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OIST Neural Computa4on Unit
Create flexible learning systems
n robot experiments

Reveal brain’s learning mechanisms
n neurobiology



Reinforcement Learning

Learn action policy: s ® a to maximize rewards

n Efficient algorithms for artificial agents

n Circuit and molecular mechanisms in the brain
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AI and Brain Science
To make intelligent machines by electronics, 
we should not bother biological constraints.

There’s a superb implementation of intelligence 
in the brain, so why don’t we learn from that.

AI in 20th century: program human expertise
AI in 21st century: learn from big data

Brain-like implementation like Deep Learning
gives the best performance.



Coevolution in Pattern Recognition
Brain Science Artificial Intelligence

Multi-layer learning
(Amari, 1967) 

Neocognitron 
(Fukushima 1980)

ConvNet (Krizhevsky, Sutskever, Hinton, 2012)

GoogleBrain (2012)

Place cell 
(O’Keefe 1976) 

Face cell (Bruce, Desimone, Gross 1981)

(Sugase et al. 1999)
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the stimulus groups monkey, human and shape. The four fine
categories were classifications within the facial stimuli: F1, monkey
identity; F2, monkey expression; F3, human identity; and F4,
human expression. For each category, we calculated the time
course of the transmitted information (Ic) from the number of
spike discharges using a moving time window of 50 ms, and
evaluated significance of information with the x2 test13 (see
Methods).

Figure 2a shows the results of the information analysis for the
responses of the neuron in Fig. 1. The neuron coded ‘significant’
information about all five categories tested. The earliest information
was global (G). Its transmission rate increased rapidly, correspond-
ing to the initial part of the averaged response (beige histogram),
and then decreased. Information regarding F2 (monkey expression)

and F3 (human identity) peaked after the global peak. Once F2
peaked, it declined slowly and lasted during the sustained dis-
charges, whereas global and F3 information fell rapidly from their
peaks before levelling off. F1 (monkey identity) and F4 (human
expression) were encoded at a much lower level than the others. The
response latency of this neuron was 53 ms, and the latencies for the
information about each category were as follows: G, 45; F1, 157; F2,
93; F3, 125; and F4, 125 ms. Thus, the earliest transient discharge
conveyed global information, and the later sustained discharge
encoded one category of the fine information best14.

Of the 86 face-responsive neurons, 11 neurons (13%) did not
encode significant information in any category, 43 (50%) coded
either global or fine category information, and 32 (37%) coded both
categories. To clarify how single neurons encoded both global and
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Figure 1 Responses of a face-responsive neuron. a, Areas of brain examined.

AP0 represents the position of the external auditory meatus; A14, A19, A22 and

A24 represent anterior 14,19, 22 and 24mm, respectively. AMTS, anterior middle

temporal sulcus; STS, superior temporal sulcus. b–d, Response diagrams of a

single neuron for monkey, human and shape stimuli, respectively. Each diagram

consists of a stimulus image, a raster plot of the response and a spike-density

plot, in the first, second and third rows, respectively. The expressionsof 4monkey

models were neutral (A), pout-lips (B), full open-mouthed (C) and mid open-

mouthed (D). Those of 3 human models were neutral (A), happy (B), surprised (C)

and angry (D). The colours of circles and rectangles were red (A), blue (B), green

(C) and pink (D). For the spike-density plot, spikes per ms over all trials were

summed and smoothed with a gaussian filter (s:d: ¼ 10ms). The vertical line in

eachplot indicates the timeof stimulus onset, and the dashed part in the abscissa

indicates the duration of stimulus presentation.
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FIG. 2. Place fields for all place units except 21342 and those from animal 217. 

distributed around the maze. The concentration of fields from the other 
animals in arm B may have reflected the fact that many of the rats spent 
their “free time” in this arm. The fact that the initial search for units 
was conducted there might also have introduced a bias towards units 
active in that area. In any case, it was clear that the majority of fields 
were not located in those places which contained the rewards or other 

FIG. 3. Place fields for place units from animal 217. 

Experience dependence 
(Blakemore & Cooper 1970)

RECEPTIVE FIELDS IN CAT STRIATE CORTEX 579
found by changing the size, shape and orientation of the stimulus until a clear
response was evoked. Often when a region with excitatory or inhibitory
responses was established the neighbouring opposing areas in the receptive
field could only be demonstrated indirectly. Such an indirect method is
illustrated in Fig. 3B, where two flanking areas are indicated by using a short
slit in various positions like the hand of a clock, always including the very
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Fig. 3. Same unit as in Fig. 2. A, responses to shinling a rectangular light spot, 1° x 8° ; centre of
slit superimposed on centre of receptive field; successive stimuli rotated clockwise, as shown
to left of figure. B, responses to a 1° x 5° slit oriented in various directions, with one end
always covering the centre ofthe receptive field: note that this central region evoked responses
when stimulated alone (Fig. 2a). Stimulus and background intensities as in Fig. 1; stimulus
duration 1 sec.

centre of the field. The findings thus agree qualitatively with those obtained
with a small spot (Fig. 2a).

Receptive fields having a central area and opposing flanks represented a
common pattern, but several variations were seen. Some fields had long narrow
central regions with extensive flanking areas (Figs. 1-3): others had a large
central area and concentrated slit-shaped flanks (Figs. 6, 9, 10). In many
fields the two flanking regions were asymmetrical, differing in size and shape;
in these a given spot gave unequal responses in symmetrically corresponding

37 PHYSIO. CXL,VIIT) by guest on October 20, 2012jp.physoc.orgDownloaded from J Physiol (

Feature detectors 
(Hubel & Wiesel 1959)

Perceptron 
(Rosenblatt 1962)



Coevolution in Reinforcement Learning
Brain Science Artificial Intelligence
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Classic conditioning (Pavlov 1903)

Operant conditioning 
(Thorndike 1898,
 Skinner 1938)

Deep Q network (Mnih et al. 2015)difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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TD learning (Barto et al. 1983)

Reward prediction error coding of
dopamine neurons 
(Schultz et al. 1993, 1997)

Dopamine-dependent
synaptic plasticity
(Wickens et al. 2000)

W. SCHULTZ4

fails to occur, even in the absence of an immediately preced-
ing stimulus (Fig. 2, bottom) . This is observed when animals
fail to obtain reward because of erroneous behavior, when
liquid flow is stopped by the experimenter despite correct
behavior, or when a valve opens audibly without delivering
liquid (Hollerman and Schultz 1996; Ljungberg et al. 1991;
Schultz et al. 1993). When reward delivery is delayed for
0.5 or 1.0 s, a depression of neuronal activity occurs at the
regular time of the reward, and an activation follows the
reward at the new time (Hollerman and Schultz 1996). Both
responses occur only during a few repetitions until the new
time of reward delivery becomes predicted again. By con-
trast, delivering reward earlier than habitual results in an
activation at the new time of reward but fails to induce a
depression at the habitual time. This suggests that unusually
early reward delivery cancels the reward prediction for the
habitual time. Thus dopamine neurons monitor both the oc-
currence and the time of reward. In the absence of stimuli
immediately preceding the omitted reward, the depressions
do not constitute a simple neuronal response but reflect an
expectation process based on an internal clock tracking the
precise time of predicted reward.

Activation by conditioned, reward-predicting stimuli
About 55–70% of dopamine neurons are activated by

conditioned visual and auditory stimuli in the various classi-
cally or instrumentally conditioned tasks described earlier
(Fig. 2, middle and bottom) (Hollerman and Schultz 1996;
Ljungberg et al. 1991, 1992; Mirenowicz and Schultz 1994;
Schultz 1986; Schultz and Romo 1990; P. Waelti, J. Mire-
nowicz, and W. Schultz, unpublished data) . The first dopa-
mine responses to conditioned light were reported by Miller
et al. (1981) in rats treated with haloperidol, which increased
the incidence and spontaneous activity of dopamine neurons
but resulted in more sustained responses than in undrugged
animals. Although responses occur close to behavioral reac-
tions (Nishino et al. 1987), they are unrelated to arm and
eye movements themselves, as they occur also ipsilateral toFIG. 2. Dopamine neurons report rewards according to an error in re-

ward prediction. Top : drop of liquid occurs although no reward is predicted the moving arm and in trials without arm or eye movements
at this time. Occurrence of reward thus constitutes a positive error in the (Schultz and Romo 1990). Conditioned stimuli are some-
prediction of reward. Dopamine neuron is activated by the unpredicted what less effective than primary rewards in terms of responseoccurrence of the liquid. Middle : conditioned stimulus predicts a reward,

magnitude and fractions of neurons activated. Dopamineand the reward occurs according to the prediction, hence no error in the
prediction of reward. Dopamine neuron fails to be activated by the predicted neurons respond only to the onset of conditioned stimuli and
reward (right) . It also shows an activation after the reward-predicting stim- not to their offset, even if stimulus offset predicts the reward
ulus, which occurs irrespective of an error in the prediction of the later (Schultz and Romo 1990). Dopamine neurons do not distin-reward ( left ) . Bottom : conditioned stimulus predicts a reward, but the re- guish between visual and auditory modalities of conditionedward fails to occur because of lack of reaction by the animal. Activity of

appetitive stimuli. However, they discriminate between ap-the dopamine neuron is depressed exactly at the time when the reward
would have occurred. Note the depression occurring ú1 s after the condi- petitive and neutral or aversive stimuli as long as they are
tioned stimulus without any intervening stimuli, revealing an internal pro- physically sufficiently dissimilar (Ljungberg et al. 1992;
cess of reward expectation. Neuronal activity in the 3 graphs follows the P. Waelti, J. Mirenowicz, and W. Schultz, unpublishedequation: dopamine response (Reward) Å reward occurred 0 reward pre-

data) . Only 11% of dopamine neurons, most of them withdicted. CS, conditioned stimulus; R, primary reward. Reprinted from
Schultz et al. (1997) with permission by American Association for the appetitive responses, show the typical phasic activations also
Advancement of Science. in response to conditioned aversive visual or auditory stimuli

in active avoidance tasks in which animals release a key to
avoid an air puff or a drop of hypertonic saline (Mirenowicztogether, the occurrence of reward, including its time, must
and Schultz 1996), although such avoidance may be viewedbe unpredicted to activate dopamine neurons.
as ‘‘rewarding.’’ These few activations are not sufficiently
strong to induce an average population response. Thus theDepression by omission of predicted reward
phasic responses of dopamine neurons preferentially report
environmental stimuli with appetitive motivational value butDopamine neurons are depressed exactly at the time of

the usual occurrence of reward when a fully predicted reward without discriminating between different sensory modalities.

J857-7/ 9k2a$$jy19 06-22-98 13:43:40 neupa LP-Neurophys

Value coding in striatum (Samejima et al. 2005) 

Dopamine TD learning hypothesis
(Barto et al. 1995, 

Montague et al. 1996)
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What Should We Further Learn from the Brain?

Energy Efficiency

Data Efficiency
lWorld Models and Mental Simulation

lModularity and Compositionality

lMeta-learning

Autonomy and Sociality
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Yamaura et al. Human-Scale Cerebellar Network Model Simulation

FIGURE 1 | Building a cerebellar neural network model. (A) Schematics of the tile structure composed of two-dimensional sheets of neural networks. We show the
three-dimensional structure of our cerebellar network model. Dots indicate neurons. A 2 mm⇥2 mm of the cerebellar neuronal sheet on a tile (left) is partitioned into
regular square tiles (right). Each tile communicates with the neighboring tiles to exchange spike data. (B) A schematic of the cerebellar cytoarchitecture. The
cerebellum receives two types of afferents from pons cells and inferior olive cells, respectively.

have multiple stacked sheets along the z-axis. Figure 1A shows
the three-dimensional structure of our cerebellar network model.
The upper molecular layer was composed of four sheets of stellate
cells (STs), and each sheet contained 32 ⇥ 32 STs. The deep
molecular layer and the Purkinje cell layer were a single sheet
containing 32 ⇥ 32 basket cells (BAs), and Purkinje cells (PCs),
respectively. The granular layer was composed of eight sheets of
granule cells (GRs) and a sheet of Golgi cells (GOs). A GR sheet
contained 320⇥ 320GRs, and a GO-sheet 32⇥ 32GOs. The deep

cerebellar nucleus and the pons were a single sheet with 32 ⇥ 32
deep cerebellar nucleus cells (DCNs) and pons cells, respectively.
The inferior olive layer contains only one sheet with one inferior
olive cell (IO). Table 1 summarizes the total numbers of neurons
for a tile. These numbers were set based on previous experimental
data (Lange, 1974, 1975; Ito, 1984; Harvey and Napper, 1991;
Heckroth, 1994). Neurons were modeled as conductance-based
leaky integrate-and-fire units. Parameters were set based on our
previous studies. Table 2 summarizes each neuron’s parameters.

Frontiers in Neuroinformatics | www.frontiersin.org 3 April 2020 | Volume 14 | Article 16
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the three-dimensional structure of our cerebellar network model.
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cells (STs), and each sheet contained 32 ⇥ 32 STs. The deep
molecular layer and the Purkinje cell layer were a single sheet
containing 32 ⇥ 32 basket cells (BAs), and Purkinje cells (PCs),
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contained 320⇥ 320GRs, and a GO-sheet 32⇥ 32GOs. The deep

cerebellar nucleus and the pons were a single sheet with 32 ⇥ 32
deep cerebellar nucleus cells (DCNs) and pons cells, respectively.
The inferior olive layer contains only one sheet with one inferior
olive cell (IO). Table 1 summarizes the total numbers of neurons
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Igarashi et al. Large-Scale Cortical Model Simulation

This paper is organized as follows. See section “Materials and
Methods” described the details of the MONET simulator and
the cerebral cortical model. See section “Key Biological Features
of the Brain From the Whole Brain Simulation” discusses
the key biological features that next generation simulators
should include in human-scale whole brain simulation. See
section “Results” shows property of tile partitioning method
of a model of the cortex and demonstrates the e�ciency and
scaling properties of the simulator. See section “Discussion” is
devoted to general discussion. A companion paper (Yamaura
et al., submitted to the same journal) reports the details of the
cerebellar model.

MATERIALS AND METHODS

A Three-Dimensional Model of a Layered
Cortical Sheet
To evaluate the e�ectiveness of the parallelization method for
spiking neural networks, a three-dimensional model of a layered
cortical sheet was developed on the basis of experimental data
from the mouse primary motor cortex (M1) and other cortical
regions when data from the M1 were lacking.

The layered cortical sheet was a cuboid with regular squares
on the top and bottom faces (Figure 1A). The direction
parallel to the top surface is referred to as horizontal, and
the direction perpendicular to the top surfaces is referred to
as vertical. The model has six layers consisting of layers 1,
2/3, 5A, 5B, and 6 as classified in M1. The layer thickness
and the numbers of neurons in di�erent layers were based
on experimental data (Lev and White, 1997; Weiler et al.,
2008; Table 1). Fifteen neuron types are included in the
model (Table 1).

Layer 1 includes only two inhibitory neuron types: single
bouquet cells (SBC) and elongated neurogliaform cells (ENGC,
Jiang et al., 2013). Layers 2/3, 5A, and 6 have one excitatory
neuron type, intratelencephlic neurons (IT), and two inhibitory
neuron types, parvalbumin-expressing (PV), and somatostatin-
expressing (SST) interneurons (Tremblay et al., 2016). Layer
5B has two excitatory neuron types, IT and pyramidal-tract
(PT) neurons (Shepherd, 2013), and two inhibitory neuron
types, PV and SST.

The ratio of the numbers of excitatory neurons to inhibitory
neurons was set as 4:1 in all layers except for layer 1
Neurons are placed on spatial positions generated by pseudo-
random numbers within the space of the layer to which
the neuron belongs.

All neuron types are implemented using a leaky integrate-and-
fire model. A neuron i evolves according to

tm
dui
dt

= �ui + urest + Rm(Isyn,i(t) + Iext,i),

if u(t) = " ) u ! ur,

where ui is a membrane potential, urest is a resting potential, tm
is a membrane time constant, Rm is a membrane resistance, Isyn,i
is a synaptic current, Iext ,i is an external current, t is time, " is a

FIGURE 1 | Three-dimensional structure of a layered cortical sheet model.
(A) 1300 ⇥ 1300 ⇥ 1400 µm of a layered cortical sheet model. Spheres
represent cell positions. Sphere colors: SBC (white), ENGC (gray), L2/3 IT

(Continued)
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Simulating Whole Human Brain Is Now Possible
(2019)

l6 billion neurons

l25 trillion synapses

(2020)

l68 billion neurons

l5 trillion synapses
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Large-Scale Simulation of a Layered
Cortical Sheet of Spiking Network
Model Using a Tile Partitioning
Method
Jun Igarashi1*, Hiroshi Yamaura2 and Tadashi Yamazaki2*

1 Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Saitama,
Japan, 2 Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan

One of the grand challenges for computational neuroscience and high-performance
computing is computer simulation of a human-scale whole brain model with spiking
neurons and synaptic plasticity using supercomputers. To achieve such a simulation, the
target network model must be partitioned onto a number of computational nodes, and
the sub-network models are executed in parallel while communicating spike information
across different nodes. However, it remains unclear how the target network model
should be partitioned for efficient computing on next generation of supercomputers.
Specifically, reducing the communication of spike information across compute nodes
is essential, because of the relatively slower network performance than processor
and memory. From the viewpoint of biological features, the cerebral cortex and
cerebellum contain 99% of neurons and synapses and form layered sheet structures.
Therefore, an efficient method to split the network should exploit the layered sheet
structures. In this study, we indicate that a tile partitioning method leads to efficient
communication. To demonstrate it, a simulation software called MONET (Millefeuille-like
Organization NEural neTwork simulator) that partitions a network model as described
above was developed. The MONET simulator was implemented on the Japanese
flagship supercomputer K, which is composed of 82,944 computational nodes. We
examined a performance of calculation, communication and memory consumption in
the tile partitioning method for a cortical model with realistic anatomical and physiological
parameters. The result showed that the tile partitioning method drastically reduced
communication data amount by replacing network communication with DRAM access
and sharing the communication data with neighboring neurons. We confirmed the
scalability and efficiency of the tile partitioning method on up to 63,504 compute nodes
of the K computer for the cortical model. In the companion paper by Yamaura et al., the
performance for a cerebellar model was examined. These results suggest that the tile
partitioning method will have advantage for a human-scale whole-brain simulation on
exascale computers.

Keywords: large-scale simulation, spiking neural networks, cortex, supercomputer, HPC, parallel computing
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examined a performance of calculation, communication and memory consumption in
the tile partitioning method for a cortical model with realistic anatomical and physiological
parameters. The result showed that the tile partitioning method drastically reduced
communication data amount by replacing network communication with DRAM access
and sharing the communication data with neighboring neurons. We confirmed the
scalability and efficiency of the tile partitioning method on up to 63,504 compute nodes
of the K computer for the cortical model. In the companion paper by Yamaura et al., the
performance for a cerebellar model was examined. These results suggest that the tile
partitioning method will have advantage for a human-scale whole-brain simulation on
exascale computers.

