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Symmetry is everywhere

In Design
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Aoi, Mon (Shogun family) Cloisters, University of Glasgow 



In Nature
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Reflection Crystal lattice Atomic configuration/static potential

[Thürlemann et al. J. Chem. Theory Comput. 2022]



Transformations for symmetry
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Reflection/flip Rotation Shift



Symmetry and Geometry

• Symmetry or the associated transforms is mathematically 
formulated as a “group” or “symmetry group” as a part of 
algebra.

• Core of geometry

• Geometry

Euclidean geometry

Non-Euclidean geometry

Projective geometry
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1872 Klein’s Erlangen program

A unified characterization of 
geometries based on group 
transformations. 

→  Strong impact on geometry as well as
        researches of mathematics 



Symmetry and Machine Learning

• Symmetry in the geometry of data

• ML methods should make use of symmetry/groups
Approaches

• Data augmentation:  training with transformed data

• Embed the symmetry in the architecture  → Convolutional Neural 
Networks
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“cat”

Shifts  and rotations Invariant classification

LeCun 1998



Aims of this lecture

• Selected topics on ML methods to handle the symmetry in data 
through group theory.
(Not a comprehensive review of the existing researches.)

• Basics of group theory as the foundation.

• NN architecture to use symmetry:  Group equivariant 
convolutional neural networks. 

• Representation learning through group theory.
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Outline of This Lecture

1. Introduction: symmetry and machine learning  

2. Group theory I:  Basics

3. Equivariant architecture: Group convolutional NN

4. Group theory II:  Group representation and Fourier Transform

5. Representation Learning through Group Action
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Group

• Symmetry/Symmetry transformations are 
formulated by “group” mathematically. 

• Def.  Group
A non-empty set 𝐺 with is a binary operation (denoted by ⋅ ) is a group 
if the following three properties hold:

(1) (Associativity)    𝑎 ⋅ 𝑏 ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐)    for any 𝑎, 𝑏, 𝑐 ∈ 𝐺.

(2) (Identity)   There is 𝑒 ∈ 𝐺 such that 𝑎 ⋅ 𝑒 = 𝑒 ⋅ 𝑎 = 𝑎 for any 𝑎 ∈ 𝐺.

(3) (Inverse)    For any 𝑎 ∈ 𝐺, there is 𝑏 ∈ 𝐺 such that 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 = 𝑒.

     Such 𝑏 is denoted by 𝑎−1.

* ‘ ⋅ ’ is often omitted, and 𝑎𝑏 is used. 
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• Example 1.   The non-zero real numbers ℝ× = 𝑎 ∈ ℝ 𝑎 ≠ 0  is a group
  under multiplication.  This is a commutative group, i.e. 𝑎𝑏 = 𝑏𝑎.

A commutative group is also called an Abelian group. 

• Example 2.   The integers with addition (ℤ, +), the product (ℤ𝑛, +),  
Euclidian space (ℝ𝑛, +) are all Abelian groups.

  𝑎 + 𝑏 = 𝑏 + 𝑎.   
  

If the operation is addition (and thus commutative), the group is called 
an additive group.  

The identity and inverse are denoted by 0 and – 𝑎, respectively, for 
additive groups. 
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• Example 3.  Cyclic group ℤ𝑛 ≔ ℤ/𝑛ℤ (integers mod 𝑛 with additive operation).

ℤ𝑛 = ത0, ത1, ത2, ത3, … , 𝑛 − 1  (n elements).   Additive Abelian group. 

 ത1 ∈ ℤ𝑛.   ത1 + ത1 = ത2, ത2 + ത1 = ത3, ത3 + ത1 = ത4, … , 𝑛 − 1 + ത1 = ത0

• ℤ𝑛 is also denoted by 𝐶𝑛, which is often considered 
   as a multiplicative group:  𝐶𝑛 = 1, 𝜁, 𝜁2, … , 𝜁𝑛−1

• Example 4.  The 𝑛 × 𝑛 nonsingular matrices is a group under multiplication. 
 This is called the general linear group and denoted by 𝐺𝐿(𝑛).

• 𝐺𝐿(𝑛) is non-commutative, if 𝑛 ≥ 2. 

 For two matrices 𝐴 and 𝐵, generally 𝐴𝐵 ≠ 𝐵𝐴. 
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𝜁 ≔ 𝑒𝑖
2𝜋
𝑛



Some basic definitions on groups

• Subgroup

Let 𝐺 be a group.  A subset 𝐻 in 𝐺 is a subgroup if 𝐻 is also a group under 
the binary operation of 𝐺.    Denoted by 𝐻 < 𝐺. 

• Example 1:  𝑚ℤ (the multiples of 𝑚) is a subgroup of ℤ. 

• Example 2:  If 𝑚ℓ = 𝑛, ℤ𝑚 < ℤ𝑛.   

  ℤ6 = ത0, ത1, ത2, ത3, ത4, ത5 ,  𝐻 ≔ {ത0, ത3} < ℤ6.         𝐻 ≅ ℤ2,  ത3 + ത3 = ത0.

• Example 3:  𝑂(𝑛) (orthogonal group) and 𝑆𝑂(𝑛) are subgroups of 𝐺𝐿(𝑛). 

• Direct product

The direct product 𝐺1 × 𝐺2 of groups 𝐺1 and 𝐺2 is { 𝑔1, 𝑔2 ∣ 𝑔1 ∈ 𝐺1, 𝑔2 ∈ 𝐺2}
with the operation 

𝑔1, 𝑔2 ⋅ ℎ1, ℎ2 = 𝑔1 ⋅ ℎ1, 𝑔2 ⋅ ℎ2 .
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• Homomorphism

Let 𝐺1 and 𝐺2 be groups.  A map 𝜑: 𝐺1 → 𝐺2 is a homomorphism if 
𝜑 𝑔 ⋅ ℎ = 𝜑 𝑔 ⋅ 𝜑(ℎ)

for any 𝑔, ℎ ∈ 𝐺.

Example.   𝜑: ℤ6 → ℤ3,   𝑚 (mod 6) ↦ 𝑚 (mod 3)

• Isomorphism

A group homomorphism 𝜑: 𝐺1 → 𝐺2 is an isomorphism if it is bijective. 

If there is an isomorphism 𝜑: 𝐺1 → 𝐺2, we write 𝐺1 ≅ 𝐺2.  They are 
essentially the same group.

Example.

 ℤ6 ≅ ℤ2 × ℤ3,  𝑛 mod 6 ↦ (𝑛 mod 2, 𝑛 mod 3)     Excercise: Confirm this. 
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Symmetric group

Symmetric group 𝔖𝑛 is the group of the permutations on 𝑛 items.

• 𝔖𝑛 is non-commutative if 𝑛 ≥ 3, and  𝔖𝑛 = 𝑛!
 

• Example. 𝔖3

𝔖3 contains 𝐶3 or ℤ3

(cyclic group of order 3)
as a subgroup.

𝜎 =
1 2 3
2 3 1

,  𝜏 =
1 2 3
1 3 2

 

𝜏𝜎 =
1 2 3
3 2 1

, 𝜎𝜏 =
1 2 3
2 1 3
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STOP

1

23

120 degree 
rotation

STOP

reflection

1

32

≅ 𝐶3

𝜎 𝜎2

𝜏



Euclidean motions

Euclidean group 𝐸 𝑛 :  the isometries of a Euclidean space ℝ𝑛. 
• consists of the composition of rotations, 

translations, and reflections. 

