PAC-Bayesian Generalization Bound for Equivariant Networks. NeurIPS 2022 https://openreview.net/forum?id=6dfYc2IUj4
- J. Shawe-Taylor. Building symmetries into feedforward networks. In 1989 First IEE International Conference on Artificial Neural Networks, (Conf. Publ. No. 313), page 158-162, Oct 1989.

Appendix

Semidirect Product of Groups

- Def. G : group. $N \triangleleft G$ (normal subgroup), $K<G$ (subgroup). G is a semidirect product of N and K (denoted by $G=N \rtimes K$) if $N K=G$ and $N \cap H=\{e\}$.
- There are several other equivalent definitions.
- $g \in G$ is uniquely written as $g=h k$, where $h \in N, k \in K$.
- Take $g_{1}=h_{1} k_{1}, g_{2}=h_{2} k_{2}$. $g_{1} g_{2}=h_{1} k_{1} h_{2} k_{2}=h_{1} k_{1} h_{2} k_{1}^{-1} k_{1} k_{2}$.

From $N \triangleleft G$, there is $\tilde{h} \in N$ such that $k_{1} h_{2} k_{1}^{-1}=\tilde{h}$.
Semidirect product specifies the conjugate $\phi(k): N \rightarrow N, h \mapsto k h k^{-1}$.
For 'direct' product $k h k^{-1}=h$.

Coset and Quotient Group

- Coset

G : group. $H<G$: subgroup.
$g H:=\{g h \in G \mid h \in H\}$ for any $g \in G$. (left coset)

- Fact: $g H=g^{\prime} H$ if and only if $g^{-1} g^{\prime} \in H$.
[Exercise: Check this.]
- The cosets $\{g H \mid g \in G\}$ gives a partition of G. Aka residue class.
- Example. $G=\mathbb{Z}, H=5 \mathbb{Z}$.

c				
c				
$=\mathbb{Z}$				
0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
\vdots	\vdots	\vdots	\vdots	\vdots

$$
H=5 \mathbb{Z}
$$

The cosets are $H, 1+H, 2+H, 3+H, 4+H$. Partioned by the residues.

- Normal subgroup

A subgroup N of G is called normal if $g h g^{-1} \in N$ for any $h \in N$ and $g \in G$. Often denoted by $N \triangleleft G$.

- Quotient group

- For a subgroup $H<G$, the cosets $\{g H \mid g \in G\}$ may not form a group.

Proposition. For a normal subgroup N of G, the cosets $\{g N \mid g \in G\}$ is a group with the operation $g_{1} N \cdot g_{2} N=g_{1} g_{2} N$.

This is called a quotient group and denoted by G / N.
Example: $\mathbb{Z} / n \mathbb{Z}$
(Proof Sketch) Because N is normal, for any $h_{1} \in N$, there is $h^{\prime} \in N$ such that $g_{2}^{-1} h_{1} g_{2}=h^{\prime}$. Then, for any $h_{2} \in H, g_{1} h_{1} g_{2} h_{2}=g_{1} g_{2} h^{\prime} h_{2} \in g_{1} g_{2} H$. The multiplication is thus well defined. N is the identity and $g^{-1} N$ is the inverse of $g H$.

- Example
$E(n)$ has a subgroup \mathbb{R}^{n} (translations).
- $\mathbb{R}^{n} \triangleleft E(n)$ (normal subgroup).

$$
\left(\begin{array}{ll}
A & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
I_{n} & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
A & a \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
I_{n} & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
A^{-1} & -A^{-1} a \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & A b \\
0 & 1
\end{array}\right)
$$

- $E(n) / \mathbb{R}^{n} \cong O(n)$
- $E(n) \neq \mathbb{R}^{n} \times O(n)$

In the direct product $G_{1} \times G_{2}, G_{1}$ and G_{2} must be commutative.

- $E(n) \cong \mathbb{R}^{n} \rtimes O(n)$ (Semidirect product) \rightarrow Explained in the next slide.

Finite Abelian groups

A group G is a finite group if it has finite elements.
The number of elements is called the order of G and denoted by $|G|$.

- Recall. Cyclic group $\mathbb{Z}_{n}:=\mathbb{Z} / n \mathbb{Z} . \quad \begin{aligned} & \left|\mathbb{Z}_{n}\right|=n \\ & \\ & \mathbb{Z}_{6} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3} .\end{aligned}$
- Theorem. A finite Abelian group G is isomorphic to a direct product of cyclic groups of the form

$$
G \cong \mathbb{Z}_{p_{1}}^{a_{1}} \times \cdots \times \mathbb{Z}_{p_{k}}^{a_{k}}
$$

where p_{i} 's are prime numbers. $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$.

$$
\begin{aligned}
& \text { Note: For }|G|=4 \text {, there are two cases: } \\
& \mathbb{Z}_{4} \text { and } \mathbb{Z}_{2} \times \mathbb{Z}_{2} \text {, which are not isomorphic. }
\end{aligned}
$$