Keywords: large-scale simulation, spiking neural networks, cortex, supercomputer, HPC, parallel computing
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Simulation of a Human-Scale
Cerebellar Network Model on the K
Computer
Hiroshi Yamaura1†, Jun Igarashi2† and Tadashi Yamazaki1*

1 Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan, 2 Head Office
for Information Systems and Cybersecurity, RIKEN, Saitama, Japan

Computer simulation of the human brain at an individual neuron resolution is an ultimate
goal of computational neuroscience. The Japanese flagship supercomputer, K, provides
unprecedented computational capability toward this goal. The cerebellum contains 80%
of the neurons in the whole brain. Therefore, computer simulation of the human-scale
cerebellum will be a challenge for modern supercomputers. In this study, we built a
human-scale spiking network model of the cerebellum, composed of 68 billion spiking
neurons, on the K computer. As a benchmark, we performed a computer simulation
of a cerebellum-dependent eye movement task known as the optokinetic response.
We succeeded in reproducing plausible neuronal activity patterns that are observed
experimentally in animals. The model was built on dedicated neural network simulation
software called MONET (Millefeuille-like Organization NEural neTwork), which calculates
layered sheet types of neural networks with parallelization by tile partitioning. To examine
the scalability of the MONET simulator, we repeatedly performed simulations while
changing the number of compute nodes from 1,024 to 82,944 and measured the
computational time. We observed a good weak-scaling property for our cerebellar
network model. Using all 82,944 nodes, we succeeded in simulating a human-scale
cerebellum for the first time, although the simulation was 578 times slower than the wall
clock time. These results suggest that the K computer is already capable of creating a
simulation of a human-scale cerebellar model with the aid of the MONET simulator.

Keywords: cerebellum, human-scale model, computer simulation, spiking network model, K computer, MONET

INTRODUCTION

Computer simulation of the whole human brain is an ambitious challenge in the field of
computational neuroscience and high-performance computing (Izhikevich, 2005; Izhikevich and
Edelman, 2008; Amunts et al., 2016). The human brain contains approximately 100 billion neurons.
While the cerebral cortex occupies 82% of the brain mass, it contains only 19% (16 billion) of all
neurons. The cerebellum, which occupies only 10% of the brain mass, contains 80% (69 billion)
of all neurons (Herculano-Houzel, 2009). Thus, we could say that 80% of human-scale whole
brain simulation will be accomplished when a human-scale cerebellum is built and simulated on
a computer. The human cerebellum plays crucial roles not only in motor control and learning
(Ito, 1984, 2000) but also in cognitive tasks (Ito, 2012; Buckner, 2013). In particular, the human
cerebellum seems to be involved in human-specific tasks, such as bipedal locomotion, natural
language processing, and use of tools (Lieberman, 2014). Once a human-scale cerebellar network
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Large-Scale Simulation of a Layered
Cortical Sheet of Spiking Network
Model Using a Tile Partitioning
Method
Jun Igarashi1*, Hiroshi Yamaura2 and Tadashi Yamazaki2*

1 Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Saitama,
Japan, 2 Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan

One of the grand challenges for computational neuroscience and high-performance
computing is computer simulation of a human-scale whole brain model with spiking
neurons and synaptic plasticity using supercomputers. To achieve such a simulation, the
target network model must be partitioned onto a number of computational nodes, and
the sub-network models are executed in parallel while communicating spike information
across different nodes. However, it remains unclear how the target network model
should be partitioned for efficient computing on next generation of supercomputers.
Specifically, reducing the communication of spike information across compute nodes
is essential, because of the relatively slower network performance than processor
and memory. From the viewpoint of biological features, the cerebral cortex and
cerebellum contain 99% of neurons and synapses and form layered sheet structures.
Therefore, an efficient method to split the network should exploit the layered sheet
structures. In this study, we indicate that a tile partitioning method leads to efficient
communication. To demonstrate it, a simulation software called MONET (Millefeuille-like
Organization NEural neTwork simulator) that partitions a network model as described
above was developed. The MONET simulator was implemented on the Japanese
flagship supercomputer K, which is composed of 82,944 computational nodes. We
examined a performance of calculation, communication and memory consumption in
the tile partitioning method for a cortical model with realistic anatomical and physiological
parameters. The result showed that the tile partitioning method drastically reduced
communication data amount by replacing network communication with DRAM access
and sharing the communication data with neighboring neurons. We confirmed the
scalability and efficiency of the tile partitioning method on up to 63,504 compute nodes
of the K computer for the cortical model. In the companion paper by Yamaura et al., the
performance for a cerebellar model was examined. These results suggest that the tile
partitioning method will have advantage for a human-scale whole-brain simulation on
exascale computers.

Keywords: large-scale simulation, spiking neural networks, cortex, supercomputer, HPC, parallel computing
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This paper is organized as follows. See section “Materials and
Methods” described the details of the MONET simulator and
the cerebral cortical model. See section “Key Biological Features
of the Brain From the Whole Brain Simulation” discusses
the key biological features that next generation simulators
should include in human-scale whole brain simulation. See
section “Results” shows property of tile partitioning method
of a model of the cortex and demonstrates the e�ciency and
scaling properties of the simulator. See section “Discussion” is
devoted to general discussion. A companion paper (Yamaura
et al., submitted to the same journal) reports the details of the
cerebellar model.

MATERIALS AND METHODS

A Three-Dimensional Model of a Layered
Cortical Sheet
To evaluate the e�ectiveness of the parallelization method for
spiking neural networks, a three-dimensional model of a layered
cortical sheet was developed on the basis of experimental data
from the mouse primary motor cortex (M1) and other cortical
regions when data from the M1 were lacking.

The layered cortical sheet was a cuboid with regular squares
on the top and bottom faces (Figure 1A). The direction
parallel to the top surface is referred to as horizontal, and
the direction perpendicular to the top surfaces is referred to
as vertical. The model has six layers consisting of layers 1,
2/3, 5A, 5B, and 6 as classified in M1. The layer thickness
and the numbers of neurons in di�erent layers were based
on experimental data (Lev and White, 1997; Weiler et al.,
2008; Table 1). Fifteen neuron types are included in the
model (Table 1).

Layer 1 includes only two inhibitory neuron types: single
bouquet cells (SBC) and elongated neurogliaform cells (ENGC,
Jiang et al., 2013). Layers 2/3, 5A, and 6 have one excitatory
neuron type, intratelencephlic neurons (IT), and two inhibitory
neuron types, parvalbumin-expressing (PV), and somatostatin-
expressing (SST) interneurons (Tremblay et al., 2016). Layer
5B has two excitatory neuron types, IT and pyramidal-tract
(PT) neurons (Shepherd, 2013), and two inhibitory neuron
types, PV and SST.

The ratio of the numbers of excitatory neurons to inhibitory
neurons was set as 4:1 in all layers except for layer 1
Neurons are placed on spatial positions generated by pseudo-
random numbers within the space of the layer to which
the neuron belongs.

All neuron types are implemented using a leaky integrate-and-
fire model. A neuron i evolves according to

tm
dui
dt

= �ui + urest + Rm(Isyn,i(t) + Iext,i),

if u(t) = " ) u ! ur,

where ui is a membrane potential, urest is a resting potential, tm
is a membrane time constant, Rm is a membrane resistance, Isyn,i
is a synaptic current, Iext ,i is an external current, t is time, " is a

FIGURE 1 | Three-dimensional structure of a layered cortical sheet model.
(A) 1300 ⇥ 1300 ⇥ 1400 µm of a layered cortical sheet model. Spheres
represent cell positions. Sphere colors: SBC (white), ENGC (gray), L2/3 IT

(Continued)
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ARTIFICIAL NEURAL NETWORKS

Memristors fire away
Neuromorphic computing based on fully memristive neural networks could offer a scalable and lower-cost 
alternative to existing neural spiking chips based solely on CMOS technology.

Bernabe Linares-Barranco

Understanding, and replicating, 
the human brain is an ambitious 
challenge. Advances in neuroscience, 

materials science, computer science, 
electrical engineering, and artificial 
intelligence have led to a better appreciation 
of brain functions, and it no longer seems 
implausible that at some point in the future 
a complete understanding of the brain may 
be possible. From a computational and 
engineering perspective, the development 
of neuromorphic computing systems is 
of particular interest for both improving 
our understanding of the brain and 
building artificial brain-inspired systems, 
and could lead to cheaper and more 
efficient computing chips than traditional 
approaches. Neural spiking chips, which 
can be used to implement artificial neural 
networks that emulate brain functions, 
have, for example, been reported, but 
require very advanced and expensive 
CMOS (complementary metal–oxide–
semiconductor) technologies to achieve just 
a tiny fraction of the brain’s functionality1–4. 
Neural spiking chips based entirely on 
nanoscale memristive devices could  
offer a lower-cost alternative to such  
devices and with potentially higher 
neuronal and synaptic density. However, 
demonstrations of memristor-based 
artificial neurons have so far been limited 
and network-level hardware demonstrations 
that use only memristive devices have 
remained elusive. Writing in Nature 
Electronics, R. Stanley Williams, Qiangfei 
Xia, J. Joshua Yang and colleagues now show 
that memristors can be used to create leaky 
integrate-and-fire artificial neurons and 
build fully memristive neural networks that 
are capable of unsupervised learning  
of visual patterns5.

The human brain contains about 1011 
neurons interconnected through about 
1015 synaptic interconnects. It consumes 
only about 20 W of power, but is capable of 
complex sensory and cognitive processing 
functions, sophisticated motor control of 
multiple body muscles in a coordinated 
manner, learning and abstraction, and 
it can easily and dynamically adapt to 

changing environments and unpredicted 
conditions. To encode information, neurons 
use spikes in a very efficient manner. For 
example, it has been shown that humans 
can discriminate patterns in flashing images 
in about 150 ms (ref. 6), meaning that the 
neurons involved in the recognition process 
only had time to deliver one spike. This 
incredibly efficient encoding of information 
comes despite the fact that the computing 
element employed here — the neuron — 
tends to be slow, noisy and, at times, faulty.

Each neuron in a neural system appears 
to represent a ‘key’ recognized feature 
whenever it emits a spike. For example, in 
the visual cortex, neurons in the first layer 
fire a spike when there is a short edge in  
the visual input with a given orientation  
at a given position during a given time 
window7. Neurons in the next layer fire a 
spike when oriented edges appear combined, 
forming some specific feature, during a 
given time window. In subsequent layers, 
neurons fire when more sophisticated and 
abstracted patterns are detected, during a 
given time window. In this way, a specific 
neuron in a given layer is specialized in 
detecting some key feature, by combining 
other simpler key features appearing in the 
previous layer during a given time window. 
This is called feature spatiotemporal 
coincidence detection and seems to be 
one of the brain’s most basic computing 
principles. The brain computes this by 
using leaky integrate-and-fire neurons. 
When a neuron receives a spike through 
a synaptic connection from a neuron in 
a previous layer, this spike contributes to 
‘excite’ the neuron a bit more by integrating 
or accumulating a small charge in its soma 
(body). If no more spikes are received 
quickly enough, the accumulated charge 
leaks away at a given rate and the neuron 
returns to its resting state. However, if more 
spikes are received within a short enough 
time window, the charge contributed by the 
spikes would not have time to leak away 
before reaching the neuron’s threshold, 
eliciting it to produce its own spike, thus 
performing its key features coincidence 
detection in space and time.

Over the past three decades, engineers 
have strived to build microchips with 
silicon neurons and learning synapses1,2. 
More recently, big industrial players have 
joined the quest. For example, IBM has 
produced the half-inch-square TrueNorth 
chip3 capable of holding up to one million 
integrate-and-fire neurons, each connected 
to up to 256 non-learning synapses, using 
conventional 40-nm CMOS technology. 
Furthermore, Intel has announced the  
Loihi self-learning chip4, built using  
14-nm CMOS technology and holding 
130,000 integrate-and-fire neurons with  
130 million synapses. However, these  
neural spiking chips are implemented  
using today’s most expensive and advanced 
CMOS chip technologies.

A memristor is a two-terminal variable 
resistor whose resistance can change 
depending on the signals applied to it, 
and its instantaneous resistance can be 
memorized when no signal is applied. 
Postulated from circuit theoretical principles 
in 1971 by Leon Chua8, memristors can 
be a few nanometres in size and can be 
packed densely in a two-dimensional layer 
with nanometre-range pitch. Compared 
with neural spiking chips based on CMOS 
technology, memristive devices could 
potentially offer higher neuron and synaptic 
density9. Their fabrication process is  
much cheaper than CMOS, and memristor 
layers can be stacked in three-dimensions. 
Assuming a 30-nm pitch, ten layers could  
in principle provide a memory density  
of 1011 non-volatile analogue cells per cm2. 
Such devices are already being used  
in commercial chips for digital  
non-volatile memory10.

Yang and colleagues — who are based at 
the University of Massachusetts, Amherst, 
Loughborough University, Hewlett Packard 
Labs of Hewlett Packard Enterprise,  
the Air Force Research Laboratory,  
and Tsinghua University — created a  
self-learning spiking 8 ×  8 crossbar array  
on a single chip with 64 synapses and  
8 leaky integrate-and-fire neurons.  
The 64 synapses were built with non-volatile 
HfO-based synaptic drift memristors, and 
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the 8 neurons with volatile silver-based 
diffusive memristors. With this chip they 
showed reliable learning of visual patterns, 
and thus demonstrated a fully memristive 
learning spiking neural system in a  
single chip.

Memristor layers can be fabricated on 
top of a CMOS substrate, and can provide 
highly parallel mass storage tightly coupled 
to CMOS computing circuits. With such a 
system, computing and learning processes 
in the brain can be imitated by combining 
memristors with spiking signal processing 
and silicon integrate-and-fire neurons11. 
Figure 1a illustrates a hypothetical brain-
like system built using CMOS microchip 
technology combined with memristors for 
synapses, and Fig. 1b illustrates the three-
dimensional stacking possibility of synaptic 
memristor layers. Full monolithic  
CMOS-plus-memristor proposals are yet  
to be experimentally demonstrated  

due to various unresolved technical 
challenges, such as the fabrication of very 
high density and large area memristive 
fabrics with good reliability, repeatability, 
and many reprogrammability cycles.  
Even when these challenges are resolved, 
however, the approach would still require 
expensive silicon substrates to implement 
the neurons and manage the long-range 
(multi-chip) inter-communication. In this 
respect, the work of Yang and colleagues 
could provide an important step forward,  
as it opens up the possibility of 
implementing the neuron integrate-and-fire 
functionality with dense low-cost  
volatile diffusive memristors (Fig. 1c). 
Furthermore, negating the requirement of 
present-day expensive CMOS substrates,  
it is possible to imagine fabricating  
both synaptic and neuronal nanoscale 
memristive layers over low-cost flexible 
large-area plastic substrates. ❐
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Fig. 1 | Illustration of a scalable brain-like computing system based on memristors. a, A hypothetical brain-like system built using CMOS microchip 
technology combined with memristors for synapses. (1) Printed circuit board holding an array of 110 microchips interconnected through high-speed digital 
microstrips. (2) Detail of a microchip highlighting bidirectional interconnection microstrips to all neighbours. (3) Block diagram of a chip showing a router 
circuit for programming interconnectivity, circuitry for test and reconfiguration support, and the main spike processor containing neurons and synapses.  
(4) Detail of the spike processor, where integrate-and-fire neurons are implemented as silicon neurons on a CMOS substrate and synapses are  
implemented as a dense memristor array fabric, tightly connected to the neurons. (5) Detail of a silicon neuron, which includes spike integration circuitry, 
spike genesis/transmission circuitry, circuitry for setting/tuning neural parameters, and circuitry for spike communication with the router. (6) Detail of a 
synaptic non-volatile memristor element fabricated at the intersection of a nanoscale density crossbar. b, Illustration of an evolution of the spike processor in 
(4) where ten non-volatile memristive layers are stacked vertically in 3D. c, Illustration of a further evolution by replacing the CMOS silicon neuron array by 
arrays of diffusive memristors performing the same integrate-and-fire functionality, but interleaved between synaptic memristor layers.
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components (17) learned with supervision, provide a parallel
distributed representation to carry out high-fidelity computa-
tion without the need for high-precision representation.

Critically, we demonstrate that bringing the above innovations
together allows us to create networks that approach state-of-the-art
accuracy performing inference on eight standard datasets, running on
a neuromorphic chip at between 1,200 and 2,600 frames/s (FPS),
using between 25 and 275 mW. We further explore how our ap-
proach scales by simulating multichip configurations. Ease-of-use is
achieved using training tools built from existing, optimized deep
learning frameworks (18), with learned parameters mapped to
hardware using a high-level deployment language (19). Although we
choose the IBM TrueNorth chip (6) for our example deployment
platform, the essence of our constructions can apply to other
emerging neuromorphic approaches (20–23) and may lead to new
architectures that incorporate deep learning and efficient hardware
primitives from the ground up.

Approach
Here, we provide a description of the relevant elements of deep
convolutional networks and the TrueNorth neuromorphic chip
and describe how the essence of the former can be realized on
the latter.

Deep Convolutional Networks. A deep convolutional network is a
multilayer feedforward neural network, whose input is typi-
cally image-like and whose layers are neurons that collectively

A

B

C

D

Fig. 1. (A) Two layers of a convolutional network. Colors (green, purple, blue,
orange) designate neurons (individual boxes) belonging to the same group (par-
titioning the feature dimension) at the same location (partitioning the spatial di-
mensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board)
comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic
array. Convolutional network neurons for one group at one topographic location
are implemented using neurons on the same TrueNorth core (TrueNorth neuron
colors correspond to convolutional network neuron colors in A), with their corre-
sponding filter support region implemented using the core’s inputs, and filter
weights implemented using the core’s synaptic array. (C) Neuron dynamics show-
ing that the internal state variable V(t) of a TrueNorth neuron changes in response
to positive and negative weighted inputs. Following input integration in each tick,
a spike is emitted if V(t) is greater than or equal to the threshold θ= 1. V(t) is reset
to 0 before input integration in the next tick. (D) Convolutional network filter
weights (numbers in black diamonds) implemented using TrueNorth, which
supports weights with individually configured on/off state and strength assigned
by lookup table. In our scheme, each feature is represented with pairs of neuron
copies. Each pair connects to two inputs on the same target core, with the inputs
assigned types 1 and 2, which via the look up table assign strengths of +1 or −1
to synapses on the corresponding input lines. By turning on the appropriate
synapses, each synapse pair can be used to represent −1, 0, or +1.

Table 1. Structure of convolution networks used in this work

1/2 chip 1 chip 2 chip 4 chip

S-12 S-16 S-32 S-64
P4-128 (4) P4-252 (2) S-128 (4) S-256 (8)
D N-256 (2) N-128 (1) N-256 (2)
S-256 (16) P-256 (8) P-128 (4) P-256 (8)
N-256 (2) S-512 (32) S-256 (16) S-512 (32)
P-512 (16) N-512 (4) N-256 (2) N-512 (4)
S-1020 (4) N-512 (4) P-256 (8) P-512 (16)
(6,528/class) N-512 (4) S-512 (32) S-1024 (64)

P-512 (16) N-512 (4) N-1024 (8)
S-1024 (64) P-512 (16) P-1024 (32)
N-1024 (8) S-2048 (64) S-2048 (128)
P-1024 (32) N-2048 (16) N-2048 (16)
N-1024 (8) N-2048 (16) N-2048 (16)
N-1024 (8) N-2048 (16) N-2048 (16)
N-2040 (8) N-4096 (16) N-4096 (16)
(816/class) (6,553/class) (6,553/class)

Each layer is described as type-features (groups), where type can be S for spatial
filter layers with filter size 3× 3 and stride 1, N for network-in-network layers with
filter size 1×1 and stride 1, P for convolutional pooling layer with filter size 2× 2
and stride 2, P4 for convolutional pooling layer with filter size 4× 4 and stride 2, and
D for dropout layers. The number of output features assigned to each of the 10
CIFAR10 classes is indicated below the final layer as (features/class). The eight-chip
network is the same as a four-chip network with twice as many features per layer.