• can be written by a pair (𝑅, 𝑎), where 𝑅 ∈ 𝑂(𝑛) 
(rotation and reflections) and shift 𝑎 ∈ ℝ𝑛.

Special Euclidean group 𝑆𝐸 𝑛 :  
𝑆𝐸 𝑛  consists of the rigid motions in ℝ𝑛.  
An element is given by an arbitrary composition of 
translations and rotations (but not reflections). 
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• 𝑆𝐸(2)

• 𝐸(𝑛) (𝑛 ≥ 2) is non-commutative.
(Note: 𝑆𝑂 2 is commutative)

• 𝐸(𝑛) is realized by 𝑛 + 1 × (𝑛 + 1) matrices 
𝐴 𝑎
0 1

: 𝐴 ∈ 𝑂 𝑛 , 𝑏 ∈ ℝ𝑛 

𝐵 𝑏
0 1

𝐴 𝑎
0 1

=
𝐵𝐴 𝐵𝑎 + 𝑏
0 1

17

Rotation:  𝑅𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

∈ 𝑆𝑂(2) 

Shift:   𝑎 ∈ ℝ2

𝜃

𝜂
𝑎

𝑏
𝑅𝜂𝑎

𝑅𝜂, 𝑏 ⋅ 𝑅𝜃 , 𝑎 = (𝑅𝜂+𝜃 , 𝑅𝜂𝑎 + 𝑏)

Matrix multiplication is compatible 
with the group operation.  



Normal subgroup
A subgroup 𝑁 of 𝐺 is called normal if 𝑔ℎ𝑔−1 ∈ 𝑁 for any ℎ ∈ 𝑁 and 𝑔 ∈ 𝐺.  

Often denoted by 𝑁 ⊲ 𝐺. 

• Conjugate operation 𝑔𝑁𝑔−1 does not change 𝑁.

• 𝐺/𝑁 (cosets) has a natural group structure. (See Appendix)

• Any subgroup in a commutative group is normal. 

• Example: 

ℝ𝑛 ⊲ 𝐸(𝑛) (normal subgroup). 
𝐴 𝑎
0 1

𝐼𝑛 𝑏
0 1

𝐴 𝑎
0 1

−1

=
𝐴 𝑎
0 1

𝐼𝑛 𝑏
0 1

𝐴−1 −𝐴−1𝑎
0 1

=
𝐼𝑛 𝐴𝑏
0 1

• Τ𝐸(𝑛) ℝ𝑛 ≅ 𝑂(𝑛)

• 𝐸 𝑛 ≠ ℝ𝑛 × 𝑂 𝑛     In the direct product 𝐺1 × 𝐺2, 𝐺1 and 𝐺2 must be commutative. 

• 𝐸 𝑛 ≅ ℝ𝑛 ⋊ 𝑂(𝑛)  (Semidirect product)   → Explained in the next slide.
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Semidirect Product (Intuition)
• Example 1:  𝔖3 ≅ ℤ3 ⋊ ℤ2

𝜎 =
1 2 3
2 3 1

 generates ℤ3;  𝜏 =
1 2 3
1 3 2

 generates ℤ2    

𝔖3 = {1, 𝜎, 𝜎2, 𝜏, 𝜎𝜏, 𝜎2𝜏}   𝜎ℓ𝜏𝑚  (ℓ = 0,1,2; 𝑚 = 0,1)

𝜏𝜎𝜏−1 =
1 2 3
3 1 2

= 𝜎2 

• Example 2:  𝑆𝐸 2 ≅ ℝ2 ⋊ 𝑆𝑂(2)

𝑆𝐸 2 = { 𝑎, 𝑅𝜃 ∣ 𝑎 ∈ ℝ2, 𝑅𝜃 ∈ 𝑆𝑂 2 }

0, 𝑅𝜃 𝑎, 𝐼2 0, 𝑅𝜃
−1 = (𝑅𝜃𝑎, 𝐼2)

• Semidirect product: 𝐺 = 𝑁 ⋊ 𝐾

For 𝑁 ⊲ 𝐺 (normal) and 𝐾 < 𝐺 (subgroup), specify  𝜙𝑘:  𝐻 ∋ ℎ ↦ 𝑘ℎ𝑘−1 ∈ 𝐻.
Then, we have a unique expression ℎ𝑘 or (ℎ, 𝑘) (ℎ ∈ 𝑁, 𝑘 ∈ 𝐾).
(See Appendix for more rigorous definition.) 19

STOP

1

23

STOP

reflection

1

32

≅ ℤ3

𝜎 𝜎2

𝜏

Change in ℤ3 

Change in ℝ2



A little bit coming back to ML or geometry...

Group action
Def. 

𝐺: group, 𝑋: set.    An action of 𝐺 on 𝑋 is a mapping 𝛼: 𝐺 × 𝑋 → 𝑋 such that

i)  𝛼 𝑒, 𝑥 = 𝑥

ii)  𝛼 ℎ𝑔, 𝑥 = 𝛼(ℎ, 𝛼 𝑔, 𝑥 )

for any 𝑥 ∈ 𝑋 and 𝑔, ℎ ∈ 𝐺. 

• We often use the notation 𝑔 ∘ 𝑥 ≔ 𝛼(𝑔, 𝑥). 

i’) 𝑒 ∘ 𝑥 = 𝑥

ii’) ℎ ∘ 𝑔 ∘ 𝑥 = ℎ𝑔 ∘ 𝑥

• A group representation 𝜌: 𝐺 → 𝐺𝐿(𝑉) defines a linear group action:
  𝑉 = 𝑋 and 𝑔 ∘ 𝑥 = 𝜌 𝑔 𝑥. 

20

𝑥 𝑔 ∘ 𝑥

𝑔 ∘

ℎ ∘ (𝑔 ∘)

ℎ𝑔 ∘



Invariance and Equivariance

Def. Invariance and Equivariance

A group 𝐺 acts on two sets 𝑋 and 𝑌.  𝜑: 𝑋 → 𝑌.

• 𝜑 is invariant to the group action if 

𝜑 𝑔 ∘ 𝑥 = 𝜑 𝑥

 for any 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋.

• 𝜑 is equivariant to the group action if

𝜑 𝑔 ∘ 𝑥 = 𝑔 ∘ 𝜑 𝑥

 for any 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋.
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𝑥 𝑔 ∘ 𝑥

𝑔 ∘

𝜑 𝑔 ∘ 𝑥 = 𝜑(𝑥)

𝜑

Invariance

𝑥 𝑔 ∘ 𝑥

𝑔 ∘

𝜑(𝑥) 𝜑(𝑔 ∘ 𝑥)

𝑔 ∘
𝜑

Equivariance



Invariance and equivariance in ML

22

Invariant 
object classification

Equivariant 
segmentation

Group 
action

Group 
action

Group 
action

From “Groups, Representations & Equivariant maps” by Maurice Weiler (University of Amsterdam)



• What are the advantages?

• Various data has symmetry and group actions.

• Image:  shifts, SO(2)-rotation, …

• Spherical data: SO(3)-rotations 

• Graphs: permutation/graph isomorphism

• Incorporating such group actions should be 
useful for the compact representation:

• Data: Low dimensional expression

• Model: Smaller models, efficient learning
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• Approaches to invariance/equivariance ML

• Data augmentation: 

For invariant/equivariant learning, transform the training data with 
the known group actions.   

• Easily extendable to non-group cases. 

• Needs many training data.

• Architecture:  

Equivariant Neural Networks  (CNN, G-CNN, etc)

Impose the symmetry in the architecture of the networks. 