Table 2. Summary of datasets

Dataset Classes Input Description

CIFAR10 (26) 10 32 row × 32 column × 3 RGB Natural and manufactured objects in their environment
CIFAR100 (26) 100 32 row × 32 column × 3 RGB Natural and manufactured objects in their environment
SVHN (27) 10 32 row × 32 column × 3 RGB Single digits of house addresses from Google’s Street View
GTSRB (28) 43 32 row × 32 column × 3 RGB German traffic signs in multiple environments
Flickr-Logos32 (29) 32 32 row × 32 column × 3 RGB Localized corporate logos in their environment
VAD (30, 31) 2 16 sample × 26 MFCC Voice activity present or absent, with noise (TIMIT + NOISEX)
TIMIT class (30). 39 32 sample × 16 MFCC × 3 delta Phonemes from English speakers, with phoneme boundaries
TIMIT frame (30) 39 16 sample × 39 MFCC Phonemes from English speakers, without phoneme boundaries

GTSRB and Flickr-Logos32 are cropped and/or downsampled from larger images. VAD and TIMIT datasets have Mel-frequency cepstral coefficients (MFCC)
computed from 16-kHz audio data.
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components (17) learned with supervision, provide a parallel
distributed representation to carry out high-fidelity computa-
tion without the need for high-precision representation.

Critically, we demonstrate that bringing the above innovations
together allows us to create networks that approach state-of-the-art
accuracy performing inference on eight standard datasets, running on
a neuromorphic chip at between 1,200 and 2,600 frames/s (FPS),
using between 25 and 275 mW. We further explore how our ap-
proach scales by simulating multichip configurations. Ease-of-use is
achieved using training tools built from existing, optimized deep
learning frameworks (18), with learned parameters mapped to
hardware using a high-level deployment language (19). Although we
choose the IBM TrueNorth chip (6) for our example deployment
platform, the essence of our constructions can apply to other
emerging neuromorphic approaches (20–23) and may lead to new
architectures that incorporate deep learning and efficient hardware
primitives from the ground up.
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convolutional networks and the TrueNorth neuromorphic chip
and describe how the essence of the former can be realized on
the latter.

Deep Convolutional Networks. A deep convolutional network is a
multilayer feedforward neural network, whose input is typi-
cally image-like and whose layers are neurons that collectively

A

B

C

D

Fig. 1. (A) Two layers of a convolutional network. Colors (green, purple, blue,
orange) designate neurons (individual boxes) belonging to the same group (par-
titioning the feature dimension) at the same location (partitioning the spatial di-
mensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board)
comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic
array. Convolutional network neurons for one group at one topographic location
are implemented using neurons on the same TrueNorth core (TrueNorth neuron
colors correspond to convolutional network neuron colors in A), with their corre-
sponding filter support region implemented using the core’s inputs, and filter
weights implemented using the core’s synaptic array. (C) Neuron dynamics show-
ing that the internal state variable V(t) of a TrueNorth neuron changes in response
to positive and negative weighted inputs. Following input integration in each tick,
a spike is emitted if V(t) is greater than or equal to the threshold θ= 1. V(t) is reset
to 0 before input integration in the next tick. (D) Convolutional network filter
weights (numbers in black diamonds) implemented using TrueNorth, which
supports weights with individually configured on/off state and strength assigned
by lookup table. In our scheme, each feature is represented with pairs of neuron
copies. Each pair connects to two inputs on the same target core, with the inputs
assigned types 1 and 2, which via the look up table assign strengths of +1 or −1
to synapses on the corresponding input lines. By turning on the appropriate
synapses, each synapse pair can be used to represent −1, 0, or +1.

Table 1. Structure of convolution networks used in this work

1/2 chip 1 chip 2 chip 4 chip

S-12 S-16 S-32 S-64
P4-128 (4) P4-252 (2) S-128 (4) S-256 (8)
D N-256 (2) N-128 (1) N-256 (2)
S-256 (16) P-256 (8) P-128 (4) P-256 (8)
N-256 (2) S-512 (32) S-256 (16) S-512 (32)
P-512 (16) N-512 (4) N-256 (2) N-512 (4)
S-1020 (4) N-512 (4) P-256 (8) P-512 (16)
(6,528/class) N-512 (4) S-512 (32) S-1024 (64)

P-512 (16) N-512 (4) N-1024 (8)
S-1024 (64) P-512 (16) P-1024 (32)
N-1024 (8) S-2048 (64) S-2048 (128)
P-1024 (32) N-2048 (16) N-2048 (16)
N-1024 (8) N-2048 (16) N-2048 (16)
N-1024 (8) N-2048 (16) N-2048 (16)
N-2040 (8) N-4096 (16) N-4096 (16)
(816/class) (6,553/class) (6,553/class)

Each layer is described as type-features (groups), where type can be S for spatial
filter layers with filter size 3× 3 and stride 1, N for network-in-network layers with
filter size 1×1 and stride 1, P for convolutional pooling layer with filter size 2× 2
and stride 2, P4 for convolutional pooling layer with filter size 4× 4 and stride 2, and
D for dropout layers. The number of output features assigned to each of the 10
CIFAR10 classes is indicated below the final layer as (features/class). The eight-chip
network is the same as a four-chip network with twice as many features per layer.

Table 2. Summary of datasets

Dataset Classes Input Description

CIFAR10 (26) 10 32 row × 32 column × 3 RGB Natural and manufactured objects in their environment
CIFAR100 (26) 100 32 row × 32 column × 3 RGB Natural and manufactured objects in their environment
SVHN (27) 10 32 row × 32 column × 3 RGB Single digits of house addresses from Google’s Street View
GTSRB (28) 43 32 row × 32 column × 3 RGB German traffic signs in multiple environments
Flickr-Logos32 (29) 32 32 row × 32 column × 3 RGB Localized corporate logos in their environment
VAD (30, 31) 2 16 sample × 26 MFCC Voice activity present or absent, with noise (TIMIT + NOISEX)
TIMIT class (30). 39 32 sample × 16 MFCC × 3 delta Phonemes from English speakers, with phoneme boundaries
TIMIT frame (30) 39 16 sample × 39 MFCC Phonemes from English speakers, without phoneme boundaries

GTSRB and Flickr-Logos32 are cropped and/or downsampled from larger images. VAD and TIMIT datasets have Mel-frequency cepstral coefficients (MFCC)
computed from 16-kHz audio data.
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Deep networks are now able to achieve human-level performance
on a broad spectrum of recognition tasks. Independently, neuromorphic
computing has now demonstrated unprecedented energy-efficiency
through a new chip architecture based on spiking neurons, low
precision synapses, and a scalable communication network. Here, we
demonstrate that neuromorphic computing, despite its novel archi-
tectural primitives, can implement deep convolution networks that
(i) approach state-of-the-art classification accuracy across eight stan-
dard datasets encompassing vision and speech, (ii) perform inference
while preserving the hardware’s underlying energy-efficiency and
high throughput, running on the aforementioned datasets at between
1,200 and 2,600 frames/s and using between 25 and 275 mW (effec-
tively >6,000 frames/s per Watt), and (iii) can be specified and
trained using backpropagation with the same ease-of-use as con-
temporary deep learning. This approach allows the algorithmic
power of deep learning to be merged with the efficiency of neuro-
morphic processors, bringing the promise of embedded, intelligent,
brain-inspired computing one step closer.

convolutional network | neuromorphic | neural network | TrueNorth

The human brain is capable of remarkable acts of perception
while consuming very little energy. The dream of brain-in-

spired computing is to build machines that do the same, re-
quiring high-accuracy algorithms and efficient hardware to run
those algorithms. On the algorithm front, building on classic
work on backpropagation (1), the neocognitron (2), and con-
volutional networks (3), deep learning has made great strides in
achieving human-level performance on a wide range of recog-
nition tasks (4). On the hardware front, building on foundational
work on silicon neural systems (5), neuromorphic computing,
using novel architectural primitives, has recently demonstrated
hardware capable of running 1 million neurons and 256 million
synapses for extremely low power (just 70 mW at real-time op-
eration) (6). Bringing these approaches together holds the
promise of a new generation of embedded, real-time systems,
but first requires reconciling key differences in the structure
and operation between contemporary algorithms and hard-
ware. Here, we introduce and demonstrate an approach we call
Eedn, energy-efficient deep neuromorphic networks, which
creates convolutional networks whose connections, neurons,
and weights have been adapted to run inference tasks on
neuromorphic hardware.
For structure, typical convolutional networks place no con-

straints on filter sizes, whereas neuromorphic systems can take
advantage of blockwise connectivity that limits filter sizes,
thereby saving energy because weights can now be stored in
local on-chip memory within dedicated neural cores. Here, we
present a convolutional network structure that naturally maps
to the efficient connection primitives used in contemporary
neuromorphic systems. We enforce this connectivity constraint
by partitioning filters into multiple groups and yet maintain
network integration by interspersing layers whose filter support

region is able to cover incoming features from many groups by
using a small topographic size (7).
For operation, contemporary convolutional networks typi-

cally use high precision (≥32-bit) neurons and synapses to
provide continuous derivatives and support small incremental
changes to network state, both formally required for back-
propagation-based gradient learning. In comparison, neuro-
morphic designs can use one-bit spikes to provide event-based
computation and communication (consuming energy only
when necessary) and can use low-precision synapses to co-
locate memory with computation (keeping data movement
local and avoiding off-chip memory bottlenecks). Here, we
demonstrate that by introducing two constraints into the
learning rule—binary-valued neurons with approximate de-
rivatives and trinary-valued (f−1,0,1g) synapses—it is possible
to adapt backpropagation to create networks directly imple-
mentable using energy efficient neuromorphic dynamics. This
approach draws inspiration from the spiking neurons and low-
precision synapses of the brain (8) and builds on work showing
that deep learning can create networks with constrained con-
nectivity (9), low-precision synapses (10, 11), low-precision
neurons (12–14), or both low-precision synapses and neurons
(15, 16). For input data, we use a first layer to transform
multivalued, multichannel input into binary channels using
convolution filters that are learned via backpropagation (12,
16) and whose output can be sent on chip in the form of
spikes. These binary channels, intuitively akin to independent
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components (17) learned with supervision, provide a parallel
distributed representation to carry out high-fidelity computa-
tion without the need for high-precision representation.

Critically, we demonstrate that bringing the above innovations
together allows us to create networks that approach state-of-the-art
accuracy performing inference on eight standard datasets, running on
a neuromorphic chip at between 1,200 and 2,600 frames/s (FPS),
using between 25 and 275 mW. We further explore how our ap-
proach scales by simulating multichip configurations. Ease-of-use is
achieved using training tools built from existing, optimized deep
learning frameworks (18), with learned parameters mapped to
hardware using a high-level deployment language (19). Although we
choose the IBM TrueNorth chip (6) for our example deployment
platform, the essence of our constructions can apply to other
emerging neuromorphic approaches (20–23) and may lead to new
architectures that incorporate deep learning and efficient hardware
primitives from the ground up.

Approach
Here, we provide a description of the relevant elements of deep
convolutional networks and the TrueNorth neuromorphic chip
and describe how the essence of the former can be realized on
the latter.

Deep Convolutional Networks. A deep convolutional network is a
multilayer feedforward neural network, whose input is typi-
cally image-like and whose layers are neurons that collectively

A

B

C

D

Fig. 1. (A) Two layers of a convolutional network. Colors (green, purple, blue,
orange) designate neurons (individual boxes) belonging to the same group (par-
titioning the feature dimension) at the same location (partitioning the spatial di-
mensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board)
comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic
array. Convolutional network neurons for one group at one topographic location
are implemented using neurons on the same TrueNorth core (TrueNorth neuron
colors correspond to convolutional network neuron colors in A), with their corre-
sponding filter support region implemented using the core’s inputs, and filter
weights implemented using the core’s synaptic array. (C) Neuron dynamics show-
ing that the internal state variable V(t) of a TrueNorth neuron changes in response
to positive and negative weighted inputs. Following input integration in each tick,
a spike is emitted if V(t) is greater than or equal to the threshold θ= 1. V(t) is reset
to 0 before input integration in the next tick. (D) Convolutional network filter
weights (numbers in black diamonds) implemented using TrueNorth, which
supports weights with individually configured on/off state and strength assigned
by lookup table. In our scheme, each feature is represented with pairs of neuron
copies. Each pair connects to two inputs on the same target core, with the inputs
assigned types 1 and 2, which via the look up table assign strengths of +1 or −1
to synapses on the corresponding input lines. By turning on the appropriate
synapses, each synapse pair can be used to represent −1, 0, or +1.

Table 1. Structure of convolution networks used in this work

1/2 chip 1 chip 2 chip 4 chip

S-12 S-16 S-32 S-64
P4-128 (4) P4-252 (2) S-128 (4) S-256 (8)
D N-256 (2) N-128 (1) N-256 (2)
S-256 (16) P-256 (8) P-128 (4) P-256 (8)
N-256 (2) S-512 (32) S-256 (16) S-512 (32)
P-512 (16) N-512 (4) N-256 (2) N-512 (4)
S-1020 (4) N-512 (4) P-256 (8) P-512 (16)
(6,528/class) N-512 (4) S-512 (32) S-1024 (64)

P-512 (16) N-512 (4) N-1024 (8)
S-1024 (64) P-512 (16) P-1024 (32)
N-1024 (8) S-2048 (64) S-2048 (128)
P-1024 (32) N-2048 (16) N-2048 (16)
N-1024 (8) N-2048 (16) N-2048 (16)
N-1024 (8) N-2048 (16) N-2048 (16)
N-2040 (8) N-4096 (16) N-4096 (16)
(816/class) (6,553/class) (6,553/class)

Each layer is described as type-features (groups), where type can be S for spatial
filter layers with filter size 3× 3 and stride 1, N for network-in-network layers with
filter size 1×1 and stride 1, P for convolutional pooling layer with filter size 2× 2
and stride 2, P4 for convolutional pooling layer with filter size 4× 4 and stride 2, and
D for dropout layers. The number of output features assigned to each of the 10
CIFAR10 classes is indicated below the final layer as (features/class). The eight-chip
network is the same as a four-chip network with twice as many features per layer.

Table 2. Summary of datasets

Dataset Classes Input Description

CIFAR10 (26) 10 32 row × 32 column × 3 RGB Natural and manufactured objects in their environment
CIFAR100 (26) 100 32 row × 32 column × 3 RGB Natural and manufactured objects in their environment
SVHN (27) 10 32 row × 32 column × 3 RGB Single digits of house addresses from Google’s Street View
GTSRB (28) 43 32 row × 32 column × 3 RGB German traffic signs in multiple environments
Flickr-Logos32 (29) 32 32 row × 32 column × 3 RGB Localized corporate logos in their environment
VAD (30, 31) 2 16 sample × 26 MFCC Voice activity present or absent, with noise (TIMIT + NOISEX)
TIMIT class (30). 39 32 sample × 16 MFCC × 3 delta Phonemes from English speakers, with phoneme boundaries
TIMIT frame (30) 39 16 sample × 39 MFCC Phonemes from English speakers, without phoneme boundaries

GTSRB and Flickr-Logos32 are cropped and/or downsampled from larger images. VAD and TIMIT datasets have Mel-frequency cepstral coefficients (MFCC)
computed from 16-kHz audio data.
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FEATURE ARTICLE: Neuromorphic Computing 

Loihi: A Neuromorphic 
Manycore Processor with 
On-Chip Learning 

Loihi is a 60-mm2 chip fabricated in Intel’s 14-nm 

process that advances the state-of-the-art modeling 

of spiking neural networks in silicon. It integrates a 

wide range of novel features for the field, such as 

hierarchical connectivity, dendritic compartments, 

synaptic delays, and, most importantly, 

programmable synaptic learning rules. Running a 

spiking convolutional form of the Locally Competitive 

Algorithm, Loihi can solve LASSO optimization 

problems with over three orders of magnitude 

superior energy-delay product compared to 

conventional solvers running on a CPU iso-

process/voltage/area. This provides an unambiguous 

example of spike-based computation, outperforming 

all known conventional solutions. 

 

Neuroscience offers a bountiful source of inspiration for 
novel hardware architectures and algorithms. Through 
their complex interactions at large scales, biological neu-
rons exhibit an impressive range of behaviors and proper-
ties that we currently struggle to model with modern 
analytical tools, let alone replicate with our design and 
manufacturing technology. Some of the magic that we see 
in the brain undoubtedly stems from exotic device and ma-
terial properties that will remain out of our fabs’ reach for 
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What Should We Further Learn from the Brain?

Energy Efficiency

Data Efficiency
lWorld Models and Mental Simulation

lModularity and Compositionality

lMeta-learning

Autonomy and Sociality



Learning to Walk
 (Doya & Nakano, 1985)

n Explore actions (cycle of 4 postures)

n Learn from performance feedback (speed sensor)



Reinforcement Learning
n Predict reward: value function

lV(s) = E[ r(t) + gr(t+1) + g2r(t+2)…| s(t)=s]

lQ(s,a) = E[ r(t) + gr(t+1) + g2r(t+2)…| s(t)=s, a(t)=a]

n Select action

lgreedy: a = argmax Q(s,a)

lBoltzmann: P(a|s) µ exp[ b Q(s,a)]

n Update prediction: temporal difference (TD) error
ld(t) = r(t) + gV(s(t+1)) – V(s(t))

lDV(s(t)) = a d(t)

lDQ(s(t),a(t)) = a d(t)

How to implement these steps?

How to tune these parameters?



Pendulum Swing-Up
n state: angle q, angular velocity w
n reward function: potential energy: cos q

 w

 q
n Value function   



Learning to Stand Up
(Morimoto & Doya, 2001)

n Learning from reward and punishment

lreward: height of the head

lpunishment: bump on the floor



TD Learning and Backprop
n TD Gammon

(Tesauro 1992, 1994) 
n TD Learning can diverge

(Boyan & Moore, 1995)
ld(t) = r(t) + g V(s(t+1)) – V(s(t))

Backgammon
• TD-gammon: number of states: 1020

• Reward: zero for all time steps except those on 
which the game is won

• Outperformed the human experts

[Tesauro, 1992]

[Tesauro, 1992]

Backgammon
• TD-gammon: number of states: 1020

• Reward: zero for all time steps except those on 
which the game is won

• Outperformed the human experts

[Tesauro, 1992]

[Tesauro, 1992]

関数近似が失敗する例
• 2層のニューラルネットを
使用

[Boyan and Moore, 1995]

関数近似が失敗する例
• 2層のニューラルネットを
使用

[Boyan and Moore, 1995]



difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Deep Q-Network
 (Mnih et al. 2015)

n Game screen as input

lExperience replay
lFixing the target network

n DNN captures important features

lhuman level in 29/49 Atari games

Indeed, in certain games DQN is able to discover a relatively long-term
strategy (for example, Breakout: the agent learns the optimal strategy,
which is to first dig a tunnel around the side of the wall allowing the ball
to be sent around the back to destroy a large number of blocks; see Sup-
plementary Video 2 for illustration of development of DQN’s perfor-
mance over the course of training). Nevertheless, games demanding more
temporally extended planning strategies still constitute a major chal-
lenge for all existing agents including DQN (for example, Montezuma’s
Revenge).