• Representation learning:  

Learn the symmetry in the latent representation automatically

• Group representation/Fourier transform
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Invariance vs Equivariance

• Equivariance is usually more focused.

• Invariance can be added only at the end.

If Ψℓ’s are all equivariant, adding an invariant layer Φ in final layer
Φ ∘ Ψ𝐿 ∘ ⋯ ∘ Ψ1(𝑥)

makes an invariant mapping.

  ∵) Φ ∘ Ψ 𝑔𝑥 = Φ 𝑔Ψ 𝑥 = Φ ∘ Ψ 𝑥

• Invariance is a special type of equivariance.

Φ: 𝑋 → 𝑌   𝐺 acts on 𝑋 and 𝑌, but action on 𝑌 is trivial: 𝑔 ∘ 𝑦 = 𝑦 𝑔 ∈ 𝐺 
and 𝑦 ∈ 𝑌. 

Then, equivariance means invariance:  Φ 𝑔 ∘ 𝑥 = Φ(𝑥). 
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Group representation
Linear group action

• Group representation: overview
• The group representation is a mathematical tool to describe a group in 

terms of linear transformations of a vector space. 

• It reduces various group-theoretic problems to linear algebra/matrix theory. 

• Typical cases

• Finite groups:  Uses finite dimensional linear algebra, so developed
most. 

• Abelian groups: This corresponds to the Fourier analysis. 

• Compact group:  Extension of Fourier analysis is possible. 

• Lie groups:  Used often in physics and chemistry (not covered in this lecture). 
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Group

Linear Algebra

Group



• Representation
• Def.  𝐺: group.  𝑉: vector space.  𝐺𝐿(𝑉): invertible linear transformations 

of 𝑉. 

𝜌: 𝐺 → 𝐺𝐿(𝑉) is a representation of 𝐺 on 𝑉 if 𝜌 is a group 
homomorphism, i.e., 𝜌 𝑎𝑏 = 𝜌 𝑎 𝜌(𝑏) for any 𝑎, 𝑏 ∈ 𝐺. 

• We often write (𝜌, 𝑉) to specify a representation.

• When dim𝑉 is finite, 
  𝑉 can be ℝ𝑛 and 𝐺𝐿(𝑉) is 𝐺𝐿 𝑛; ℝ .

• dim𝑉 is called dimensionality or degree 
   of the representation. 

• 𝑉 may be a vector space over ℂ.  
  It may cause a simpler expression. 
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Group

𝑎 ⋅ 𝑏

𝜌

𝜌(𝑎) 𝜌(𝑏)

Matrices

Group



• Example: 𝔖3

𝜎 =
1 2 3
2 3 1

= (123)    cycle of order 3   

𝜏 =
1 2 3
1 3 2

= (23)   reflection of order 2

• 𝜎 and 𝜏 generate 𝔖3

𝔖3 = {𝑒, 𝜎, 𝜎2, 𝜏, 𝜏, 𝜎2𝜏} 

• A representation 𝜌 of dim 2 is defined by

 

𝜌 𝜎 =
cos Τ−2 3𝜋 −sin Τ−2 3𝜋
sin Τ−2 3𝜋 cos Τ−2 3𝜋

=
− 3/2 1/2

−1/2 − 3/2

𝜌 𝜏 =
−1 0
0 1
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STOP

1

23

120 degree 
rotation

STOP

reflection

1

32

𝜎 𝜎2

𝜏



Regular representation

Simply, shift of functions. A building-block of CNN.

Def.  𝐺: group.  𝑉 ≔ 𝑓: 𝐺 → ℝ  functions on 𝐺.

  𝐿𝑔: 𝑉 → 𝑉,  𝑓 ↦ 𝑓(𝑔−1 ⋅)  

𝐿𝑔 is a representation, i.e. linear and 𝐿𝑔ℎ = 𝐿𝑔 ∘ 𝐿ℎ.

This group representation is called regular representation. 

  ∵) 𝐿𝑔ℎ𝑓 𝑥 = 𝑓 𝑔ℎ −1𝑥 = 𝑓 ℎ−1𝑔−1𝑥 = 𝐿ℎ𝑓 𝑔−1𝑥 = 𝐿𝑔 𝐿ℎ𝑓 𝑥 .
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𝑓

𝐿𝑎𝑓

𝑥 − 𝑎 𝑥

𝑎



Outline of This Lecture

1. Introduction: symmetry and machine learning  

2. Group theory I:  Basics

3. Equivariant architecture: Group convolutional NN

4. Group theory II:  Group representation and Fourier Transform

5. Representation Learning through Group Action

30



Convolutional Neural Networks

• CNN (Wei Zhang et al 1988; Yann LeCun 1989)

• The earliest NN model to realize translation-equivariance.

• Convolution layer + Pooling layer
trained by back-propagation.

• Inspired by the biological neural 
networks of early visual cortex. 

• Origin: Neocognitron (Fukushima 1980)

 Backprop was not used. 

31Kunihiko Fukushima 1979



• Convolutional layer
• 2D gray-scale images (𝑊 × 𝐻) (for simplicity).

A spatial filter of small size (3 × 3 or 5 × 5) 𝜓[𝑎,𝑏] is used.

ℎ[𝑖,𝑗]
𝑂𝑢𝑡 = 

𝑖−𝑎∈{0,±1}



𝑗−𝑏∈{0,±1}

𝜓[𝑖−𝑎,𝑗−𝑏]𝑓[𝑎,𝑏]
𝐼𝑛

   𝑓[𝑖,𝑗]
𝑂𝑢𝑡 = 𝜙 ℎ 𝑖,𝑗

𝑂𝑢𝑡 + 𝜃  

• 2D Color images, “channel” dimension is added. 

In the first layer, RGB makes 3 channels. 

Each output channel 𝑘 uses its own filter 𝜓 𝑎,𝑏,𝑐
𝑘

ℎ[𝑖,𝑗,𝑘]
𝑂𝑢𝑡 = 

𝑎



𝑏



𝑐=1

𝑚𝐶

𝜓[𝑖−𝑎,𝑗−𝑏,𝑐]
𝑘 𝑓[𝑎,𝑏,𝑐]

𝐼𝑛

32

Often, 0 is padded beyond
the boundary. 
σ𝑎∈ℤ2 σ𝑏∈ℤ2 is okay.

𝜙: activation function

𝜓 𝑎,𝑏,𝑐
𝑘

Signal is expressed by a function 𝑓[𝑖, 𝑗] on the pixels



• Pooling layer (Subsampling/down-sampling)
• Spatial size is reduced. 

• Take a representative value in a small neighbor.

• Max pooling is the most popular

• Average pooling, ℓ2-norm pooling, etc.

•  Usually done for each channel 

(#channels unchanged)

• Fully connected layer
• After several convolutional and pooling layers, 

a fully connected layer is used in the last layer. 

• Invariance/equivariance can be achieved 

33



Translation Equivariance of CNN

• Convolutional layer
• Ψ𝑓: mapping of 𝑓 with convolution kernel 𝜓

• Shift by 𝑠 = [𝑠𝑊, 𝑠𝐻].   𝐿𝑠𝑓 [𝑖,𝑗] ≔ 𝑓(𝑖 − 𝑠𝑊, 𝑗 − 𝑠𝐻).

Prop.       𝐿𝑠 Ψ𝑓 = Ψ(𝐿𝑠𝑓)

• Equivariance: Convolution and translation are 
 commutative.

(Proof)  Shown for the case of single channel (gray-scale).  

  𝐿𝑠 Ψ𝑓 𝑖, 𝑗 = Ψ𝑓 𝑖 − 𝑠𝑊, 𝑗 − 𝑠𝐻  

 = σ𝑎 σ𝑏 𝜓[𝑖−𝑠𝑊−𝑎,𝑗−𝑠𝑊−𝑏]𝑓[𝑎,𝑏] 

 = σ𝑎′ σ𝑏′ 𝜓[𝑖−𝑎′,𝑗−𝑏′]𝑓[𝑎′−𝑠𝑊,𝑏′−𝑠𝐻]

 = σ𝑎′ σ𝑏′ 𝜓[𝑖−𝑎′,𝑗−𝑏′] 𝐿𝑠𝑓 [𝑎′, 𝑏′]  = Ψ 𝐿𝑠𝑓 [𝑖, 𝑗] 34

𝐿𝑠 𝐿𝑠

Ψ

Ψ

𝑎′ ≔ 𝑎 + 𝑠𝑊,  𝑏′ ≔ 𝑏 + 𝑠𝐻



• Activation
Prop.    𝜙 𝐿𝑠𝑓 = 𝐿𝑠𝜙 𝑓 .    [Equivariant]

• Applying activation 𝜙 is just a change of the value, so it is obvious. 

• Pooling layer
• 𝑃𝑓: Pooling of 𝑓.

• After pooling on 2 × 2 regions, 
the translation for 𝑃𝑓 should be 
the half for 𝑓: 

   𝑃 𝐿𝑠
(2)

𝑓 = 𝐿𝑠 𝑃𝑓

   𝐿𝑠
2

: shift of 2 × [𝑠𝑊, 𝑠𝐻].
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𝐿2𝑠 𝐿𝑠

𝑃

𝑃



Group equivariant Convolutional Networks
(Cohen & Welling ICML 2016)

• G-CNN: Generalization of CNN to general group action.

• CNN (recap)

• An image can be looked at a function 
𝑓:  ℤ2 pixels → ℝ3 RGB .

• Equivariant to the group operation (shift) of ℤ2. 
ΨConv 𝑓 ⋅ −𝑠 = ΨConv𝑓 ⋅ −𝑠 .

• G-CNN

• Considers more general groups for the signal.
𝑓: 𝐺 → ℝ𝐾.

• Equivariant to 𝐺.
ΨConv 𝐿𝑔𝑓 = 𝐿𝑔 ΨConv𝑓 .

36



G-CNN: Motivation

• Symmetries
• Many image properties are invariant to Euclidean motions (E(2), SE(2)).

• Medical images: orientation or translation is not relevant.
c.f., Orientation may be meaningful in natural images (rooms, road, etc), characters 
(alphabets, numbers, etc). 

• 3D data/360-degree images  (SO(3), E(3))

• 3D scanner, rendering, estimated.

• 360-degree camera. 
https://github.com/QUVA-Lab/e2cnn?tab=readme-ov-file

• Graphs (not covered in this lecture)

• Permutation invariance

• Graphs in 3D space, e.g., molecules  (SE(3))
37

https://github.com/QUVA-Lab/e2cnn?tab=readme-ov-file


G-CNN: Model

• Examples of group 𝐺
• 𝑝4:  90o rotations and translations   (< 𝑆𝐸(2))

cos 𝑟𝜋

2
− sin 𝑟𝜋

2
𝑠𝑥

sin 𝑟𝜋

2
cos 𝑟𝜋

2
𝑠𝑦

0 0 1

𝑟 ∈ 0,1,2,3 ; 𝑠𝑥, 𝑠𝑦 ∈ ℤ  

𝑝4 ≅ ℤ2 ⋊ 𝑆𝑂(2,4) 

• 𝑝4𝑚: p4 + reflection. 

𝑝4𝑚 ≅ ℤ2 ⋊ 𝑂 2,4  

  
38

𝑆𝑂(2, 𝑁): 𝑁-discretization of 𝑆𝑂(2). 



• Convolution layer in G-CNN
• General ℓ-th layer:  𝐺 → 𝐺 equivariant

𝑓 ∈ ℱℓ ≔ 𝑓: 𝐺 → ℝ𝐾(ℓ)
    signal at the ℓ-th layer

ΨGconv: ℱℓ → ℱℓ+1 ≔ ሚ𝑓: 𝐺 → ℝ𝐾(ℓ+1)
 

ΨGconv𝑓 𝑘′ 𝑔 = 

ℎ∈𝐺



𝑘=1

𝐾 ℓ

𝜓𝑘′𝑘(𝑔−1ℎ)𝑓𝑘 ℎ = 

ℎ∈𝐺



𝑘=1

𝐾 ℓ

𝐿𝑔𝜓𝑘′𝑘 ℎ 𝑓𝑘 ℎ

• Input layer:  ℤ2 →𝐺 equivariant

signal  𝑓: ℤ2 → ℝ3  (Assume 𝐺 ↷ ℤ2), filter    𝜓: ℤ2 → ℝ𝐾′×𝐾  

Ψin𝑓 𝑘′ 𝑔 = σ𝑥∈ℤ2 σ𝑘=1
𝐾 𝜓𝑘′𝑘 𝑔−1 ∘ 𝑥 𝑓𝑘 𝑥

• Final layer : 𝐺→ℤ2 equivariant  

Output  𝑓: ℤ2 → ℝ𝐾  (Assume 𝐺 ↷ ℤ2), filter    𝜓: 𝐺 → ℝ𝐾′×𝐾  

Ψfin𝑓 𝑘′ 𝑥 = σ𝑔∈𝐺 σ𝑘=1
𝐾 𝜓𝑘′𝑘 𝑔′−1

𝑔𝑥 𝑓𝑘 𝑔′
39

𝑘′ = 1, … , ℓ + 1
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Veeling et al. Rotation Equivariant CNNs for Digital Pathology, MICCAI 2018

ΨGconv

ΨGconv

𝐿𝑔𝐿𝑔
𝐿𝑔

𝐿𝑔



• Equivariance of G-conv layer

  Proof)

Define 

 𝑓, 𝜑 ≔ σℎ∈𝐺 𝑓 ℎ 𝜑(ℎ). 

Then, we have Ψ𝐺𝑐𝑜𝑛𝑣 𝑓 𝑢 = (𝐿𝑢𝜓, 𝑓), 
and  

 Ψ𝐺𝑐𝑜𝑛𝑣 𝐿𝑔𝑓 𝑢 = (𝐿𝑢𝜓, 𝐿𝑔𝑓).

From Lemma, 

𝐿𝑢𝜓, 𝐿𝑔𝑓 = 𝐿𝑔−1𝐿𝑢𝜓, 𝑓 = (𝐿𝑔−1𝑢𝜓, 𝑓)

   = Ψ𝐺𝑐𝑜𝑛𝑣 𝑓 𝑔−1𝑢 = 𝐿𝑔(Ψ𝐺𝑐𝑜𝑛𝑣 𝑓 )(𝑢).

     q.e.d. 41

Prop.       𝐿𝑔 ΨGconv𝑓 = ΨGconv(𝐿𝑔𝑓)

Recall  Ψ𝑓 𝑘′ 𝑔 = σℎ∈𝐺 σ𝑘=1
𝐾 𝐿𝑔𝜓𝑘′𝑘 ℎ 𝑓𝑘 ℎ

       = σℎ∈𝐺 σ𝑘=1
𝐾 𝜓𝑘′𝑘 𝑔−1ℎ 𝑓𝑘 ℎ

ℎ′ ≔ 𝑔−1ℎ

Lemma

𝜑, 𝐿𝑔𝑓 = 𝐿𝑔−1𝜑, 𝑓 .