In this work, we demonstrate that a single architecture can success-
fully learn control policies in a range of different environments with only
very minimal prior knowledge, receiving only the pixels and the game
score as inputs, and using the same algorithm, network architecture and
hyperparameters on each game, privy only to the inputs a human player
would have. In contrast to previous work24,26, our approach incorpo-
rates ‘end-to-end’ reinforcement learning that uses reward to continu-
ously shape representations within the convolutional network towards
salient features of the environment that facilitate value estimation. This
principle draws on neurobiological evidence that reward signals during
perceptual learning may influence the characteristics of representations
within primate visual cortex27,28. Notably, the successful integration of
reinforcement learning with deep network architectures was critically
dependent on our incorporation of a replay algorithm21–23 involving the
storage and representation of recently experienced transitions. Conver-
gent evidence suggests that the hippocampus may support the physical

realization of such a process in the mammalian brain, with the time-
compressed reactivation of recently experienced trajectories during
offline periods21,22 (for example, waking rest) providing a putative mech-
anism by which value functions may be efficiently updated through
interactions with the basal ganglia22. In the future, it will be important
to explore the potential use of biasing the content of experience replay
towards salient events, a phenomenon that characterizes empirically
observed hippocampal replay29, and relates to the notion of ‘prioritized
sweeping’30 in reinforcement learning. Taken together, our work illus-
trates the power of harnessing state-of-the-art machine learning tech-
niques with biologically inspired mechanisms to create agents that are
capable of learning to master a diverse array of challenging tasks.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 4 | Two-dimensional t-SNE embedding of the representations in the
last hidden layer assigned by DQN to game states experienced while playing
Space Invaders. The plot was generated by letting the DQN agent play for
2 h of real game time and running the t-SNE algorithm25 on the last hidden layer
representations assigned by DQN to each experienced game state. The
points are coloured according to the state values (V, maximum expected reward
of a state) predicted by DQN for the corresponding game states (ranging
from dark red (highest V) to dark blue (lowest V)). The screenshots
corresponding to a selected number of points are shown. The DQN agent

predicts high state values for both full (top right screenshots) and nearly
complete screens (bottom left screenshots) because it has learned that
completing a screen leads to a new screen full of enemy ships. Partially
completed screens (bottom screenshots) are assigned lower state values because
less immediate reward is available. The screens shown on the bottom right
and top left and middle are less perceptually similar than the other examples but
are still mapped to nearby representations and similar values because the
orange bunkers do not carry great significance near the end of a level. With
permission from Square Enix Limited.
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Deep Q-Net [Mnih et al., 2015]
• DQNは状態行動価値関数𝑄𝜋を深層畳み込み
ニューラルネットワークで近似

• 入力は4枚の時間的に連続したサイズ84x84 の画像
•幾つかのゲームにおいてDQNはプロのゲーム
テスターよりもうまくゲームができた

𝒙

𝑄(𝒙, 𝑎)



Basal Ganglia
n Locus of Parkinson’s and Huntington’s diseases

n What is their normal function??
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Dopamine Neurons Code TD Error
d(t) = r(t) + gV(s(t+1)) – V(s(t))

unpredicted

predicted

omitted

(Schultz et al. 1997)

W. SCHULTZ4

fails to occur, even in the absence of an immediately preced-
ing stimulus (Fig. 2, bottom) . This is observed when animals
fail to obtain reward because of erroneous behavior, when
liquid flow is stopped by the experimenter despite correct
behavior, or when a valve opens audibly without delivering
liquid (Hollerman and Schultz 1996; Ljungberg et al. 1991;
Schultz et al. 1993). When reward delivery is delayed for
0.5 or 1.0 s, a depression of neuronal activity occurs at the
regular time of the reward, and an activation follows the
reward at the new time (Hollerman and Schultz 1996). Both
responses occur only during a few repetitions until the new
time of reward delivery becomes predicted again. By con-
trast, delivering reward earlier than habitual results in an
activation at the new time of reward but fails to induce a
depression at the habitual time. This suggests that unusually
early reward delivery cancels the reward prediction for the
habitual time. Thus dopamine neurons monitor both the oc-
currence and the time of reward. In the absence of stimuli
immediately preceding the omitted reward, the depressions
do not constitute a simple neuronal response but reflect an
expectation process based on an internal clock tracking the
precise time of predicted reward.

Activation by conditioned, reward-predicting stimuli
About 55–70% of dopamine neurons are activated by

conditioned visual and auditory stimuli in the various classi-
cally or instrumentally conditioned tasks described earlier
(Fig. 2, middle and bottom) (Hollerman and Schultz 1996;
Ljungberg et al. 1991, 1992; Mirenowicz and Schultz 1994;
Schultz 1986; Schultz and Romo 1990; P. Waelti, J. Mire-
nowicz, and W. Schultz, unpublished data) . The first dopa-
mine responses to conditioned light were reported by Miller
et al. (1981) in rats treated with haloperidol, which increased
the incidence and spontaneous activity of dopamine neurons
but resulted in more sustained responses than in undrugged
animals. Although responses occur close to behavioral reac-
tions (Nishino et al. 1987), they are unrelated to arm and
eye movements themselves, as they occur also ipsilateral toFIG. 2. Dopamine neurons report rewards according to an error in re-

ward prediction. Top : drop of liquid occurs although no reward is predicted the moving arm and in trials without arm or eye movements
at this time. Occurrence of reward thus constitutes a positive error in the (Schultz and Romo 1990). Conditioned stimuli are some-
prediction of reward. Dopamine neuron is activated by the unpredicted what less effective than primary rewards in terms of responseoccurrence of the liquid. Middle : conditioned stimulus predicts a reward,

magnitude and fractions of neurons activated. Dopamineand the reward occurs according to the prediction, hence no error in the
prediction of reward. Dopamine neuron fails to be activated by the predicted neurons respond only to the onset of conditioned stimuli and
reward (right) . It also shows an activation after the reward-predicting stim- not to their offset, even if stimulus offset predicts the reward
ulus, which occurs irrespective of an error in the prediction of the later (Schultz and Romo 1990). Dopamine neurons do not distin-reward ( left ) . Bottom : conditioned stimulus predicts a reward, but the re- guish between visual and auditory modalities of conditionedward fails to occur because of lack of reaction by the animal. Activity of

appetitive stimuli. However, they discriminate between ap-the dopamine neuron is depressed exactly at the time when the reward
would have occurred. Note the depression occurring ú1 s after the condi- petitive and neutral or aversive stimuli as long as they are
tioned stimulus without any intervening stimuli, revealing an internal pro- physically sufficiently dissimilar (Ljungberg et al. 1992;
cess of reward expectation. Neuronal activity in the 3 graphs follows the P. Waelti, J. Mirenowicz, and W. Schultz, unpublishedequation: dopamine response (Reward) Å reward occurred 0 reward pre-

data) . Only 11% of dopamine neurons, most of them withdicted. CS, conditioned stimulus; R, primary reward. Reprinted from
Schultz et al. (1997) with permission by American Association for the appetitive responses, show the typical phasic activations also
Advancement of Science. in response to conditioned aversive visual or auditory stimuli

in active avoidance tasks in which animals release a key to
avoid an air puff or a drop of hypertonic saline (Mirenowicztogether, the occurrence of reward, including its time, must
and Schultz 1996), although such avoidance may be viewedbe unpredicted to activate dopamine neurons.
as ‘‘rewarding.’’ These few activations are not sufficiently
strong to induce an average population response. Thus theDepression by omission of predicted reward
phasic responses of dopamine neurons preferentially report
environmental stimuli with appetitive motivational value butDopamine neurons are depressed exactly at the time of

the usual occurrence of reward when a fully predicted reward without discriminating between different sensory modalities.
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Dopamine-dependent Plasticity
n Medium spiny neurons in striatum

lglutamate from cortex

ldopamine from midbrain

n Three-factor learning rule (Wickens et al.)

lcortical input + spike ® LTD

lcortical input + spike + dopamine ® LTP

l input x output x reward

n Time window of plasticity
(Yagishita et al., 2014)

two-photon uncaging. For optogenetic stimu-
lation of dopaminergic fibers, a Cre-dependent
adeno-associated virus (AAV) vector expressing
channelrhodopsin-2 (ChR2) was injected into
the ventral tegmental area (VTA) of DAT-Cremice

expressing Cre specific to dopaminergic neurons
(Fig. 1Aand fig. S1). Thedirectpathway–constituting
MSNs, which mainly express dopamine 1 recep-
tors (D1Rs) (13), were labeled by an AAV vector
with a specific promoter for D1R-MSNs (Fig. 1A

and fig. S1). In acute coronal slices, including
the nucleus accumbens (NAc) core, whole-cell
recordingswere obtained from the identifiedD1R-
MSNs. Dendritic spines were visualized by means
of two-photon microscopy (980 nm) detecting
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Fig. 2. Pharmacology
of spine enlargement
induced by STDP plus
DAopto with a 0.6-s
delay. (A) Time
courses of spine
enlargement induced
by STDP + DAopto with
a 0.6-s delay in the
absence (control, 24
spines, 7 dendrites)
and presence of
NMDAR antagonist
(50 mM D-AP5, 22 spines, 6 dendrites), CaMKII inhibitor (3 mM KN62, 23 spines, 6 dendrites), or protein synthesis inhibitor (5 mM
anisomycin, 25 spines, 6 dendrites). (B) Time courses of spine enlargement in the presence of D1R antagonist (3 mM SCH23390, 23 spines, 6
dendrites), D2R antagonist (10 mM sulpiride, 22 spines, 6 dendrites), or PKA inhibitor (10 mM PKI, in the pipette, 24 spines, 6 dendrites). (C) Time
courses of spine enlargement in the presence of inhibitory (100 mM, in the pipette, 24 spines, 6 dendrites) or control peptide for DARPP-32 (100 mM, in
the pipette, 24 spines, 6 dendrites). (D) Averaged volume changes in the absence and presence of the compounds. Data are presented as mean T

SEM. P = 3.4 × 10−6 with Kruskal-Wallis and *P = 0.023 (AP5), 0.023 (KN62), 0.037 (AIP) (fig. S5A), 0.023 (anisomycin), 0.035 (SCH23390), 0.023 (PKI),
0.037 (KT5720) (fig. S5A), and 0.023 (DARPP-32 inhibitory peptide) with Steel test.

Fig. 1. A temporal profile of dopamine actions on spine enlargement. (A)
Injection of AAV vectors for ChR2 and the D1R-MSN marker (PPTA-mCherry)
in 3-week-old DAT-Cre mice. (B) Selective stimulation of dopaminergic and
glutamatergic inputs by means of blue laser field irradiation to ChR2 and two-
photon uncaging of caged-glutamate at a single spine, respectively, in acute
slices of NAc obtained from 5- to 7-week-old mice. (C) An amperometric
measurement of dopamine (top) by carbon-fiber electrode and whole-cell
recording of glutamate-induced current (bottom, 2pEPSP) in identified
D1R-MSNs. (D) An STDP protocol with dopamine puff application. (E) Im-
ages of the dendritic spine (red arrowhead) that received STDP stimulation
in the presence of dopamine (100 mM). (F and G) Time courses of spine
enlargement in the presence [(F), 13 spines, 4 dendrites] and absence of

dopamine [(G), 58 spines, 14 dendrites]. (H) Amplitudes of spine enlarge-
ments with or without dopamine. **P = 0.0041 by Mann-Whitney U test. (I)
STDP with repetitive activation of dopaminergic fibers containing ChR2 (blue
lines) at 30 Hz, 10 times (DAopto). (J) Images of the dendritic spine (arrow-
head) that received STDP + DAopto with a delay of 1 s. (K to M) Time courses
of spine enlargement induced by STDP + DAopto at 1 s [(K), 48 spines, 14 den-
drites], –1 s [(L), 20 spines, 5 dendrites] and 5 s [(M), 28 spines, 7 dendrites]
after STDP onset. (N) Timings of DAopto application. (O) Increases in spine
volumes by STDP + DAopto plotted versus DAopto delay (fig. S2, A to C). Data are
presented as mean T SEM. P = 4.2 × 10−6 with Kruskal-Wallis and **P = 0.0018
(0.6 s) and 0.0027 (1 s) by Steel test in comparison with STDP in the absence
of DAopto. Scale bars, 1 mm.
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Basal Ganglia for Reinforcement Learning?
    (Doya 2000, 2007)
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Population increases moderately if at all, the
extent of urbanization is relatively small, forest
area increases, and demand for agricultural
land decreases. This allows changes in land
management that could decrease vulnerability.
Problematic trends in the EU15þ are mostly
climate related.

The range of potential impacts in Europe
covers socioeconomic options (storylines) and
variation among GCMs. For most ecosystem
services the A1FI scenario produced the biggest
negative impacts, and the B scenarios seemed
preferable. However, a division into either
Beconomic[ (A scenarios) or Bequitable and
environmental[ (B scenarios) does not reflect all
societal choices, given that sustainability does
not forbid economic prosperity (3). The four
storylines help explore but do not contain our
optimal future pathway.

Among all European regions, the Mediter-
ranean appeared most vulnerable to global
change. Multiple potential impacts were pro-
jected, related primarily to increased temper-
atures and reduced precipitation. The impacts
included water shortages, increased risk of
forest fires, northward shifts in the distribution
of typical tree species, and losses of agricultural
potential. Mountain regions also seemed vul-
nerable because of a rise in the elevation of
snow cover and altered river runoff regimes.

The sustained active participation of stake-
holders indicated that global change is an issue
of concern to them, albeit among many other
concerns. The development of adaptation
strategies, such as for reduced water use and
long-term soil preservation, can build on our
study but requires further understanding of the
interplay between stakeholders and their envi-
ronment in the context of local, national, and
EU-wide constraints and regulations.
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Representation of Action-Specific
Reward Values in the Striatum
Kazuyuki Samejima,1*. Yasumasa Ueda,2 Kenji Doya,1,3

Minoru Kimura2*

The estimation of the reward an action will yield is critical in decision-making. To
elucidate the role of the basal ganglia in this process, we recorded striatal neurons
of monkeys who chose between left and right handle turns, based on the
estimated reward probabilities of the actions. During a delay period before the
choices, the activity of more than one-third of striatal projection neurons was
selective to the values of one of the two actions. Fewer neurons were tuned to
relative values or action choice. These results suggest representation of action
values in the striatum, which can guide action selection in the basal ganglia circuit.

Animals and humans flexibly choose actions in
pursuit of their specific goals in the en-
vironment on a trial-and-error basis (1, 2). The-
ories of reinforcement learning (3) describe
reward-based decision-making and adaptive
choice of actions by the following three steps:
(i) The organism estimates the action value,
defined as how much reward value (probability
times volume) an action will yield. (ii) It
selects an action by comparing the action
values of multiple alternatives. (iii) It updates

the action values by the errors of estimated
action values. Reinforcement learning models
of the basal ganglia have been put forward (4–6).
The midbrain dopamine neurons encode errors
of reward expectation (7–9) and motivation (9),
and they regulate the plasticity of the cortico-
striatal synapses (10, 11). Neuronal discharge
rates in the cerebral cortex (12–15) and stri-
atum (16–18) are modulated by rewards that
are estimated by sensory cues and behavioral
responses. These observations are consistent
with action selection through the reinforcement
learning rule (3) and with the notion of
stimulus-response learning (19, 20). However,
two critical questions remain unanswered: Do
the striatal neurons acquire action values in
their activity through learning? How is the
striatal neuron activity involved in reward-
based action selection? Here we show by using
a reward-based, free-choice paradigm that the
striatal neurons learn to encode the action
values through trial-and-error learning and
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Population increases moderately if at all, the
extent of urbanization is relatively small, forest
area increases, and demand for agricultural
land decreases. This allows changes in land
management that could decrease vulnerability.
Problematic trends in the EU15þ are mostly
climate related.

The range of potential impacts in Europe
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not forbid economic prosperity (3). The four
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change. Multiple potential impacts were pro-
jected, related primarily to increased temper-
atures and reduced precipitation. The impacts
included water shortages, increased risk of
forest fires, northward shifts in the distribution
of typical tree species, and losses of agricultural
potential. Mountain regions also seemed vul-
nerable because of a rise in the elevation of
snow cover and altered river runoff regimes.

The sustained active participation of stake-
holders indicated that global change is an issue
of concern to them, albeit among many other
concerns. The development of adaptation
strategies, such as for reduced water use and
long-term soil preservation, can build on our
study but requires further understanding of the
interplay between stakeholders and their envi-
ronment in the context of local, national, and
EU-wide constraints and regulations.
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Representation of Action-Specific
Reward Values in the Striatum
Kazuyuki Samejima,1*. Yasumasa Ueda,2 Kenji Doya,1,3

Minoru Kimura2*

The estimation of the reward an action will yield is critical in decision-making. To
elucidate the role of the basal ganglia in this process, we recorded striatal neurons
of monkeys who chose between left and right handle turns, based on the
estimated reward probabilities of the actions. During a delay period before the
choices, the activity of more than one-third of striatal projection neurons was
selective to the values of one of the two actions. Fewer neurons were tuned to
relative values or action choice. These results suggest representation of action
values in the striatum, which can guide action selection in the basal ganglia circuit.

Animals and humans flexibly choose actions in
pursuit of their specific goals in the en-
vironment on a trial-and-error basis (1, 2). The-
ories of reinforcement learning (3) describe
reward-based decision-making and adaptive
choice of actions by the following three steps:
(i) The organism estimates the action value,
defined as how much reward value (probability
times volume) an action will yield. (ii) It
selects an action by comparing the action
values of multiple alternatives. (iii) It updates

the action values by the errors of estimated
action values. Reinforcement learning models
of the basal ganglia have been put forward (4–6).
The midbrain dopamine neurons encode errors
of reward expectation (7–9) and motivation (9),
and they regulate the plasticity of the cortico-
striatal synapses (10, 11). Neuronal discharge
rates in the cerebral cortex (12–15) and stri-
atum (16–18) are modulated by rewards that
are estimated by sensory cues and behavioral
responses. These observations are consistent
with action selection through the reinforcement
learning rule (3) and with the notion of
stimulus-response learning (19, 20). However,
two critical questions remain unanswered: Do
the striatal neurons acquire action values in
their activity through learning? How is the
striatal neuron activity involved in reward-
based action selection? Here we show by using
a reward-based, free-choice paradigm that the
striatal neurons learn to encode the action
values through trial-and-error learning and
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predict choice probability of action options
under a reinforcement learning algorithm.