∵) 𝜑, 𝐿𝑔𝑓 = σℎ 𝜑 ℎ 𝑓(𝑔−1ℎ)

= σℎ′ 𝜑 𝑔ℎ′ 𝑓(ℎ′) 

= σℎ′
′ 𝐿𝑔−1𝜑 ℎ′ 𝑓(ℎ′) 

= 𝐿𝑔−1𝜑, 𝑓 .



Applications of G-CNN

• Rotation MNIST
Random rotated MNIST images. 
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Cohen & Welling ICML 2016 From “Exploring Strategies for Training Deep Neural Networks”, 
Larochelle et al JMLR 2009



• Medical images
Lafarge et al.: Roto-translation equivariant convolutional networks: Application to histopathology 
image analysis.  Medical Image Analysis (2021) 

Application of SE(2)-equivariant CNN to medical image analysis.
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AMIDA13. Veta et al, Medical Image Analysis 2015 

Mitosis detection

Kumar et al (2017) IEEE Trans MI.  

Multi-organ nuclei segmentation

PCam. Veeling et al MICCAI 2018

Patch-based tumor 
detection

327,680 image patches,
benign/malignant 

Eight cases (458 mitotic figures) were used to train 
the models and four cases (92 mitoses) for validation. 
Evaluation is performed on a test set of 11 
independent cases (533 mitoses), 23 cancer cases 

4 ×3 HPF images for training (7337 nuclei), 4 ×1 HPF 
images for validation (1474 nuclei) and 4 ×2 HPF 
images for testing (4130 nuclei). 
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Mitosis detection Nuclei segmentation Tumor detection

Baseline (+rot.augm) (leftmost): data augmentation by rotations
Baseline: CNN (translation)
Different colors correspond to variations of training data. 

𝑆𝐸 2, 𝑁 ≔ ℝ2 ⋊ 𝑆𝑂(2, 𝑁),   where S𝑂(2, 𝑁) is 𝑁 discretization of 𝑆𝑂(2)  

𝐺 = 𝑂(𝑁),   #weights = 𝑂(𝑁2)



• Invariance to rotations

• Test images (positive) are 
rotated and the prediction 
outputs by NN are shown. 

• 𝑆𝐸(2, 𝑁)-CNN achieves much 
better rotation invariance in 
the prediction. 

45

Mitosis detection

Tumor detection



Steerable CNN
(Cohen & Welling ICLR 2017; Weiler&Cesa NeurIPS 2019; Weiler et al NeurIPS 2018)

• Further symmetry!
• In G-CNN, the channels do not consider any symmetry so far. 

• In some cases, symmetry in the channels should be considered.

Example.  
  Vector field and Euclid motions.

Input signal: 𝑣: ℝ2 → ℝ𝐾  (𝐾 = 2)

It is natural that when 𝑥 ↦ 𝑅(𝜃)𝑥 

is applied, the vector field 𝑣(𝑥) is 

also rotated by 𝑅(𝜃). 

46

vector field 𝜌(𝑔) = 𝑔scalar field/RGB 𝜌 𝑔 = 1 

Weiler & Cesa.  General E(2)-Equivariant Steerable CNNs, NeurIPS 2021



• Steerable convolution layer
𝐸 2 = (ℝ2, +) ⋊ 𝑂(2),    𝑔 = 𝑠, 𝑅 ∈ 𝐸(2),  𝑠 ∈ ℝ2, 𝑅 ∈ 𝑂(2),

• c.f.  Standard G-CNN

Ψ𝑓 𝑘′ 𝑔 = σ𝑥∈ℝ2 σ𝑘=1
𝐾 (𝐿𝑔𝜓𝑘′𝑘) 𝑥 𝑓𝑘 𝑥 = σ𝑥 σ𝑘 𝜓𝑘′𝑘 𝑅−1(𝑥 − 𝑠 )𝑓𝑘(𝑥) 

• Steerable convolution 

ΨSteer𝑓 𝑘′ 𝑔 = σ𝑥∈ℝ2 σ𝑘=1
𝐾 𝜓𝑘′𝑘 𝑅−1(𝑥 − 𝑠 ) σ𝑐=1

𝐾 𝜌𝑘𝑐 𝑅 𝑓𝑐 𝑥  
 

    𝜌: 𝑂(2) → 𝐺𝐿 ℝ𝐾    some representation of 𝑂(2)

• Condition of 𝜓 for equivariance:

  ΨSteer 𝐿𝑔𝑓 = 𝐿𝑔(ΨSteer𝑓)    (Equivariance)

 if and only if

  𝜓(𝑔𝑥) = 𝜌𝑜𝑢𝑡 𝑔 𝜓 𝑥 𝜌𝑖𝑛(𝑔−1)     ∀𝑔 ∈ 𝐸 2 , 𝑥 ∈ ℝ2. 
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• Applications of 𝑆𝐸(2, 𝑁)-Steerable CNN
Weiler, Hamprecht, Storath, "Learning Steerable Filters for Rotation Equivariant CNNs" CVPR 2018

1) rot MNIST

48



2) ISBI 2012 electron microscopy segmentation challenge
• Prediction of the locations of the cell boundaries in the Drosophila ventral nerve cord from EM images. 

• 30 train and test slices of size 512 × 512 px with a binary segmentation ground truth 
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Raw EM image Ground truth segmentation Probability map by 
the proposed network

Accuracy.  Top 6 of more than 100 
entries of the leaderboard, as of 
Nov 13, 2017. 



Outline of This Lecture

1. Introduction: symmetry and machine learning  

2. Group theory I:  Basics

3. Equivariant architecture: Group convolutional NN

4. Group theory II:  Group representation and Fourier Transform

5. Representation Learning through Group Action
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Mapping of Group Representations

• Def. 

𝐺: group.  𝜌, 𝑉 , (𝜌′, 𝑉′): representations of 𝐺.  

A linear map 𝑇: 𝑉 → 𝑉′ is a 𝐺-linear map 
(or 𝐺-map) if the following diagram 

commutes for any 𝑔 ∈ 𝐺;  

i.e. 𝜌′ 𝑔 (𝑇𝑣) = 𝑇(𝜌 𝑔 𝑣) for any 𝑔 ∈ 𝐺.

 

• Some representations are essentially the same

Def.  A 𝐺-map 𝑇 is an isomorphism if it is invertible. 

Def.  Two representations are isomorphic if there is an isomorphism. 
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𝑉 𝑉

𝑉′ 𝑉′

𝜌(𝑔)

𝜌′(𝑔)

𝑇 𝑇



Decomposition of representation

• In some cases, a group representation can be decomposed into a direct sum of 
“irreducible representations”.  

• In matrices, it corresponds to the simultaneous (w.r.t. 𝑔) block-diagonalization 
of the representation matrix. 

• Def.   If a subspace 𝑊 ⊂ 𝑉 of a representation (𝜌, 𝑉) satisfies 𝜌 𝑔 𝑊 ⊂ 𝑊
    for any 𝑔 ∈ 𝐺, then the restriction 𝜌ȁ𝑊 defines a representation  (𝜌ȁ𝑊, 𝑊).    
    This is called a subrepresentation of (𝜌, 𝑉).

• Def.   A representation (𝜌, 𝑉) is reducible if there is a non-trivial 
    subrepresentation (i.e., there is 𝑊 ⊂ 𝑉 such that 𝜌 𝑔 𝑊 ⊂ 𝑊 and 𝑊 ≠ 0, 𝑉.)

• If a representation is not reducible, then it is called irreducible.  
52

𝐴 𝑔 𝐵(𝑔)
𝑂 𝐷(𝑔)

𝑤
0

=
𝐴(𝑔)𝑤

0



• Def. 

 The direct product of representations (𝜌1, 𝑉1) and (𝜌2, 𝑉2) is defined by 
𝜌1 ⊕ 𝜌2: 𝐺 → 𝑉1 ⊕ 𝑉2, 𝑔 ↦ 𝜌1 𝑔 ⊕ 𝜌2 𝑔 .

• Maschke’s theorem

Let (𝜌, 𝑉) be a finite-dimensional representation of a finite group 𝐺. Let 
(𝜌ȁ𝑊, 𝑊) (𝑊 ⊂ 𝑉) be any subrepresentation. Then there exists a subspace 
𝑈 ⊂ 𝑉 such that 𝑉 = 𝑊 ⊕ 𝑈 and 𝜌 = 𝜌ȁ𝑊 ⊕ 𝜌ȁ𝑈.  

• For a finite group, if we have a subrepresentation, we can always find a 
complimentary subrepresentation to give a decomposition as a direct sum.
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𝜌ȁ𝑊 𝑔 𝐵(𝑔)
𝑂 𝐷(𝑔)

𝜌ȁ𝑊 𝑔 𝑂
𝑂 𝜌ȁ𝑈(𝑔)

𝜌1 𝑔 𝑂
𝑂 𝜌2(𝑔)

𝑣1

𝑣2
=

𝜌1 𝑔 𝑣1

𝜌2 𝑔 𝑣2



• A representation is called completely reducible (or semisimple) if it is 
isomorphic to a direct sum of irreducible representations.

𝜌 ≅ 𝜌1 ⊕ 𝜌2 ⊕ ⋯ ⊕ 𝜌𝑘

 

• In terms of matrices, we can make it simultaneously block-diagonal so that 
each block corresponds to an irreducible representation:

      𝜌 𝑔 = 𝑃

𝐴1 𝑔  𝑂 ⋯ 𝑂

 𝑂 𝐴2 𝑔
⋮ 

⋱
𝑂
⋮

𝑂 ⋯ 𝐴𝑘(𝑔)

𝑃−1

• For the following three classes, any finite dimensional representation is 
completely reducible:

• Finite group  (Maschke’s theorem)

• Locally compact Abelian group (𝑆𝑂(2), etc)

• Compact Lie groups (𝑂(𝑛), etc).
54

Basis matrix 𝑃 does not 
depend on 𝑔



• Example: irreducible representations of 𝔖3

1) Standard representation (2 dim)

𝜌𝑠𝑡 𝜎 =
cos Τ−2 3𝜋 −sin Τ−2 3𝜋
sin Τ−2 3𝜋 cos Τ−2 3𝜋

=
− 3/2 1/2

−1/2 − 3/2

𝜌𝑠𝑡 𝜏 =
−1 0
0 1

 

2) Alternating representation (1 dim)

 𝜌𝑎𝑙𝑡 𝑔 = sgn(𝑔)

3) trivial (1 dim)

 𝜌𝑒 𝑔 = 1

It is known that the above three are all the irreducible 
representations of 𝔖3.  (See, e.g., Fulton Harris) 
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STOP

1

23

120 degree 
rotation

STOP

reflection

1

32

𝜎 𝜎2

𝜏



Fourier transform and group

• Recall:  Classical Discrete Fourier transform on function 0, 1

𝑁
, … , 𝑁−1

𝑁
⊂ 𝕊1.

Fourier Transform: መ𝑓𝑛 = Φ 𝑓 𝑛 = σ𝑘=0
𝑁−1 𝑒−𝑖2𝜋

𝑛𝑘

𝑁 𝑓
𝑘

𝑁
, 

Inversion:          𝑓
𝑘

𝑁
= σ𝑛=0

𝑁−1 𝑒𝑖2𝜋
𝑛𝑘

𝑁 መ𝑓𝑛.

• 0, 1

𝑁
, … , 𝑁−1

𝑁
⊂ 𝕊1 is a group ≅  ℤ𝑁 !

• Equivariance by shift (well-known): 

  Φ 𝑓 ⋅ −
𝑎

𝑁
= 𝑒𝑖2𝜋

𝑎

𝑁
𝑛 መ𝑓𝑛

𝑛=0

𝑁

      

 or 

  Φ 𝐿 Τ𝑎 𝑁𝑓 = ෨𝐿 Τ𝑎 𝑁Φ(𝑓).

 
56

Equivariance!

ℤ𝑁 acts on ℂ𝑁 ( መ𝑓𝑛) by 

𝑎

𝑁
∘

መ𝑓0

⋮
መ𝑓𝑁−1

≔

1 ⋯ 𝑂
⋮ ⋱ ⋮

𝑂 ⋯ 𝑒2𝜋𝑖
𝑎

𝑁
(𝑁−1)

መ𝑓0

⋮
መ𝑓𝑁−1

.



Fourier Transform on Group

• Fourier transform is generalized to locally compact Abelian groups
(See e.g. Rudin) 

What serves as the frequencies?  --  The irreducible representations.

Theorem.  Any irreducible representation of an Abelian group on ℂ-vector
      space is 1 dimensional. 

𝐺 ≔ {𝜌𝑛: 𝐺 → ℂ}: irreducible representations of 𝐺.

መ𝑓𝑛 = Φ 𝑓 𝑛 ≔ 

𝑔∈𝐺

𝜌𝑛 𝑔 𝑓(𝑔)

𝑓(𝑔) = 

𝑛

𝜌𝑛 𝑔 መ𝑓𝑛
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Fourier inversion formula

Fourier transform

𝜌𝑛
𝑘

𝑁
= 𝑒𝑖2𝜋

𝑛𝑘

𝑁

(𝑛 = 0,1, … , 𝑁 − 1) are the 
irreducible representation of ℤ𝑁



Fourier Transform is equivariant

Prop.    Φ 𝐿𝑔𝑓
𝑛

= 𝜌𝑛 𝑔 Φ 𝑓 𝑛

So, if we define an action ෨𝐿𝑔 of 𝐺 on መ𝑓𝑛 by መ𝑓𝑛 ↦ 𝜌𝑛 𝑔 መ𝑓𝑛, 

   Φ(𝐿𝑔𝑓) = ෨𝐿𝑔Φ(𝑓).         

More generally, we define the convolution of 𝑓 and 𝑔 by 

 𝑓 ∗ 𝜑 𝑔 = σℎ∈𝐺 𝑓 ℎ 𝜑 ℎ−1𝑔 .

Prop.     Φ 𝑓 ∗ 𝜑 = Φ 𝑓 Φ 𝜑 = መ𝑓𝑛 ො𝜑𝑛 𝑛
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ℱ(𝐺) ℱ( 𝐺)

ℱ(𝐺) ℱ( 𝐺)

FT Φ

FT Φ

𝐿𝑔 ෨𝐿𝑔

Equivariance
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5. Representation Learning through Group Action

59



Representation Learning through 
Group Action

Miyato, Koyama, Fukumizu. NeurIPS 2022;  
Koyama, Fukumizu., Hayashi, Miyato. ICLR 2024
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Representation Learning

• Deep learning is expected to provide
a good representation, which is 
effective to various downstream tasks.