Twomacaquemonkeys performed a reward-
based, free-choice task of turning a handle to the
left or right (Fig. 1A). The monkeys held a
handle in the center position for 1 s (delay
period) with their left hand. Then, they turned
the handle in either the left (a 0 L) or right (a 0
R) direction. A light-emitting diode (LED) on
the turned side was illuminated stochastically
in either green or red. The green and red LEDs
instructed monkeys that either a large reward
(0.2 ml of water) or a small reward (0.07 ml),
respectively, would follow. The probabilities of
a large reward after left and right turns were
fixed during a block of 30 to 150 trials and
varied between five types of trial blocks. In the
B90-50[ block, for example, the probability of
a large reward for the left turn was 90%, and
for the right turn, 50%. In this case, by taking
the small reward as the baseline (r 0 0) and the
large reward as unity (r 0 1), the left action
value QL was 0.9 and the right action value
QR was 0.5. We used four asymmetrically re-
warded blocks, B90-50,[ B50-90,[ B50-10,[ and
B10-50,[ and one symmetrically rewarded
block, B50-50[ (Fig. 1B). An important feature
of this block design was that the neuronal
activity related to the action value could be
dissociated from that related to action choice.
Although the monkeys should prefer the left
turn in both 90-50 and 50-10 blocks, the action
value QL for the left turn changes from 0.9
to 0.5. Conversely, in the 90-50 and 10-50
blocks, although the monkey_s choice behav-
ior should be the opposite, the action valueQR

remains at 0.5.
Figure 1C shows a representative time

course of choices on individual trials and the
left-turn choice probability, PL. Figure 1D
shows the average curves of PL during 2084
blocks of trials by monkey RO. The PL started
at around 0.5 (average of first 10 trials: 0.48

for monkey RO and 0.39 for monkey AR) and
stayed around 0.5 in a symmetrically rewarded
block in both monkeys. In asymmetrically re-
warded blocks, the choice probability gradual-
ly shifted toward the action with higher reward
values (binomial test, P G 0.01 for 50-50 ver-
sus four asymmetrically rewarded blocks). Al-

though the time courses of the PL shifts were
variable among individual blocks, such as
those in Fig. 1C, the average PL at the same
number of trials after the block start were
not significantly different between 90-50 and
50-10 blocks, and between 50-90 and 10-50
blocks (Fig. 1D, P 9 0.05).
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Fig. 1. Reward-based, free-choice task and monkey’s performance. (A) Time
chart of events that occurred during the task. (B) Diagram of large-reward
probabilities for left, P(r k a 0 L), and right handle turn, P(r k a 0 R), in five
types of trial blocks. (C) Representative record of individual choices in the
five blocks of trials. Red and blue vertical lines indicate individual choices of
trials (long line: large-reward trial, short line: small-reward trial, crosses: error
trials with no reward). The light blue trace in the middle indicates the
probability of a left-turn choice (PL, running average of last 10 choices). (D)
Average curves of PL (solid line) and its 95% confidence interval (shaded
band) in five trial blocks in monkey RO. Data of 977, 306, 282, 277, and 242
blocks are shown for 50-50, 10-50, 50-10, 50-90, and 90-50 blocks,
respectively. Color code is the same as in (B).

Fig. 2. Three representative reward-value coding neurons in the striatum. (A) A left–action value
(QL-type) neuron in the anterior striatum. Average discharge rates during 10-50 and 90-50 blocks
(left panel) and during 50-10 and 50-90 blocks (right panel) are shown. (B) Three-dimensional bar
graph of average magnitudes and standard deviation of activity during delay period [shaded period
in (A)]. Floor gradient shows the regression surface of neuronal activity by large-reward prob-
ability after left and right turns. (C and D) A right–action value (QR-type) neuron in anterior
putamen. (E and F) A differential–action value (DQ and m-type) neuron with correlation also to
action choice. The average activity curves in (A), (C), and (E) are smoothed with a Gaussian kernel
(s 0 50 ms). Double and single asterisks indicate significant difference at P G 0.001 and P G 0.01
in Mann-Whitney U test, respectively.
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Bayesian Inference of Action Values
 (Samejima et al. 2004)

n Hidden variables

lx=(Q,a,b,g)
lp(x’|x): learning rule

n Observable variables

ly=(s,a,r)

lp(y|x): action policy

n Predictive prior

lP(xt+1|y1:t) = ∫P(xt+1|xt)P(xt|y1:t)dxt
n Posterior given observation yt+1

lP(xt+1|y1:t+1) µ P(yt+1|xt+1)P(xt+1|y1:t)
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Distinct Neural Representation in the Dorsolateral,
Dorsomedial, and Ventral Parts of the Striatum during
Fixed- and Free-Choice Tasks

Makoto Ito and Kenji Doya
Okinawa Institute of Science and Technology Graduate University, Onna-son Okinawa 904-0412, Japan

The striatum is a major input site of the basal ganglia, which play an essential role in decision making. Previous studies have suggested
that subareas of the striatum have distinct roles: the dorsolateral striatum (DLS) functions in habitual action, the dorsomedial striatum
(DMS) in goal-directed actions, and the ventral striatum (VS) in motivation. To elucidate distinctive functions of subregions of the
striatum in decision making, we systematically investigated information represented by phasically active neurons in DLS, DMS, and VS.
Rats performed two types of choice tasks: fixed- and free-choice tasks. In both tasks, rats were required to perform nose poking to either
the left or right hole after cue-tone presentation. A food pellet was delivered probabilistically depending on the presented cue and the
selected action. The reward probability was fixed in fixed-choice task and varied in a block-wise manner in free-choice task. We found the
following: (1) when rats began the tasks, a majority of VS neurons increased their firing rates and information regarding task type and
state value was most strongly represented in VS; (2) during action selection, information of action and action values was most strongly
represented in DMS; (3) action-command information (action representation before action selection) was stronger in the fixed-choice
task than in the free-choice task in both DLS and DMS; and (4) action-command information was strongest in DLS, particularly when the
same choice was repeated. We propose a hypothesis of hierarchical reinforcement learning in the basal ganglia to coherently explain these
results.

Key words: action value; basal ganglia; decision making; reinforcement learning; state value; striatum

Introduction
The basal ganglia are known to play an essential role in decision
making. The striatum, the major input site of the basal ganglia,
has a dorsolateral-ventromedial gradient in its input modality.
That is, the dorsolateral striatum receives sensorimotor-related
information and the ventromedial region receives associative and
motivational information (Voorn et al., 2004; Samejima and
Doya, 2007). This organization suggests different roles for differ-
ent subareas of the striatum in decision making (Balleine et al.,
2007; Wickens et al., 2007).

Lesion studies suggest that the dorsomedial striatum (DMS)
and the dorsolateral striatum (DLS) contribute differently to
goal-directed actions (DMS), and habitual actions (DLS), respec-

tively (Yin et al., 2004, 2005a, b, Yin et al., 2006; Balleine et al.,
2007; Balleine and O’Doherty, 2010). Lesion and recording stud-
ies of the ventral striatum (VS) suggested its role in motivation in
response to reward-predicting cues (Berridge and Robinson,
1998; Cardinal et al., 2002; Nicola, 2010).

Based on reinforcement learning theory (Watkins and Dayan,
1992; Sutton and Barto, 1998), the actor-critic model hypothe-
sizes that the patch compartment, dominant in VS, realizes the
critic that learns reward prediction in the form of a “state value,”
and the matrix compartment, dominant in the dorsal striatum
(DS), implements the actor that learns action selection (Houk et
al., 1995; Joel et al., 2002). A variant of the hypothesis is that
matrix neurons learn “action values” of candidate actions (Doya,
1999, 2000). Theoretical models also suggested that model-based
action selection, which can realize flexible, goal-directed action
selection (Doya, 1999; Daw et al., 2005, 2011) occurs in the net-
work linking the prefrontal cortex and the striatum.

To further clarify different roles of subregions of the striatum,
however, it is essential to record from DLS, DMS, and VS during
choice behaviors. Many previous recording studies have reported
neural representations of state, action, reward, past action, past
reward, reward expectation, action value, and chosen value
within the striatum, but without systematic differences be-
tween the subregions (Samejima et al., 2005; Pasquereau et al.,
2007; Lau and Glimcher, 2008; Hori et al., 2009; Ito and Doya,
2009; Kim et al., 2009; Kimchi and Laubach, 2009; Kimchi et
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2007; Wickens et al., 2007).

Lesion studies suggest that the dorsomedial striatum (DMS)
and the dorsolateral striatum (DLS) contribute differently to
goal-directed actions (DMS), and habitual actions (DLS), respec-

tively (Yin et al., 2004, 2005a, b, Yin et al., 2006; Balleine et al.,
2007; Balleine and O’Doherty, 2010). Lesion and recording stud-
ies of the ventral striatum (VS) suggested its role in motivation in
response to reward-predicting cues (Berridge and Robinson,
1998; Cardinal et al., 2002; Nicola, 2010).

Based on reinforcement learning theory (Watkins and Dayan,
1992; Sutton and Barto, 1998), the actor-critic model hypothe-
sizes that the patch compartment, dominant in VS, realizes the
critic that learns reward prediction in the form of a “state value,”
and the matrix compartment, dominant in the dorsal striatum
(DS), implements the actor that learns action selection (Houk et
al., 1995; Joel et al., 2002). A variant of the hypothesis is that
matrix neurons learn “action values” of candidate actions (Doya,
1999, 2000). Theoretical models also suggested that model-based
action selection, which can realize flexible, goal-directed action
selection (Doya, 1999; Daw et al., 2005, 2011) occurs in the net-
work linking the prefrontal cortex and the striatum.

To further clarify different roles of subregions of the striatum,
however, it is essential to record from DLS, DMS, and VS during
choice behaviors. Many previous recording studies have reported
neural representations of state, action, reward, past action, past
reward, reward expectation, action value, and chosen value
within the striatum, but without systematic differences be-
tween the subregions (Samejima et al., 2005; Pasquereau et al.,
2007; Lau and Glimcher, 2008; Hori et al., 2009; Ito and Doya,
2009; Kim et al., 2009; Kimchi and Laubach, 2009; Kimchi et
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Distinct Neural Representation in the Dorsolateral,
Dorsomedial, and Ventral Parts of the Striatum during
Fixed- and Free-Choice Tasks

Makoto Ito and Kenji Doya
Okinawa Institute of Science and Technology Graduate University, Onna-son Okinawa 904-0412, Japan

The striatum is a major input site of the basal ganglia, which play an essential role in decision making. Previous studies have suggested
that subareas of the striatum have distinct roles: the dorsolateral striatum (DLS) functions in habitual action, the dorsomedial striatum
(DMS) in goal-directed actions, and the ventral striatum (VS) in motivation. To elucidate distinctive functions of subregions of the
striatum in decision making, we systematically investigated information represented by phasically active neurons in DLS, DMS, and VS.
Rats performed two types of choice tasks: fixed- and free-choice tasks. In both tasks, rats were required to perform nose poking to either
the left or right hole after cue-tone presentation. A food pellet was delivered probabilistically depending on the presented cue and the
selected action. The reward probability was fixed in fixed-choice task and varied in a block-wise manner in free-choice task. We found the
following: (1) when rats began the tasks, a majority of VS neurons increased their firing rates and information regarding task type and
state value was most strongly represented in VS; (2) during action selection, information of action and action values was most strongly
represented in DMS; (3) action-command information (action representation before action selection) was stronger in the fixed-choice
task than in the free-choice task in both DLS and DMS; and (4) action-command information was strongest in DLS, particularly when the
same choice was repeated. We propose a hypothesis of hierarchical reinforcement learning in the basal ganglia to coherently explain these
results.

Key words: action value; basal ganglia; decision making; reinforcement learning; state value; striatum

Introduction
The basal ganglia are known to play an essential role in decision
making. The striatum, the major input site of the basal ganglia,
has a dorsolateral-ventromedial gradient in its input modality.
That is, the dorsolateral striatum receives sensorimotor-related
information and the ventromedial region receives associative and
motivational information (Voorn et al., 2004; Samejima and
Doya, 2007). This organization suggests different roles for differ-
ent subareas of the striatum in decision making (Balleine et al.,
2007; Wickens et al., 2007).

Lesion studies suggest that the dorsomedial striatum (DMS)
and the dorsolateral striatum (DLS) contribute differently to
goal-directed actions (DMS), and habitual actions (DLS), respec-
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2007; Balleine and O’Doherty, 2010). Lesion and recording stud-
ies of the ventral striatum (VS) suggested its role in motivation in
response to reward-predicting cues (Berridge and Robinson,
1998; Cardinal et al., 2002; Nicola, 2010).

Based on reinforcement learning theory (Watkins and Dayan,
1992; Sutton and Barto, 1998), the actor-critic model hypothe-
sizes that the patch compartment, dominant in VS, realizes the
critic that learns reward prediction in the form of a “state value,”
and the matrix compartment, dominant in the dorsal striatum
(DS), implements the actor that learns action selection (Houk et
al., 1995; Joel et al., 2002). A variant of the hypothesis is that
matrix neurons learn “action values” of candidate actions (Doya,
1999, 2000). Theoretical models also suggested that model-based
action selection, which can realize flexible, goal-directed action
selection (Doya, 1999; Daw et al., 2005, 2011) occurs in the net-
work linking the prefrontal cortex and the striatum.

To further clarify different roles of subregions of the striatum,
however, it is essential to record from DLS, DMS, and VS during
choice behaviors. Many previous recording studies have reported
neural representations of state, action, reward, past action, past
reward, reward expectation, action value, and chosen value
within the striatum, but without systematic differences be-
tween the subregions (Samejima et al., 2005; Pasquereau et al.,
2007; Lau and Glimcher, 2008; Hori et al., 2009; Ito and Doya,
2009; Kim et al., 2009; Kimchi and Laubach, 2009; Kimchi et
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Striosome Neurons as Critic?
n Actor-critic (Houk et al., 1995) or state/action value (Doya, 2000)

lDo striosome neurons code state value?

lDo matrix neurons code action or action value?

n Need cell-type specific recording

loptolodes or calcium imaging

trial and it refers to site-specific local stimuli. The animat has to autonomously learn to associate continuous
sensory information with certain values of reward and to select sequences of behaviors that enable it to reach
the goal from any place in the maze. This experiment is more realistic than others used to validate Actor-Critic
models, often characterized by an a priori fixed temporal interval between a stimulus and a reward (e.g., Suri
and Schultz, 1998), by an unchanged reward location over trials (e.g., Strösslin, 2004), or by a discrete state
space (e.g., Baldassarre, 2002).

We will compare, in this task, four different principles inspired by Actor-Critic models trying to tackle the
issues evocated in the first section. The first one is the seminal model proposed by Houk et al. (1995), which
uses one Actor and a single prediction unit (Model AC – one Actor, one Critic), which is supposed to induce
learning in the whole environment. The second principle implements one Actor with several Critics (Model
AMC1 – one Actor, Multiple Critics). The Critics are combined by a mixture of experts where a gating network
is used to decide which expert – which Critic – is used in each region of the environment, depending on its
performance  in  that  region.  The  principle  of  mixture  of  experts  is  inspired  from  several  existing  models
(Jacobs et al., 1991; Baldassarre, 2002; Doya et al., 2002). The third one is inspired by Suri and Schultz (2001)
and uses also one Actor with several Critic experts. However, the decision of which expert should work in each
sub-zone of the environment is independent from the experts’ performances, but rather depends on a partition
of the sensory space perceived by the animat (Model AMC2  – one Actor, Multiple Critics).  The fourth one
(Model  MAMC2  – Multiple  Actors,  Multiple  Critics)  proposes  the  same  principle  as  the  previous  Critic,
combined with several  Actors,  which latter  principle is one of the features  of  Doya  et al.’s  model  (2002),
particularly designed for continuous tasks, and is also a feature of Baldassarre’s model (2002). Here we will
implement these principles in four models using the same design for each Actor component. Their comparison
will  be  made  on  the  learning  speed  and  on  their  ability  to  extend  learning  to  the  whole  experimental
environment.
The last section of the paper will  discuss the results  on the basis of  acquired knowledge in reinforcement
learning tasks in artificial and natural rodents.

Figure 1 Schematic illustration of the correspondence between the modular organization of the basal ganglia including
both striosomes and matrix modules and the Actor-Critic architecture in the model proposed by Houk et al, (1995). F,
columns in the frontal cortex; C, other cortical columns; SPs, spiny neurons striosomal compartments of the striatum;
SPm, spiny neurons in matrix modules; ST, subthalamic sideloop; DA, dopamine neurons in the substantia nigra pars
compacta; PD, pallidal neurons; T, thalamic neurons. (adapted from Houk et al., 1995).
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Questions in Neural Reinforcement Learning
How is TD-like response computed by dopamine neurons?
Why should there be so many pathways?
n direct, indirect, hyperdirect

n striosome, matrix

n dorsal/ventral striatum, amygdala

n SNc and VTA dopamine neurons

 (Gerfen 1992)     (Redgrave et al. 2010)
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structural details place important constraints on the 
computational processing that the basal ganglia can be 
expected to perform.

Intrinsic connections. Although the ‘direct’ and ‘indirect’ 
pathways proposed in the original model remain valid 
(FIG. 1a), it is now recognized that they represent a subset 
of the connections between the basal ganglia nuclei, albeit 
an important one (FIG. 1b10). First, an additional feature of 
the ‘direct’ pathway from the striatum to the output nuclei 
is the branching collateral fibres that terminate sparsely 
in GPe11,12 (FIG. 1b). Second, the exclusive feedforward 
nature of the ‘indirect projection’ from the striatum is no 
longer tenable. The STN is now recognized as a major 
input station of the basal ganglia with external afferents 
from both cortical and subcortical structures13–18 (FIG.1b). 
The GPe projects not only to the STN but also directly to 
the GPi and SNr, and to nigrostriatal dopamine neurons, 
often via a network of branched collaterals19. Although 
the feedforward nature of information processing in the 
basal ganglia is still prominent, clear examples of recip-
rocal connectivity between basal ganglia nuclei are now 
evident between the STN and GPe19–21, and between the 
GPe and the striatum20,22–24 (FIG. 1b).

A widely recognized feature of connections between 
the intrinsic nuclei of the basal ganglia is their high 
degree of spatial topography25–27. Thus, in primates, 
projections from the striatum to the globus pallidus 
and substantia nigra maintain a general arrangement 

throughout the different intrinsic nuclei, whereby the 
posterior putamen is engaged in sensorimotor functions, 
the caudate and anterior putamen in associative func-
tions, and the ventral (limbic) striatum in motivational 
and emotional functions28 (FIG. 2). Accordingly, the direct 
projections between the striatum and the basal ganglia 
output nuclei represent the internal component of the 
general, partially segregated, looped architecture that 
connects the basal ganglia with extrinsic cortical29 and 
subcortical structures30. A further feature with func-
tional importance is that, although they are individually 
different, the internal microcircuits in each of the basal 
ganglia nuclei are, with certain quantitative differences, 
qualitatively similar (in terms of cell types and local  
connections) across the different functional zones of 
each structure (limbic, associative and sensorimotor)31–36. 
Thus, insofar as function is an emergent property of  
connectivity, it is likely that throughout the different 
basal ganglia nuclei, similar input–output computations 
are being applied to widely differing functional signals 
(affective, cognitive and sensorimotor signals).

Extrinsic connections. We now consider the main connec-
tions between the basal ganglia and external structures,  
namely the parallel-projecting, partially segregated re-
entrant loops27,29,30. Most of the functionally segregated 
regions of the cerebral cortex provide topographically 
organized input to the principal input nuclei of the basal 
ganglia14,25,29,35. Cortical regions associated with limbic 
(that is, emotional), associative (that is, cognitive) and 
sensorimotor functions provide topographically ordered 
input extending from ventromedial to dorsolateral zones 
of the striatum — limbic input projects to ventromedial 
zones, sensorimotor input to dorsolateral zones and 
associative input to the region in between ventromedial 
and dorsolateral zones (FIG. 2). These projections are 
the first link in the parallel loop component of corti-
cobasal ganglia architecture27,29. This looped architec-
ture has been shown in anatomical studies of a range of  
species25–27, including humans37–39. 

The re-entrant loops described above were not the 
first evolutionary example of closed-loop architecture 
involving the basal ganglia and external structures30. 
Indeed, there is a phylogenetically older set of closed-
loop subcortical connections between the basal ganglia 
and brainstem sensorimotor structures, which include 
the superior and inferior colliculi40,41, periaqueductal 
grey42, pedunculopontine nucleus43, cuneiform area 
and parabrachial complex40, and various pontine and  
medullary reticular nuclei40.