• Group actions cause structured 
motions, which should be useful in 
extracting representations. 
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Feature visualization of convolutional net trained on 
ImageNet [Zeiler & Fergus 2013]

Driven by implicit group action.



Decomposed representation

• Decomposed/disentangled representations
• Easier interpretation

• Control of each factor

• Aim: Learning representations from 
group action data

𝑥1, 𝑔1 ∘ 𝑥1 , 𝑥2, 𝑔2 ∘ 𝑥2 , … 

• “Group representation” gives decomposed representation.

• Related to Fourier transformation: learning-based Fourier transform
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Locatello et al ICML2020



Equivariant Representation Learning
(Miyato, Koyama, F. NeurIPS 2022;  Koyama, F., Hayashi, Miyato ICLR 2024) 

• General Problem setting
• Some group 𝐺 acts on data space 𝒳.

• Observation: many examples of group action
• Paired data: 𝑥𝑖 , 𝑔𝑖 ∘ 𝑥𝑖    𝑥𝑖 ∈ 𝒳, 𝑔𝑖 ∈ 𝐺

• Sequences:  𝑥𝑖 , 𝑔𝑖 ∘ 𝑥𝑖 , 𝑔𝑖
2 ∘ 𝑥𝑖 , 𝑔𝑖

3 ∘ 𝑥𝑖 , …   

• Triplet: 𝑥𝑖 , 𝑔𝑖 ∘ 𝑥𝑖 , 𝑔𝑖
2 ∘ 𝑥𝑖

• Various knowledge level on 𝐺 or 𝑔

• 𝐺 and 𝑔𝑖 may be known or may be unknown.  
→ different types of settings. 
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𝑥𝑖

𝑦𝑖

𝑔𝑖 ∘
𝑔𝑗 ∘

𝑦𝑗

𝑔𝑘 ∘

𝑥𝑗𝑥𝑘
𝑦𝑘



Existing approaches to equivariant learing
• Group 𝐺 and its action are explicitly known and applied to data space

• (Group) CNN: architecture adapted to a specific group 

• Data augmentation： augmentation using the group action
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𝑔?

→

Rotation in the latent space

Nonlinear observation（fisheye lens）

This work
• Group action does exist, but is not known 

explicitly
• Not acting on the data space
• May be observed with unknown nonlinearity

• Approach:
Learn the group representation from data 
by equivariance constraint.



Hardest setting:   Unsupervised Learning of Equivariant Structure 
     from Sequences (Miyato et al. NeurIPS 2022.  https://github.com/takerum )

• Unsupervised learning: Neither 𝐺 or 𝑔 ∈ 𝐺 is known

• Data:  many sequences {𝐬(𝑖)}

  𝑠𝑡
(𝑖)

= (𝑔(𝑖))𝑡∘ 𝑠0
(𝑖)

 

• Generative model: sequences driven 
by group actions

𝐺: group (unknown) acting on 𝒳．

Sequence: 𝐬 = (𝑠0, 𝑠1, 𝑠2, … , 𝑠𝑇).

𝑠𝑡 = 𝑔𝑡 ∘ 𝑠0.

Each seq 𝐬(𝑖) has its own 𝑔(𝑖) ∈ 𝐺,
   but unknown.

Stationarity:  
   𝑔(𝑖) ∈ 𝐺 is the same in a sequence. 
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Rotation，Shifts，Color rotation

e.g. 𝑔(1) = (15° rot，(-2,1)shift，∆RGB）𝐬(1) = 𝐬 𝑔(1), 𝑠0
(1)

𝐬(2) = 𝐬 𝑔(2), 𝑠0
(2)

A sequence 𝐬 is generated given an initial 
image 𝑠0 and a group element 𝑔 ∈ 𝐺．

𝑠𝑡 ∈ 𝒳

https://github.com/takerum


Meta Sequential Prediction (MSP)

• Learning with Autoencoder

Enc.  Φ: 𝒳 → ℝ𝑚×𝑎，

Dec.  Ψ: ℝ𝑚×𝑎 → 𝒳

• Learning group representation

Linear transform in the latent space

 Φ 𝑠𝑡+1
(𝑖)

= 𝑀 𝑖 Φ(𝑠𝑡
𝑖

) 

𝑀(𝑖): sequence-dependent matrix. 𝑔 (unknown)

MSP Model

𝑀𝐬
any NN

• Least square learning of 𝑀𝐬, Φ, Ψ

 𝐸 𝑀𝐬Φ 𝑠𝑡 − Φ 𝑠𝑡+1
2     [Equivariance constrant]

 𝐸 Ψ 𝑀𝐬
ℓΦ 𝑠𝑡 − 𝑠𝑡+ℓ

2
[Pred./Reconst.]

 



Disentanglement by Irreducible Decomposition

• Transition matrix 𝑀𝐬 can depend on 𝐬 （on 𝑔 ∈ 𝐺 ，𝑀(𝑔)）

 𝐺 ∋ 𝑔 ↦ 𝑀 𝑔 ∈ 𝐺𝐿(𝐑𝑎)    Group representation 𝐺 
        （under some conditions）

• Irreducible decomposition → Simultaneous block-digonalization of {𝑀𝐬}𝐬

Common change of bases

Each block is an irreducible representation．
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0

0
𝑀s1

 𝑀s2
 𝑀s3

 𝑀s4
 

𝑈−1𝑈  
0

0

0

0

0

0
=

Common matrix U

𝑈𝑀𝑠1
𝑈−1 𝑈𝑀𝑠2

𝑈−1 𝑈𝑀𝑠3
𝑈−1 𝑈𝑀𝑠4

𝑈−1

Disentanglement by irreducible repr.

＊Spectral clustering method is applied to SBD．



Experiment 1: Effective representation

• Linear classification with learned Φ(𝑥)
Trained with only “4” → 10 class classification for “0”,…,”9”. 

68* SimCLR, CPC: standard methods of self-supervised learning

True

Pred



Experiment 2:  disentanglement
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Blocks obtained by simultaneous block diagonalization Reconstruction by each block

Ƹ𝑠𝑡 ≔ Ψ 𝑀𝑏
𝑡Φ 𝑠0

Rendered image sequences:
Product group of 5 types of changes



Neural Fourier Transform (Koyama et al ICLR 2024)
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• Proposed method: a nonlinear extension of Fourier transform
• Learning by the equivariance constraint.

• c.f. Classical Fourier transform on function 0, 1

𝑁
, … , 𝑁−1

𝑁
⊂ 𝕊1.

 መ𝑓𝑛 = Φ 𝑓 𝑛 = σ𝑘=0
𝑁−1 𝑒−𝑖2𝜋

𝑘

𝑁𝑓
𝑘

𝑁

• Equivariance: Φ 𝑓 ⋅ −𝑎/𝑁 = 𝑒𝑖2𝜋
𝑎

𝑁
𝑛 መ𝑓𝑛 

    or   𝐿𝑎/𝑁𝑓 = Φ−1 ∘

1 ⋯ 𝑂
⋮ ⋱ ⋮

𝑂 ⋯ 𝑒𝑖2𝜋𝑎
𝑁−1

𝑁

∘ Φ(𝑓) 

𝜌1 𝑔 𝑂

𝜌2 𝑔

𝑂 ⋱
𝐿𝑔𝑥 ≈ Ψ ∘ 𝑀 𝑔 ∘ Φ 𝑥 = Ψ ∘ 𝑃−1 ∘  ∘ 𝑃 ∘ Φ 𝑥 .

Fourier TransformInv. Fourier Transform Irreducible 
representations



• Neural Fourier Transform: 
Trained Φ and Ψ can be interpreted as nonlinear FT and Inv FT. 

• NFT works for “data”, while standard FT works for functions.

• NFT learns the transforms though data (examples of actions) without 
knowing the group or group actions. 

• It uses only necessary frequencies based on data. 
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• 𝑔-NFT：3D image synthesis from 2D training images
• Data: Paired 2D images and 3D rotation (𝑆, 𝑆′, 𝑅). 𝑅 ∈ 𝑆𝑂(3), 𝑆, 𝑆′: 2D images, 𝑆′ = 𝑅𝑆 

• 𝑀(𝑔) Spherical harmonics.  Only encoder Φ and decoder Ψ are trained. 

• Testing:  Provide a 2D image 𝑋0 (not in the training data)

 and apply arbitrary 3D rotation 𝑔 by Ψ 𝑀 𝑔 Φ X0 . 
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Wrap-up

• Group theory
• Extract symmetry in nature

• Well developed mathematics

• Group representation:  approach with linear algebra

• Machine leaning with group actions
• Three approaches

• Data augmentation

• Built-in architecture:  (Group) convolutional neural networks

• Representation learning with group representation,
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• Group CNN:  Realize equivariant mapping

• Guaranteed equivariance (c.f. data augmentation)

• Compact representation
• Data: Low dimensional expression

• Model: Smaller models, efficient learning

• Equivariant representation learning

• Implicit group action

• Group or group action may not be known

• Paired or sequential data are required. 

• Learning through equivariance constraint

• Achieves nonlinear extension of Fourier transform

• Data-based Fourier transform

• Extract necessary frequencies
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End

Enjoy Okinawa!
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Appendix
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Semidirect Product of Groups

• Def.   𝐺: group.  𝑁 ⊲ 𝐺 (normal subgroup),  𝐾 < 𝐺 (subgroup).

𝐺 is a semidirect product of 𝑁 and 𝐾 (denoted by 𝐺 = 𝑁 ⋊ 𝐾) if 

 𝑁𝐾 = 𝐺  and  𝑁 ∩ 𝐻 = {𝑒}.

• There are several other equivalent definitions.

• 𝑔 ∈ 𝐺 is uniquely written as 𝑔 = ℎ𝑘,  where ℎ ∈ 𝑁, 𝑘 ∈ 𝐾.  

• Take 𝑔1 = ℎ1𝑘1, 𝑔2 = ℎ2𝑘2.   𝑔1𝑔2 = ℎ1𝑘1ℎ2𝑘2 = ℎ1𝑘1ℎ2𝑘1
−1𝑘1𝑘2. 

From 𝑁 ⊲ 𝐺, there is ෨ℎ ∈ 𝑁 such that 𝑘1ℎ2𝑘1
−1 = ෨ℎ. 

Semidirect product specifies the conjugate 𝜙 𝑘 : 𝑁 → 𝑁, ℎ ↦ 𝑘ℎ𝑘−1. 

For ‘direct’ product 𝑘ℎ𝑘−1 = ℎ. 
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Coset and Quotient Group

• Coset
𝐺: group.  𝐻 < 𝐺: subgroup.  

𝑔𝐻 ≔ {𝑔ℎ ∈ 𝐺 ∣ ℎ ∈ 𝐻} for any 𝑔 ∈ 𝐺.  (left coset)

• Fact:  𝑔𝐻 = 𝑔′𝐻 if and only if 𝑔−1𝑔′ ∈ 𝐻.  

 [Exercise:  Check this.]

• The cosets 𝑔𝐻 𝑔 ∈ 𝐺  gives a partition of 𝐺.  

Aka residue class. 

• Example.  𝐺 = ℤ, 𝐻 = 5ℤ.   

 The cosets are 𝐻, 1 + 𝐻, 2 + 𝐻, 3 + 𝐻, 4 + 𝐻.  Partioned by the residues.
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𝐺 = ℤ

𝐻 = 5ℤ

0
5

10
15
20
⋮

1
6

11
16
21
⋮

2
7

12
17
22
⋮

3
8

13
18
23
⋮

4
9

14
19
24
⋮



• Normal subgroup
A subgroup 𝑁 of 𝐺 is called normal if 𝑔ℎ𝑔−1 ∈ 𝑁 for any ℎ ∈ 𝑁 and 𝑔 ∈ 𝐺.  

Often denoted by 𝑁 ⊲ 𝐺. 

• Quotient group
• For a subgroup 𝐻 < 𝐺, the cosets {𝑔𝐻 ∣ 𝑔 ∈ 𝐺} may not form a group. 

Proposition.  For a normal subgroup 𝑁 of 𝐺, the cosets {𝑔𝑁 ∣ 𝑔 ∈ 𝐺} is a
  group  with the operation 𝑔1𝑁 ⋅ 𝑔2𝑁 = 𝑔1𝑔2𝑁.  

This is called a quotient group and denoted by 𝐺/𝑁. 

Example:  ℤ/𝑛ℤ

(Proof Sketch) Because 𝑁 is normal, for any ℎ1  ∈ 𝑁, there is ℎ′ ∈ 𝑁 such that 𝑔2
−1ℎ1𝑔2 = ℎ′.   

Then, for any ℎ2 ∈ 𝐻, 𝑔1ℎ1𝑔2ℎ2 = 𝑔1𝑔2ℎ′ℎ2 ∈ 𝑔1𝑔2𝐻.  The multiplication is thus well 
defined.  𝑁 is the identity and 𝑔−1𝑁 is the inverse of 𝑔𝐻. 
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• Example

𝐸(𝑛) has a subgroup ℝ𝑛(translations). 

• ℝ𝑛 ⊲ 𝐸(𝑛) (normal subgroup). 
𝐴 𝑎
0 1

𝐼𝑛 𝑏
0 1

𝐴 𝑎
0 1

−1

=
𝐴 𝑎
0 1

𝐼𝑛 𝑏
0 1

𝐴−1 −𝐴−1𝑎
0 1

=
𝐼𝑛 𝐴𝑏
0 1

• Τ𝐸(𝑛) ℝ𝑛 ≅ 𝑂(𝑛)

• 𝐸 𝑛 ≠ ℝ𝑛 × 𝑂 𝑛
In the direct product 𝐺1 × 𝐺2, 𝐺1 and 𝐺2 must be commutative. 

•  𝐸 𝑛 ≅ ℝ𝑛 ⋊ 𝑂(𝑛)  (Semidirect product)   → Explained in the next slide.
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Finite Abelian groups

A group 𝐺 is a finite group if it has finite elements.  

The number of elements is called the order of 𝐺 and denoted by ȁ𝐺ȁ.

• Recall.  Cyclic group ℤ𝑛 ≔ ℤ/𝑛ℤ.    ȁℤ𝑛ȁ = 𝑛
ℤ6 ≅ ℤ2 × ℤ3.

• Theorem.  A finite Abelian group 𝐺 is isomorphic to a direct product of 
  cyclic groups of the form 

𝐺 ≅ ℤ𝑝1
𝑎1 × ⋯ × ℤ

𝑝𝑘

𝑎𝑘

 where 𝑝𝑖’s are prime numbers.  𝑛 = 𝑝1
𝑎1 ⋯ 𝑝𝑘

𝑎𝑘 .
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Note: For 𝐺 = 4, there are two cases:
ℤ4 and ℤ2 × ℤ2, which are not isomorphic.
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