Finally, the ascending dopaminergic system pro-
vides important modulatory influences on basal ganglia  
processing. The projection from the SNc and the ven-
tral tegmental area targets all intrinsic nuclei of the 
basal ganglia but with preferential concentrations of 
terminals in the dorsal and ventral striatum44 (FIG. 1b). 
The main nigrostriatal projection maintains a general 
medial to lateral topography45. There is also a sparser 
dopamin ergic innervation of both the globus pallidus46 
and STN47. The ascending dopaminergic systems have 
both tonic and phasic patterns of activity48. Tonic firing 

Figure 1 | Organization of intrinsic connections within the basal ganglia. a | Model 
based on the influential proposal by Albin and colleagues3, according to which the output 
of the basal ganglia is determined by the balance between the direct pathway — which 
involves direct striatonigral inhibitory connections that promote behaviour — and the 
indirect pathway — which involves relays in the external globus pallidus (GPe) and 
subthalamic nucleus (STN), and suppresses behaviour. The balance between these two 
projections was thought to be regulated by afferent dopaminergic signals from the 
substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) acting on 
differentially distributed D1 and D2 dopamine receptors. b | Recent anatomical 
investigations have revealed a rather more complex organization in which the 
transformations that are applied to the inputs to generate outputs are less easy to 
predict. GPe, globus pallidus pars externa; GPi, globus pallidus pars interna; SNr, 
substantia nigra pars reticulata. Figure is modified from REF. 10 ¡ P. Redgrave (2007). 
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Figure 1
Diagram of select basal ganglia circuits. (a) The striatum receives excitatory corticostriatal and thalamic
inputs. Outputs of the basal ganglia arise from the internal segment of the globus pallidus (GPi) and
substantia nigra pars reticulata (SNr), which are directed to the thalamus, superior colliculus, and
pendunculopontine nucleus (PPN). The direct pathway originates from Drd1a-expressing spiny projection
neurons (SPNs) that project to the GPi and SNr output nuclei. The indirect pathway originates from
Drd2-expressing SPNs that project only to the external segment of the globus pallidus (GPe), which
together with the subthalamic nucleus (STN) contain transsynaptic circuits connecting to the basal output
nuclei. The direct and indirect pathways provide opponent regulation of the basal ganglia output interface.
(b) Fluorescent imaging of a brain section from a mouse expressing enhanced green fluorescent protein
(eGFP) under regulation of the Drd1a promoter shows Drd1a-expressing SPNs in the striatum that project
axons through the GPe, which terminate in the GPi and GPe. (c) Fluorescent imaging of a Drd2-eGFP
mouse shows that labeled SPNs provide axonal projections that terminate in the GPe but do not extend to
the GPi or SNr.

putamen, and ventral striatum, including
the nucleus accumbens (Figure 1). Essen-
tially, all cortical areas—sensory, motor, and
associational—project to the striatum (Bolam
et al. 2000, Gerfen et al. 2002). The other ma-
jor input to the striatum comes from the thala-
mus, particularly the intralaminar thalamic nu-
clei (Doig et al. 2010, Smith et al. 2004). Both

projections are glutamatergic, forming excita-
tory synaptic connections with SPNs and four
classes of interneuron.

Striatal information flows to the rest of
the basal ganglia through GABAergic SPNs
of the direct and indirect pathways (Gerfen &
Wilson 1996). Direct-pathway SPNs extend
axonal projections to the GABAergic output
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Soft Actor-Critic
(Haarnoja et al. 2018)

n Stable, sample-efficient learning

n Learn state value, action value, and policy in parallel

lobjective

lstate value V

laction value Q

lpolicy p

The partition function Z⇡old(st) normalizes the second KL argument, and while it is intractable in
general, it does not contribute to the gradient with respect to the new policy and can thus be ignored
as noted in the next section. For this choice of projection, we can show that the new, projected policy
has a higher value than the old policy with respect to the objective in Equation 1. We formalize this
result in Lemma 2.
Lemma 2 (Soft Policy Improvement). Let ⇡old 2 ⇧ and let ⇡new be the optimizer of the minimiza-
tion problem defined in Equation 4. Then Q⇡new(st,at) � Q⇡old(st,at) for all (st,at) 2 S ⇥A.

Proof. See Appendix B.2.

The full soft policy iteration algorithm alternates between the soft policy evaluation and the soft pol-
icy improvement steps, and it will provably converge to the optimal maximum entropy policy among
the policies in ⇧ (Theorem 1). Although this algorithm will provably find the optimal solution, we
can perform it in its exact form only in the tabular case. Therefore, we will next approximate the
algorithm for continuous domains, where we need to rely on a function approximator to represent
the Q-values, and running the two steps until convergence would be computationally too expensive.
The approximation gives rise to a new practical algorithm, called soft actor-critic.
Theorem 1 (Soft Policy Iteration). Repeated application of soft policy evaluation and soft policy
improvement to any ⇡ 2 ⇧ converges to a policy ⇡⇤( · |st) such that Q⇡⇤

(st,at) > Q⇡(st,at) for
all ⇡ 2 ⇧, ⇡ 6= ⇡⇤ and for all (st,at) 2 S ⇥A.

Proof. See Appendix B.3.

4.2 SOFT ACTOR-CRITIC

As discussed above, large, continuous domains require us to derive a practical approximation to
soft policy iteration. To that end, we will use function approximators for both the Q-function and
policy, and instead of running evaluation and improvement to convergence, alternate between op-
timizing both networks with stochastic gradient descent. For the remainder of this paper, we will
consider a parameterized state value function V (st), soft Q-function Q✓(st,at), and a tractable
policy ⇡�(at|st). The parameters of these networks are  , ✓, and �. In the following, we will derive
update rules for these parameter vectors.

The state value function approximates the soft value. There is no need in principle to include a
separate function approximator for the state value, since it is related to the Q-function and policy
according to Equation 3. This quantity can be estimated from a single action sample from the current
policy without introducing a bias, but in practice, including a separate function approximator for the
soft value can stabilize training—and as discussed later, can be used as a state-dependent baseline
for learning the policy—and is convenient to train simultaneously with the other networks. The soft
value function is trained to minimize the squared residual error

JV ( ) = Est⇠D


1

2

�
V (st)� Eat⇠⇡� [Q✓(st,at)� log ⇡�(at|st)]

�2
�
, (5)

where D is the distribution of previously sampled states and actions, or a replay buffer. The gradient
of Equation 5 can be estimated with an unbiased estimator

r̂ JV ( ) = r V (st) (V (st)�Q✓(st,at) + log ⇡�(at|st)) , (6)

where the actions are sampled according to the current policy, instead of the replay buffer. The soft
Q-function parameters can be trained to minimize the soft Bellman residual
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which again can be optimized with stochastic unbiased gradients

r̂✓JQ(✓) = r✓Q✓(at, st)
�
Q✓(st,at)� r(st,at)� �V ̄(st+1)

�
. (8)

The update makes use of a target value network V ̄ where  ̄ is an exponentially moving average of
the value network weights, which has been shown to stabilize training (Mnih et al., 2015), although
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The partition function Z⇡old(st) normalizes the second KL argument, and while it is intractable in
general, it does not contribute to the gradient with respect to the new policy and can thus be ignored
as noted in the next section. For this choice of projection, we can show that the new, projected policy
has a higher value than the old policy with respect to the objective in Equation 1. We formalize this
result in Lemma 2.
Lemma 2 (Soft Policy Improvement). Let ⇡old 2 ⇧ and let ⇡new be the optimizer of the minimiza-
tion problem defined in Equation 4. Then Q⇡new(st,at) � Q⇡old(st,at) for all (st,at) 2 S ⇥A.

Proof. See Appendix B.2.

The full soft policy iteration algorithm alternates between the soft policy evaluation and the soft pol-
icy improvement steps, and it will provably converge to the optimal maximum entropy policy among
the policies in ⇧ (Theorem 1). Although this algorithm will provably find the optimal solution, we
can perform it in its exact form only in the tabular case. Therefore, we will next approximate the
algorithm for continuous domains, where we need to rely on a function approximator to represent
the Q-values, and running the two steps until convergence would be computationally too expensive.
The approximation gives rise to a new practical algorithm, called soft actor-critic.
Theorem 1 (Soft Policy Iteration). Repeated application of soft policy evaluation and soft policy
improvement to any ⇡ 2 ⇧ converges to a policy ⇡⇤( · |st) such that Q⇡⇤

(st,at) > Q⇡(st,at) for
all ⇡ 2 ⇧, ⇡ 6= ⇡⇤ and for all (st,at) 2 S ⇥A.

Proof. See Appendix B.3.

4.2 SOFT ACTOR-CRITIC

As discussed above, large, continuous domains require us to derive a practical approximation to
soft policy iteration. To that end, we will use function approximators for both the Q-function and
policy, and instead of running evaluation and improvement to convergence, alternate between op-
timizing both networks with stochastic gradient descent. For the remainder of this paper, we will
consider a parameterized state value function V (st), soft Q-function Q✓(st,at), and a tractable
policy ⇡�(at|st). The parameters of these networks are  , ✓, and �. In the following, we will derive
update rules for these parameter vectors.

The state value function approximates the soft value. There is no need in principle to include a
separate function approximator for the state value, since it is related to the Q-function and policy
according to Equation 3. This quantity can be estimated from a single action sample from the current
policy without introducing a bias, but in practice, including a separate function approximator for the
soft value can stabilize training—and as discussed later, can be used as a state-dependent baseline
for learning the policy—and is convenient to train simultaneously with the other networks. The soft
value function is trained to minimize the squared residual error
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the value network weights, which has been shown to stabilize training (Mnih et al., 2015), although
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we found soft actor-critic to be able to learn robustly also in the absense of a target network. Finally,
the policy parameters can be learned by directly minimizing the KL-divergence in Equation 4, which
we reproduce here in parametrized form for completeness

J⇡(�) = DKL (⇡�( · |st) k exp (Q✓(st, · )� logZ✓(st))) . (9)
There are several options for minimizing J⇡ , depending on the choice of the policy class. For simple
distributions, such as Gaussians, we can use the reparametrization trick, which allows us to back-
propagate the gradient from the critic network and leads to a DDPG-style estimator. However, if the
policy depends on discrete latent variables, such as is the case for mixture models, the reparametriza-
tion trick cannot be used. We therefore propose to use a likelihood ratio gradient estimator:
r�J⇡(�)=Eat⇠⇡� [r� log ⇡�(at|st) (log ⇡�(at|st)+1�Q✓(st,at)+logZ✓(st)+b(st))] , (10)

where b(st) is a state-dependent baseline (Peters & Schaal, 2008). We can approximately center the
learning signal and eliminate the intractable log-partition function by choosing b(st) = V (st) �
logZ✓(st)� 1, which yields the final gradient estimator

r̂�J⇡(�) = r� log ⇡�(at|st) (log ⇡�(at|st)�Q✓(st,at) + V (st)) . (11)

Algorithm 1: Soft Actor-Critic
1 Initialize parameter vectors  ,  ̄, ✓, �.
2 for each iteration do

3 for each environment step do

4 at ⇠ ⇡�(at|st)
5 st+1 ⇠ ps(st+1|st,at)
6 D  D[{(st,at, r(st,at), st+1)} .
7 end

8 for each gradient step do

9    � �V r̂ JV ( )

10 ✓  ✓ � �Qr̂✓JQ(✓)

11 � �� �⇡r̂�J⇡(�)
12  ̄  ⌧ + (1� ⌧) ̄
13 end

14 end

The complete algorithm is described in Algo-
rithm 1. The method alternates between collect-
ing experience from the environment with the
current policy and updating the function approx-
imators using the stochastic gradients on batches
sampled from a replay buffer. In practice we
found a combination of a single environment step
and multiple gradient steps to work best (see Ap-
pendix E). Using off-policy data from a replay
buffer is feasible because both value estimators
and the policy can be trained entirely on off-
policy data. The algorithm is agnostic to the pa-
rameterization of the policy, as long as it can be
evaluated for any arbitrary state-action tuple. We
will next suggest a practical parameterization for
the policy, based on Gaussian mixtures.

4.3 SOFT ACTOR-CRITIC WITH GAUSSIAN MIXTURES

Although we could use a simple policy represented by a Gaussian, as is common in prior work, the
maximum entropy framework aims to maximize the randomness of the learned policy. Therefore, a
more expressive but still tractable distribution can endow our method with more effective exploration
and robustness, which are the typically cited benefits of entropy maximization (Ziebart, 2010). To
that end, we propose a practical multimodal representation based on a mixture of K Gaussians. This
can approximate any distribution to arbitrary precision as K !1, but even for practical numbers of
mixture elements, it can provide a very expressive distribution in medium-dimensional action spaces.
Although the complexity of evaluating or sampling from the resulting distribution scales linearly in
K, our experiments indicates that a relatively small number of mixture components, typically just
two or four, is sufficient to achieve high performance, thus making the algorithm scalable to complex
domains with high-dimensional action spaces.

We define the policy as

⇡�(at|st) =
1

P
i w

�
i

KX

i=1

w�i (st)N
⇣
at;µ

�
i (st),⌃

�
i (st)

⌘
, (12)

where w�i , µ�i , ⌃�i are the unnormalized mixture weights, means, and covariances, respectively,
which all can depend on st in complex ways if expressed as neural networks. We also apply a
squashing function to limit the actions to a bounded interval as explained in Appendix C. Note that,
in contrast to soft Q-learning (Haarnoja et al., 2017), our algorithm does not assume that the policy
can accurately approximate the optimal exponentiated Q-function distribution. The convergence
result for soft policy iteration holds even for policies that are restricted to a policy class, in contrast
to prior methods of this type.

6

a substantially more stable and scalable algorithm that, in practice, exceeds both the efficiency and
final performance of DDPG.

Maximum entropy reinforcement learning optimizes policies to maximize both the expected return
and the expected entropy of the policy. This framework has been used in many contexts, from
inverse reinforcement learning (Ziebart et al., 2008) to optimal control (Todorov, 2008; Toussaint,
2009; Rawlik et al., 2012). In guided policy search (Levine & Koltun, 2013), maximum entropy
distribution is used to guide policy learning towards high-reward regions. More recently, several
papers have noted the connection between Q-learning and policy gradient methods in the framework
of maximum entropy learning (O’Donoghue et al., 2016; Haarnoja et al., 2017; Nachum et al.,
2017a; Schulman et al., 2017). While most of the prior works assume a discrete action space,
Nachum et al. (2017b) approximate the maximum entropy distribution with a Gaussian and Haarnoja
et al. (2017) with a sampling network trained to draw samples from the optimal policy. Although
the soft Q-learning algorithm proposed by Haarnoja et al. (2017) has a value function and actor
network, it is not a true actor-critic algorithm: the Q-function is estimating the optimal Q-function,
and the actor does not directly affect the Q-function except through the data distribution. Hence,
Haarnoja et al. (2017) motivates the actor network as an approximate sampler, rather than the actor
in an actor-critic algorithm. Crucially, the convergence of this method hinges on how well this
sampler approximates the true posterior. In contrast, we prove that our method converges to the
optimal policy from a given policy class, regardless of the policy parameterization. Furthermore,
these previously proposed maximum entropy methods generally do not exceed the performance of
state-of-the-art off-policy algorithms, such as DDPG, when learning from scratch, though they may
have other benefits, such as improved exploration and ease of finetuning. In our experiments, we
demonstrate that our soft actor-critic algorithm does in fact exceed the performance of state-of-the-
art off-policy deep RL methods by a wide margin.

3 PRELIMINARIES

In this section, we introduce notation and summarize the standard and maximum entropy reinforce-
ment learning frameworks.

3.1 NOTATION

We address policy learning in continuous action spaces. To that end, we consider infinite-horizon
Markov decision processes (MDP), defined by the tuple (S,A, ps, r), where the state space S and
the action space A are assumed to be continuous, and the unknown state transition probability ps :
S ⇥ S ⇥A ! [0, 1) represents the probability density of the next state st+1 2 S given the current
state st 2 S and action at 2 A. The environment emits a bounded reward r : S⇥A ! [rmin, rmax]
on each transition, which we will abbreviate as rt , r(st,at) to simplify notation. We will also
use ⇢⇡(st) and ⇢⇡(st,at) to denote the state and state-action marginals of the trajectory distribution
induced by a policy ⇡(at|st).

3.2 MAXIMUM ENTROPY REINFORCEMENT LEARNING

The standard objective used in reinforcement learning is to maximize the expected sum of rewardsP
t E(st,at)⇠⇢⇡

[rt]. We will consider a more general maximum entropy objective (see e.g. (Ziebart,
2010)), which favors stochastic policies by augmenting the objective with the expected entropy of
the policy over ⇢⇡(st):

J(⇡) =
T�1X

t=0

E(st,at)⇠⇢⇡
[r(st,at) + ↵H(⇡( · |st))] . (1)

The temperature parameter ↵ determines the relative importance of the entropy term against the
reward, and thus controls the stochasticity of the optimal policy. The maximum entropy objective
differs from the standard maximum expected reward objective used in conventional reinforcement
learning, though the conventional objective can be recovered in the limit as ↵ ! 0. For the rest
of this paper, we will omit writing the temperature explicitly, as it can always be subsumed into
the reward by scaling it by ↵�1. The maximum entropy objective has a number of conceptual
and practical advantages. First, the policy is incentivized to explore more widely, while giving
up on clearly unpromising avenues. Second, the policy can capture multiple modes of near-optimal
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Model-free and Model-based RL
Model-free RL
n Memorize action values

lQ( state, action)

n Reactive action

lP(a|s) ~ exp[ bQ(s,a)]

n On-line learning by TD error

ld = reward + gQ(s',a') – Q(s,a)

Simple, but slow learning

Model-based RL
n Learn internal models

lP( next state| state, action)

lR( state, action)

n Estimate current state

lP(st|ot,at-1)µP(ot|st)Sst-1P(st|st-1,at-1)P(st-1)

n Predict values

lQ(s,a) = Ss’P(s'|s,a)[R(s,a)+gV(s')]

lV(s)=maxa Ss’P(s'|s,a)[R(s,a)+gV(s’)]

Flexible, but heavy load
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Brain’s process using 

an action-dependent state transition model 
s’=f(s,a) or P(s’|s,a)

n Estimate the present from past state/action

lperception under noise/delay/occlusion

n Predicting the future

lmodel-based decision, action planning

n Imagining in a virtual world

lthinking, language, science,…
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Model-based action planning 
involves cortico-cerebellar and 
basal ganglia networks
Alan S. R. Fermin1,2,3, Takehiko Yoshida1,2, Junichiro Yoshimoto1,2, Makoto Ito2, 
Saori C. Tanaka4 & Kenji Doya1,2,3,4

Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement 
Learning (RL) associates these processes with three major classes of strategies for action selection: 
exploratory RL learns state-action values by exploration, model-based RL uses internal models to 
simulate future states reached by hypothetical actions, and motor-memory RL selects past successful 
state-action mapping. In order to investigate the neural substrates that implement these strategies, 
we conducted a functional magnetic resonance imaging (fMRI) experiment while humans performed a 
sequential action selection task under conditions that promoted the use of a specific RL strategy. The 
ventromedial prefrontal cortex and ventral striatum increased activity in the exploratory condition; 
the dorsolateral prefrontal cortex, dorsomedial striatum, and lateral cerebellum in the model-based 
condition; and the supplementary motor area, putamen, and anterior cerebellum in the motor-memory 
condition. These findings suggest that a distinct prefrontal-basal ganglia and cerebellar network 
implements the model-based RL action selection strategy.

Using exploration and reward feedback, humans and other animals have a remarkable capacity to learn new 
motor behaviors without explicit teaching1. Throughout most of our lives, however, we depend on explicit or 
implicit knowledge, based upon past experiences, such as a map of the area or properties of the musculoskeletal 
system, to enable focused exploration and efficient learning2,3. After repeated practice, a motor behavior becomes 
stereotyped and can be executed with little mental load4. What brain mechanisms enable animals to employ 
different learning strategies and to select or integrate them in a given situation? In this paper, we take a new 
behavioral paradigm that captures different stages of motor learning during a single experimental session5, and 
using fMRI we explore brain structures that are specifically involved in implementing different learning strategies.

The theory of reinforcement learning (RL)6 prescribes three major classes of algorithms for action selection 
and learning: motor-memory, exploratory, and model-based strategies. The motor-memory strategy reinforces 
the sequence of states and actions that led to successful results in past experiences, which is simple, but requires 
many trials before finding an optimal sequence, unless there are clues to minimize exploration. The exploratory 
strategy recursively updates values of states and actions to efficiently utilize experiences resulting from explora-
tory actions, acquired rewards, and state transitions. The model-based strategy employs an internal model that 
enables simulation of the future state reached by a hypothetical action, or multiple actions. Since these strategies 
require different degrees of pre-acquired knowledge and computational loads for real-time execution, it is reason-
able to speculate that humans may utilize them depending on their experience level with a certain context or task.

Computational models of RL and fMRI studies with humans have explored the neural substrates of 
model-based and motor-memory strategies, given their strong resemblance to classical, psychological, dichot-
omous behavior control employing deliberative and automatic processes, respectively. Activity in the dorsolat-
eral prefrontal cortex (DLPFC) has been associated with the use of model-based strategies when an internal 
model of environmental dynamics is available and can be used for forward planning and prediction of an action’s 
future outcomes7,8,9,10. Conversely, activation of the posterior dorsal striatum is observed when actions become 
automatic after extensive practice, and a motor-memory strategy is more likely to control behavior10,11. 

1 ra uate c oo  of Information cience  ara Institute of cience an  ec no o  ara 630 01  apan. Neural 
omputation nit  O inawa Institute of cience an  ec no o   ra uate ni ersit  O inawa 0 0  apan. 

3 rain cience Institute  ama awa ni ersit  o o 1 8610  apan. ATR Brain Information Communication 
esearc  a  oto 61 0 88  apan.  orrespon ence an  re uests for materia s s ou  e a resse  to . . . . 

emai : fermina an mai .com  or .D. emai : o a oist. p

Recei e : 16 e ruar  016

Accepte : 1  u  016

Pu is e : 1  u ust 016

OPEN

1

3 2

1 2 3

+

Condition 1 � Condition 3A Condition 2 � Condition 3B

C D

!"#$%&'(

Condition 1 � Condition 3A Condition 2 � Condition 3B

C D

!"#$%&'(

Condition 1 � Condition 3A Condition 2 � Condition 3B

C D

!"#$%&'(



n PPC two-photon imaging

n Auditory virtual environment

l intermittent sensory input

n Probabilistic population decoding
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A R T I C L E S

Animals have to act despite limited sensory information because of 
factors such as interfering background noise or occluded vision. Thus, 
the ability to estimate the current state of the outside world from a 
sequence of sensory observations and their own actions is essential. 
This process is optimally realized by dynamic Bayesian inference, 
such as a Kalman filter1, which predicts the state with an internal state 
transition model and updates the prediction with new sensory inputs. 
For example, when a mouse navigates in darkness, it must keep track 
of the location of its destination based on both its movement (predic-
tion) and sensory signals such as calls from its nest mate (updating). 
We hypothesized that dynamic Bayesian inference is implemented in 
cerebral neocortex and investigated the plausibility of this idea using 
two-photon microscopy2.

Most areas of the cerebral neocortex receive ascending sensory 
inputs (feedforward streams) and descending inputs (feedback 
streams) from the thalamus and other cortical areas3. Previous stud-
ies have shown that feedback streams are essential for self-motion  
perception, consciousness and attention4,5, suggesting that the neo-
cortex integrates internal state prediction on the basis of its own 
actions and ascending sensory signals. In addition, there have been 
proposals of cortical implementation of Bayesian inference using 
probabilistic population code6. A recent proposal further advocated 
implementation of dynamic Bayesian inference by spiking population 
codes7. In the ‘canonical microcircuit’ of the neocortex3,8, feedforward 
signals project mainly to layer 4 and are then forwarded to layers 
2/3 and 5. Pyramidal neurons in layers 2/3 and 5 receive feedback  
signals from their apical dendrites in layer 1 and feedforward and 
feedback signals merge in these neurons. Feedback signals (for exam-
ple, motor activity) are stronger in deeper layers of sensory corti-
ces9,10. These anatomical connections and their activity lead to the  

hypothesis that dynamic Bayesian inference is implemented in pyram-
idal neurons of layers 2, 3 and 5, with increasing action dependence 
in deeper layers.

To test this hypothesis, we trained mice to perform an auditory 
virtual navigation task and imaged neuronal activity in layers 2, 3 
and 5 of the PPC and the PM located posterior to PPC11–13. The task 
required mice to approach a water reward site (goal) by estimating 
the distance on the basis of sound cues and their own locomotion. 
PPC is involved in spatial navigation by representing route maps, 
head directions, turning locations and locomotory accelerations with 
egocentric and allocentric representations14–17. PPC lesions disrupt 
navigation on the basis of self-motion information (path integra-
tion)18,19. PM also represents egocentric and allocentric reference 
frames20. Both PPC and PM receive inputs from auditory cortex 
and secondary motor cortex (M2)21,22, but PM receives fewer feed-
back projections from M2 than PPC13,23,24. If feedback signals are 
important for internal state prediction based on an animal’s own 
actions, association cortex (PPC) should show a more reliable neu-
ral implementation of dynamic Bayesian inference than the sensory 
cortex (PM).

We found that mice increased anticipatory licking as they 
approached the goal, even when sound cues were omitted, indicating 
that they were performing action-dependent state estimation, and that 
silencing of PPC by muscimol disturbed this behavior. Using proba-
bilistic population decoding, we observed that neurons in all layers 
in PPC, and slightly less in PM, implemented the two fundamental 
features of dynamic Bayesian inference: prediction and updating. 
Population activity predicted the goal distance even without sounds 
(prediction). The uncertainty of prediction decreased with sound 
inputs (updating).

1Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Kunigami, Okinawa, Japan. 2Optical  
Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Kunigami, Okinawa, Japan. Correspondence should be 
addressed to K.D. (doya@oist.jp).
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Neural substrate of dynamic Bayesian inference in the 
cerebral cortex
Akihiro Funamizu1,2, Bernd Kuhn2 & Kenji Doya1

Dynamic Bayesian inference allows a system to infer the environmental state under conditions of limited sensory observation. 
Using a goal-reaching task, we found that posterior parietal cortex (PPC) and adjacent posteromedial cortex (PM) implemented 
the two fundamental features of dynamic Bayesian inference: prediction of hidden states using an internal state transition model 
and updating the prediction with new sensory evidence. We optically imaged the activity of neurons in mouse PPC and PM layers 
2, 3 and 5 in an acoustic virtual-reality system. As mice approached a reward site, anticipatory licking increased even when 
sound cues were intermittently presented; this was disturbed by PPC silencing. Probabilistic population decoding revealed that 
neurons in PPC and PM represented goal distances during sound omission (prediction), particularly in PPC layers 3 and 5, and 
prediction improved with the observation of cue sounds (updating). Our results illustrate how cerebral cortex realizes mental 
simulation using an action-dependent dynamic model. 
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Duality of Inference and Control
n Optimal filtering  (Kalman 1960)

n Bayesian inference: log posterior

n Optimal control  (Bellman et al. 1958)

n Reinforcement learning: state value

(Todorov 2007, 08; Toussaint 2009; Levine 2018)

x(t) = ¦
�

�f 

1t

r
 Φ(t; r + 1)u(r). 

Therefore if t t s we have 

Ex(t)x'(s) = ¦
�

�f 

1s

r
 Φ(t; r + 1)Q(r) Φ'(s; r + 1). 

Thus if we assume a linear dynamic model and know the 
statistical properties of the gaussian random excitation, it is easy 
to find the corresponding statistical properties of the gaussian 
random process {x(t)}.  

In real life, however, the situation is usually reversed. One is 
given the covariance matrix Ex(t)x'(s) (or rather, one attempts to 
estimate the matrix from limited statistical data) and the problem 
is to get (15) and the statistical properties of u(t). This is a subtle 
and presently largely unsolved problem in experimentation and 
data reduction. As in the vast majority of the engineering 
literature on the Wiener problem, we shall find it convenient to 
start with the model (15) and regard the problem of obtaining the 
model itself as a separate question. To be sure, the two problems 
should be optimized jointly if possible; the author is not aware, 
however, of any study of the joint optimization problem.  

In summary, the following assumptions are made about random 
processes:  

Physical random phenomena may be thought of as due to 
primary random sources exciting dynamic systems. The primary 
sources are assumed to be independent gaussian random 
processes with zero mean; the dynamic systems will be linear. The 
random processes are therefore described by models such as (15). 
The question of how the numbers specifying the model are 
obtained from experimental data will not be considered. 
 
Solution of the Wiener problem 

Let us now define the principal problem of the paper. 
Problem I. Consider the dynamic model 

 
x(t + 1) = Φ(t + 1; t)x(t) + u(t)                   (16) 

 
y(t) = M(t)x(t)                                (17) 

 
where u(t) is an independent gaussian random process of n- 
vectors with zero mean, x(t) is an n-vector, y(t) is a p-vector (p d 
n), Φ(t + 1; t), M(t) are n × n, resp. p × n, matrices whose 
elements are nonrandom functions of time.  

Given the observed values of y(t0), ..., y(t) find an estimate 
x*(t1_t) of x(t1) which minimizes the expected loss. (See Fig. 2, 
where ∆(t) = I.)  

This problem includes as a special case the problems of filter- 
ing, prediction, and data smoothing mentioned earlier. It in- 
cludes also the problem of reconstructing all the state variables of 
a linear dynamic system from noisy observations of some of the 
state variables (p < n!).  

From Theorem 2-a we know that the solution of Problem I is 
simply the orthogonal projection of x(t1) on the linear manifold 
_(t) generated by the observed random variables. As remarked in 
the Introduction, this is to be accomplished by means of a linear 
(not necessarily stationary!) dynamic system of the general form 
(14). With this in mind, we proceed as follows.  

Assume that y(t0), ..., y(t – 1) have been measured, i.e., that _(t 
– 1) is known. Next, at time t, the random variable y(t) is 
measured. As before let y~ (t_t – 1) be the component of y(t) 
orthogonal to _(t – 1). If y~ (t_t – 1) { 0, which means that the 
values of all components of this random vector are zero for almost 
every possible event, then _(t) is obviously the same as _(t – 1) 
and therefore the measurement of y(t) does not convey any addi-
tional information. This is not likely to happen in a physically 
meaningful situation. In any case, y~ (t_t – 1) generates a linear 

manifold (possibly 0) which we denote by `(t). By definition, 
_(t – 1) and `(t) taken together are the same manifold as _(t), 
and every vector in `(t) is orthogonal to every vector in _(t – 1).  

Assuming by induction that x*(t1 – 1_t – 1) is known, we can 
write:  

x*(t1_t)    = Ê [x(t1)__(t)] = Ê [x(t1)__(t – 1)] + Ê [x(t1)_`(t)] 
    =  Φ(t + 1; t) x*(t1 – 1_t – 1) + Ê [u(t1 – 1)__(t – 1)] 

+ Ê [x(t1)_`(t)]    (18) 
 
where the last line is obtained using (16).  

Let t1 = t + s, where s is any integer. If s t 0, then u(tl – 1) is 
independent of _(t – 1). This is because u(tl – 1) = u(t + s – 1) is 
then independent of u(t – 2), u(t – 3), ... and therefore by (16–
17), independent of y(t0), ..., y(t – 1), hence independent of _(t – 
1). Since, for all t, u(t0) has zero mean by assumption, it follows 
that u(tl – 1) (s t 0) is orthogonal to _(t – 1). Thus if s t 0, the 
second term on the right-hand side of (18) vanishes; if s < 0, 
considerable complications result in evaluating this term. We 
shall consider only the case tl t t. Furthermore, it will suffice to 
consider in detail only the case tl = t + 1 since the other cases can 
be easily reduced to this one.  

The last term in (18) must be a linear operation on the random 
variable y~ (t _t – 1): 
 

Ê [x(t + 1)_`(t)] = ∆*(t) y~ (t_t – 1)                   (19) 
 
where ∆*(t) is an n × p matrix, and the star refers to “optimal 
filtering”.  

The component of y(t) lying in _(t – 1) is y (t_t – 1) = 
M(t)x*(t_t – 1). Hence 
 
y~ (t_t – 1) = y(t) – y (t_t – 1) = y(t) – M(t)x*(t_t – 1).                (20) 
 
Combining (18-20) (see Fig. 3) we obtain 
 

x*(t + 1_t)  = Φ*(t + 1; t)x*(t_t – 1) + ∆*(t)y(t)           (21) 
 

where 
 

 Φ*(t + 1; t) = Φ(t + 1; t) – ∆*(t)M(t)                  (22) 
 

Thus optimal estimation is performed by a linear dynamic 
system of the same form as (14). The state of the estimator is the 
previous estimate, the input is the last measured value of the 
observable random variable y(t) , the transition matrix is given by 
(22). Notice that physical realization of the optimal filter requires 
only (i) the model of the random process (ii) the operator ∆*(t). 

The estimation error is also governed by a linear dynamic 
system. In fact,  
 
x~ (t + 1_t)  = x(t + 1) – x*(t + 1_t) 
   = Φ(t + 1; t)x(t) + u(t) – Φ*(t + 1; t)x*(t_t – 1) 
  – ∆*(t)M(t)x(t) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3   Matrix block diagram of optimal filter 
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x*(t + s_t) 

y (t_t – 1) y(t) 
x*(t_t – 1) 

x*(t + 1_t) 
¦�'*(t) M(t) 

) (t + 1; t) 

¦�

y~ (t_t – 1) 

 

)(t + s; t + 1)

 unit 
delay 

x*(t + 1_t – 1) 

– I

MODEL      OF       RANDOM       PROCESS 

tool turns out to be the duality theorem mentioned briefly in the 
next section. See [29]. 

(j) By letting the sampling period (equal to one so far) ap- 
proach zero, the method can be used to obtain the specification of 
a differential equation for the optimal filter. To do this, i.e., to 
pass from equation (14) to equation (12), requires computing the 
logarithm F* of the matrix Φ*. But this can be done only if Φ* is 
nonsingular—which is easily seen not to be the case. This is 
because it is sufficient for the optimal filter to have n – p state 
variables, rather than n, as the formalism of equation (22) would 
seem to imply. By appropriate modifications, therefore, equation 
(22) can be reduced to an equivalent set of only n – p equations 
whose transition matrix is nonsingular. Details of this type will be 
covered in later publications. 

(k) The dynamic system (21) is, in general, nonstationary. This 
is due to two things: (1) The time dependence of Φ(t + 1; t) and 
M(t); (2) the fact that the estimation starts at t = t0 and improves as 
more data are accumulated. If Φ, M are constants, it can be shown 
that (21) becomes a stationary dynamic system in the limit t o�f. 
This is the case treated by the classical Wiener theory. 

(l) It is noteworthy that the derivations given are not affected 
by the nonstationarity of the model for x(t) or the finiteness of 
available data. In fact, as far as the author is aware, the only 
explicit recursion relations given before for the growing-memory 
filter are due to Blum [12]. However, his results are much more 
complicated than ours. 

(m) By inspection of Fig. 3 we see that the optimal filter is a 
feedback system, and that the signal after the first summer is 
white noise since y~ (t_t – 1) is obviously an orthogonal random 
process. This corresponds to some well-known results in Wiener 
filtering, see, e.g., Smith [28], Chapter 6, Fig. 6–4. However, this 
is apparently the first rigorous proof that every Wiener filter is 
realizable by means of a feedback system. Moreover, it will be 
shown in another paper that such a filter is always stable, under 
very mild assumptions on the model (16–17). See [29]. 
 
The Dual Problem 

Let us now consider another problem which is conceptually 
very different from optimal estimation, namely, the noise-free 
regulator problem. In the simplest cases, this is: 

Problem II.  Consider the dynamic system 
x(t + 1) = Φ̂ (t + 1; t)x(t) + M̂ (t)u(t)  (33) 

where x(t) is an n-vector, u(t) is an m-vector (m d n), Φ̂ , M̂  are 
n × n resp. n × m matrices whose elements are nonrandom func- 
tions of time. Given any state x(t) at time t, we are to find a 
sequence u(t), ..., u(T) of control vectors which minimizes the 
performance index 

V[x(t)] = ¦
�

 W

1T

t
x'(W)Q(W)x(W) 

Where Q̂ (t) is a positive definite matrix whose elements are 
nonrandom functions of time. See Fig. 2, where ∆ = M̂  and M = I.  

Probabilistic considerations play no part in Problem II; it is 
implicitly assumed that every state variable can be measured 
exactly at each instant t, t + 1, ..., T. It is customary to call T t t 
the terminal time (it may be infinity).  

The first general solution of the noise-free regulator problem is 
due to the author [18]. The main result is that the optimal control 
vectors u*(t) are nonstationary linear functions of x(t). After a 
change in notation, the formulas of the Appendix, Reference [18] 
(see also Reference [23]) are as follows: 

u*(t)  =  – ∆̂ *(t)x(t)  (34)  
Under optimal control as given by (34), the “closed-loop” equa-
tions for the system are (see Fig. 4)  

x(t + 1) = Φ̂ *(t + 1; t)x(t)   
and the minimum performance index at time t is given by   

V*[x(t)] = x'(t)P*(t – 1)x(t)  
The matrices ∆̂ *(t), Φ̂ *(t + 1; t), P̂ *(t) are determined by 

the recursion relations: 
 

 
 
 
 
Initially we must set P̂ *(T) = Q̂ (T + 1).  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4   Matrix block diagram of optimal controller  
Comparing equations (35–37) with (28–30) and Fig. 3 with 

Fig. 4 we notice some interesting things which are expressed 
precisely by 

Theorem 4. (Duality Theorem) Problem I and Problem II are 
duals of each other in the following sense: 

Let W�t 0. Replace every matrix X(t) = X(t0 + W) in (28–30) by 
X̂ '(t) = X̂ '(T – W). Then One has (35–37). Conversely, replace 
every matrix X̂ (T – W) in (35–37) by X'(t0 + W). Then one has 
(28–30). 

Proof. Carry out the substitutions. For ease of reference, the 
dualities between the two problems are given in detail in Table 1.  

Table 1 
                Problem I Problem II 
1 x(t) (unobservable) state 

variables of random proc-
ess. 

x(t) (observable) state varia-
bles of plant to be 
regulated. 

2 y(t) observed random varia-
bles. 

u(t) control variables 

3 t0 first observation. T last control action. 
4 Φ(t0 + W +1; t0 + W) transition 

matrix. Φ̂ (T – W + 1; T – W)    transi- 
 tion matrix. 

5 P*(t0 + W) covariance of 
optimized estimation error.� P̂ *(T – W)  matrix  of  quad- 

ratic form for performance 
index under optimal regu- 
lation. 

6 ∆*(t0 + W) weighting of ob- 
servation for optimal esti- 
mation. 

∆̂ *(T – W)    weighting     of 
 state for optimal control. 

7 Φ*(t0 + W + 1; t0 + W) transi- 
tion matrix for optimal es- 
timation error. 

Φ̂ *(T – W + 1; T – W)  transi- 
tion matrix under optimal 
regulation. 

8 M(t0 + W) effect of state on 
observation. M̂ (T – W)   effect  of  control 

vectors on state. 
9 Q(t0 + W) covariance of ran- 

dom excitation. Q̂ (T – W)        matrix         of  
quadratic form defining 
error criterion. 

 
Remarks.  (n) The mathematical significance of the duality be- 

tween Problem I and Problem II is that both problems reduce to 
the solution of the Wiener-Hopf-like equation (32). 

(o) The physical significance of the duality is intriguing. Why 
are observations and control dual quantities? 
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∆̂ *(t) = M̂[ '(t) P̂ *(t) M̂ (t)]–1 M̂ '(t) P̂ *(t) Φ̂ (t + 1; t)

Φ̂ *(t + 1; t)  = Φ̂ (t + 1; t) – M̂ (t) ∆̂ *(t)  
P̂ *(t – 1)  =  Φ̂ '(t + 1; t) P̂ *(t) Φ̂ *(t + 1; t)  

+ Q̂ (t)

½ 
¾
¿

t d�T 

(35)
 
(36) 
 
 
(37) 

 

x(t + 1) 

x(t) 
¦�M̂ (t) '̂ *(t) 

)̂ (t + 1; t) 

 unit 
delay 

– I 
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u*(t) 

12.4 Linear-Quadratic-Gaussian Control: Riccati Equations 285

Functions V, a satisfying equation (12.25) can obviously be found by initializing
V (tf ) = Qf , a (tf ) = 0 and integrating the ODE (12.25) backward in time.
Thus equation (12.23) is the optimal value function with V, a given by equation
(12.25), and equation (12.24) is the optimal control law (which in this case is
unique).

The first line of equation (12.25) is called a continuous-time Riccati equation.
Note that it does not depend on the noise covariance S. Consequently the
optimal control law given by equation (12.24) is also independent of S. The
only effect of S is on the total cost. As a corollary, the optimal control law
remains the same in the deterministic case – called the linear-quadratic regulator
(LQR).

12.4.2 Derivation via the Bellman Equations

In practice one usually works with discrete-time systems. To obtain an optimal
control law for the discrete-time case one could use an Euler approximation to
equation (12.25), but the resulting equation is missing terms quadratic in the
time step ∆, as we will see below. Instead we apply dynamic programming
directly, and obtain an exact solution to the discrete-time LQR problem. Drop-
ping the (irrelevant) noise and discretizing the problem, we obtain

dynamics: xk+1 = Axk + Buk

cost rate: 1
2u

T
kRuk + 1

2x
T
kQxk

final cost: 1
2x

T
nQfxn

where n = tf/∆ and the correspondence to the continuous-time problem is

xk ← x (k∆) , A ← (I + ∆A) , B ← ∆B, R ← ∆R, Q ← ∆Q (12.26)

The guess for the optimal value function is again quadratic

v (x, k) = 1
2x

TVkx

with boundary condition Vn = Qf . The Bellman equation (12.2) is

1
2x

TVkx = min
u

{
1
2u

TRu + 1
2x

TQx + 1
2 (Ax + Bu)T Vk+1 (Ax + Bu)

}
.

As in the continuous-time case the Hamiltonian can be minimized analytically.
The resulting optimal control law is

u = −
(
R + BTVk+1B

)−1
BTVk+1Ax.

Substituting this u in the Bellman equation, we obtain

Vk = Q + ATVk+1A − ATVk+1B
(
R + BTVk+1B

)−1
BTVk+1A. (12.27)
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covariance given the prior p̂k are easily computed:

E

[
xk+1

yk

]
=

[
Ax̂k

Hx̂k

]
, Cov

[
xk+1

yk

]
=

[
S + AΣkAT AΣkHT

HΣkAT P + HΣkHT

]

Now we need to compute the probability of xk+1 conditional on the new obser-
vation yk. This is done using an important property of multivariate Gaussians
summarized in the following lemma:

Let p and q be jointly Gaussian, with means p and q and covariances
Σpp, Σqq and Σpq = ΣT

qp. Then the conditional distribution of p given q
is Gaussian, with mean and covariance

E [p|q] = p + ΣpqΣ−1
qq (q − q)

Cov [p|q] = Σpp − ΣpqΣ−1
qqΣqp

Applying the lemma to our problem, we see that p̂k+1 is Gaussian with mean

x̂k+1 = Ax̂k + AΣkHT
(
P + HΣkHT

)−1
(yk − Hx̂k) (12.30)

and covariance matrix

Σk+1 = S + AΣkAT − AΣkHT
(
P + HΣkHT

)−1
HΣkAT. (12.31)

This completes the induction proof. Equation (12.31) is a Riccati equation.
Equation (12.30) is usually written as

x̂k+1 = Ax̂k + Kk (yk − Hx̂k)

where Kk = AΣkHT
(
P + HΣkHT

)−1
.

The time-varying matrix Kk is called the filter gain. It does not depend on
the observation sequence and therefore can be computed offline. The quantity
yk − Hx̂k is called the innovation. It is the mismatch between the observed
and the expected measurement. The covariance Σk of the posterior probability
distribution p (xk|yk−1 · · ·y0) is the estimation error covariance. The estimation
error is xk − x̂k.

The above derivation corresponds to the discrete-time Kalman filter. A sim-
ilar result holds in continuous time, and is called the Kalman-Bucy filter. It is
possible to write down the Kalman filter in equivalent forms which have nu-
merical advantages. One such approach is to propagate the matrix square root
of Σ. This is called a square-root filter, and involves Riccati-like equations which
are more stable because the dynamic range of the elements of Σ is reduced.
Another approach is to propagate the inverse covariance Σ−1. This is called
an information filter, and again involves Riccati-like equations. The informa-
tion filter can represent numerically very large covariances (and even infinite
covariances – which are useful for specifying "noninformative" priors).

!!"# !! !!$#

"!"# "! "!$#

#!"# #! #!$#

$!"# $! $!$#

"!"# "! "!$#

#!"# #! #!$#



(2021)

computed by subtracting the state value from the action
value, so that action may be selected in layer 5 or 6 and
sent to lower cortical and subcortical areas. Note that the
above is just one hypothetical realization and many other
mappings of different roles to neurons and connections
are conceivable.

There are many interesting open questions about the
cortical implementation of the dual computations for
Bayesian inference and optimal control. First, how the
backward computation is realized in real time? In the
visual cortex, evidence suggests that the alpha rhythm
around 10 Hz carries top-down feedback information [33]

and underlies multi-modal sensory arbitration [34]. In the
motor cortex, the beta rhythm around 20 Hz shows
responses before execution or during imagination of
movements [35,36]. These might be the correlates of
periodic execution of backward computation.

Another important question is how the state transition
model pðstþ1jst ; atÞ and the sensory observation model
pðot jstÞ are learned, together with the internal representa-
tions of state s and action a. The roles of the cerebellar and
the basal ganglia inputs through the thalamus to the
motor cortex in learning is also an interesting question
[37,38].

Canonical circuits for inference and control Doya 165

Table 3

Correspondences of dynamic Bayesian inference and optimal control, and their possible implementation in the canonical
cortical circuit

Inference Cortex Control

Top-down signal zt L1 input Top-down activation signal
Bottom-up signal pðotjstÞ L2/3 output Action value Qðs; aÞ
Predictive model pðst jst$1Þ L2/3 connection Predictive model pðstþ1jst; atÞ

Bottom-up signal ot L4 input Optimality signal Ot

Likelihood pðot jsÞ L4 output Reward function rðs; aÞ
Posterior pðstjo1; . . . ; otÞ L5 output State value VðsÞ

Top-down signal st L6 output Action pðat jstÞ

Figure 3

Current Opinion in Behavioral Sciences 

Canonical cortical circuits in sensory and motor cortices and a hypothetical realization of dynamic Bayesian inference and optimal control. (a)
Possible realization of dynamic Bayesian inference in the sensory cortex. (b) Possible realization of optimal control in the motor cortex.
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Prism Lens Imaging during Lever Pull Task
 Yuzhe Li, Sergey Zobnin
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Figure 4. Simplified schematics of the neural recordings during the experiment. The 
mouse controls the lever and receives tactile feedback from it (black arrows). This tactile 
signal is combined with the top-down action-dependent prior (red arrow) within sensory areas 
to infer sensory variables. To investigate this computation, we will implant a prism 
endoscope with the diameter 1 mm to image GCaMP labeled neurons in a vertical plane 
across all cortical layers simultaneously. During the task, we will modify the tactile feedback 
from the active lever and, optionally, axonal projections from motor to sensory areas by 
optogenetics. 

2.2. Subproject 1. Identifying the neural populations involved in the tactile-dependent 
behavioral experiment 

I will train mice to push or pull the lever depending on the tactile stimuli. The reward 
will be provided upon correct task performance. During the task I will be recording neuronal 
activity from all the cortical layers in somatosensory cortex simultaneously. For imaging the 
neural activity, I will inject recombinant adeno-associated virus vector to express calcium 
indicator protein GCaMP into the cortex. To investigate implementation of the inference 
about environmental variables, I am going to target the primary somatosensory cortex S1. S2 
cortical area was shown to contain more information about decision-making and motor output 
(Kwon et al. 2016). Before implanting the endoscopic lenses, I will verify the area encoding 
task-related variables by imaging intrinsic signal of blood oxygenation or calcium activity in 
the superficial layers through the skull. 

I will look into the correlations between activity in different layers and the task-
related variables. The task-related variables include the sensory stimulus produced by the 
lever, the motor commands reflected in the behavior, and the animal’s expectations about 



Light/Heavy Lever Pull Task
 Sergey Zobnin, Naohiro Yamauchi
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Expected and Actual Trial Type Coding
superficial

deep

Encoding analysis

n More deep neurons code 

expected trial type before action

n More superficial neurons code 

actual trial type after action

HE-HT LE-HT HE-LT LE-LT

Figure 2. Tuning of the superficial (top) and deep (bottom) cells to lever-pulling task.
Each horizontal bar across all panels corresponds to the same cell, all of which are sorted by
the peak time within HE-HT trials (heavy expected - heavy actual trial). One example mouse
is shown; the neurons of all mice and all layers roughly maintained their tuning to the
lever-pulling task.

Figure 3. Layer-specific neuronal response to the lever-pulling task. Averaged activity
traces across all neurons are shown. Superficial cells (GREEN) were more active than deep
cells (BLUE) after pull initiation. In addition, superficial cells were less active before pull
initiation when expecting heavy trial.
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lever-pulling task.

Figure 3. Layer-specific neuronal response to the lever-pulling task. Averaged activity
traces across all neurons are shown. Superficial cells (GREEN) were more active than deep
cells (BLUE) after pull initiation. In addition, superficial cells were less active before pull
initiation when expecting heavy trial.

Expected trial type Actual trial type

Figure 4. The size of task-variable encoding ensembles during lever-pulling task. The
proportion of cells per layer responding to the expected (left) and the actual trial type (right)
are shown. Green- superficial layers, blue- deep layers. Each cell trace was split into 0.5 s
periods that were checked for the influence from expected and actual trial type (two-way
ANOVA, p<0.05). Superficial cells had an increased response to the actual trial type after
pull initiation with the largest number at around 1.25 s, while deep cells did not. There were
more deep cells tuned to expected than actual trial type and their number increased after
pull initiation. Superficial cells also responded to the expected trial type.



Population Decoding
At different time points Peak amplitude after pull

n Better decoding of expected 

trial type from deep neurons

Figure 5. Decoders’ performances at predicting expected and actual trial type.
Deep decoders performed best after pull initiation while predicting the expected trial type
better than the actual trial type (see red colors extending to smaller ensembles). Superficial
cells predicted expected type better than actual trial type.

Figure 6. Predicting expected and actual trial types with layer-specific models.
Per ensemble size, the after-pull peak amplitude of the deep neurons predicted expected
trial better than actual trial and predicted it better than did superficial layers. Green-
superficial layers, blue- deep layers.
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cells predicted expected type better than actual trial type.

Figure 6. Predicting expected and actual trial types with layer-specific models.
Per ensemble size, the after-pull peak amplitude of the deep neurons predicted expected
trial better than actual trial and predicted it better than did superficial layers. Green-
superficial layers, blue- deep layers.



Question:

How can models and policies in separate brain areas be activated and 
connected as needed?

n fMRI study assumes that brain areas that perform required 

computations for given task are activated.

n But we don’t know why that can be made possible!



Learning to Stand Up
(Morimoto & Doya, 2001)

n Learning from reward and punishment

lreward: height of the head

lpunishment: bump on the floor



Hierarchical Reinforcement Learning
n Upper level: reward: task goal

l state: joint angles, center of mass
l action: desired postures

n Lower level: reward: achieving a subgoal
l state: joint/pitch angles, angular velocity
l action: motor torque

(Morimoto & Doya, 2001)

38 J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51

Markov decision problems (POMDPs) [26], and for
improving learning speed [3,10].

Many hierarchical RL methods use coarse and fine
grain quantization of the state space. However, in a
high-dimensional state space, even the coarsest quan-
tization into two bins in each dimension would create
a prohibitive number of states. Thus, in designing a
hierarchical RL architecture in high-dimensional
space, it is essential to reduce the dimensions of the
state space [16].

In this study, we propose a hierarchical RL archi-
tecture in which the upper-level learner globally ex-
plores sequences of sub-goals in a low-dimensional
state space, while the lower-level learners optimize lo-
cal trajectories in the high-dimensional state space.

As a concrete example, we consider a “stand-up”
task for a two-joint, three-link robot (see Fig. 1). The
goal of the task is to find a path in a high-dimensional
state space that links a lying state to an upright state
under the constraints of the system dynamics. The
robot is a non-holonomic system, as there is no actua-
tor linking the robot to the ground, and thus trajectory
planning is non-trivial. The geometry of the robot is
such that there is no static solution; the robot has to
stand up dynamically by utilizing the momentum of
its body.

This paper is organized as follows. In Section 2,
we explain the proposed hierarchical RL method. In
Section 3, we show simulation results of the stand-up
task using the proposed method and compare the per-
formance with non-hierarchical RL. In Section 4, we
describe our real robot and system configuration and
show results of the stand-up task with a real robot us-
ing the proposed method. In Section 5, we discuss the
difference between our method and previous methods

Fig. 1. Robot configuration. θ0: pitch angle, θ1: hip joint angle,
θ2: knee joint angle, θm: the angle of the line from the center of
mass to the center of the foot.

in terms of hierarchical RL, RL using real robots, and
the stand-up task. Finally, we conclude this paper in
Section 6.

2. Hierarchical reinforcement learning

In this section, we propose a hierarchical RL ar-
chitecture for non-linear control problems. The ba-
sic idea is to decompose a non-linear problem in
a high-dimensional state space into two levels: a
non-linear problem in a lower-dimensional space and
nearly-linear problems in the high-dimensional space
(see Fig. 2).

2.1. Task decomposition by sub-goals

In the upper level, the learner deals with the entire
task. The reward for the upper-level learner is given
by the achievement of the entire task. In the lower
level, each learner deals with a sub-task. The reward
for the lower-level learner is given by the achieve-
ment of a given sub-goal. An action of the upper-level
learner is the selection of the next sub-goal for the
lower level. An action of the lower-level learner is the
command for the actuators. The upper-level learner
is activated when the lower-level learner achieves the
current sub-goal. Then, the upper-level learner takes a
new action, which is given as a new sub-goal for the
lower-level learner. The state variables in the lower

Fig. 2. Hierarchical reinforcement learning architecture.



How to Select/Connect Right Modules?
Computational principles

lprediction error (Wolpert & Kawato, 1998)

lBellman error (Sugimoto et al., 2012)

luncertainty (Daw et al., 2005)

lmodular infomax?

Biophysical mechanisms
lbasal ganglia/thalamus (Eliasmith et al. 2012)

laffordance competition (Cisek, 2007)

ldendritic disinhibition (Wang & Yang, 2018)

lrhythm/coherence?

MOSAIC for Multiple-Reward Environments 581

Figure 1: Schematic diagram of MOSAIC-MR. Reward modules (top left) pre-
dict the immediate reward (r̂i), and forward modules (bottom left) predict the
local dynamics of environment ( ˆ̇x j). Reward and forward modules decompose
a complex environment into subenvironments on the basis of prediction errors
(r − r̂i) and (ẋ − ˆ̇x j), respectively. RL modules (displayed at right) output action
(uk) appropriate for each subenvironment. The learning and control of each
RL module are weighted based on TD error (δk), that is, on how well each RL
controller predicts the expected discounted future rewards.

modules is performed on the basis of the prediction errors of the reward
and the dynamics, respectively. The RL module, which receives the reward
and dynamics predictions (r̂(t), ˆ̇x(t)) and the weights of each module in
the decomposition (λr

i (t), λ
f
j (t) defined later) from the reward and forward

modules, approximates a local value function and selects an action that
maximizes the local value function. Finally, MOSAIC-MR determines an
action appropriate for the current status of the environment on the basis of
each RL module’s TD error, as described below.

In the following sections, we explain how selection and learning are
performed in the reward, forward, and RL modules in that order. For sim-
plicity, we denote them by r, f, and c and index them by i = 1, . . . , Mr, and
j = 1, . . . , M f and k = 1, . . . , Mc.

2.1 Reward Module. Each reward module consists of a reward model
that predicts local reward function r and responsibility signal estimator
λr

i (t). We assumed that the reward signal at each time step can be predicted
by a mixture of local reward functions. The responsibility signal, which

Other gating mechanisms
The current short review focuses on input gating by a
disinhibitory motif. There are alternative and/or comple-
mentary, gating mechanisms in the brain (Figure 4). One
possibility is that excitatory-inhibitory synaptic balance
prevents input from entering a cortical area thus must be
broken to enable ‘gate in’ [56]; another is that synchrony
is required whereas asynchronous inputs are ‘gated out’
[57–59]. In contrast to input gating, a different scenario
involves output gating. In a recent paper [60!], the authors
conducted an anatomical analysis in the mice prelimbic
cortex focusing on chandelier cells which selectively
target the initial segment of axons of pyramidal cells
where action potentials are generated. They found that
a subset of chandelier cells specifically target pyramidal
cells projecting to amygdala while avoiding pyramidal
cells projecting to the contralateral side of the same
cortical area. Furthermore, these chandelier cells receive
differential inputs from the two populations of excitatory
neurons, therefore can be selectively activated, which
would lead to suppression of output from the prelimbic
area to one downstream area but not another. Such an
output gating mechanism would require not only

different groups of chandelier cells dedicated to different
output pathways, but also that principal neurons dedi-
cated to different projection pathways are largely non-
overlapping. With the advance of cell-type specific con-
nectivity analysis, new information is expected in the
coming years that will support or disapprove such output
gating proposal.

In addition to input-gating and output-gating, it is con-
ceivable that recurrent dynamics within a local circuit can
selectively process information from one pathway but not
the other. This was proposed in a study combining
computational modeling and neurophysiology, in which
monkeys were trained to make a decision based on either
color or direction of a colored visual motion stimulus [61].
In each behavioral trial, the relevant feature, color or
direction, is indicated by a rule cue. The authors’ analysis
suggested that the rule cue input yields a ‘selection
vector’ to guide time integration of the relevant feature
but not the irrelevant one in a recurrent network. Yang
et al. [26!!] showed that the same task can be accom-
plished with moderate input gating by the disinhibitory
motif mechanism. In principle, recurrent network

80 Neurobiology of behavior

Figure 4
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Current Opinion in Neurobiology

Various mechanisms for information gating in the brain. Input gating can be achieved by dendrite-targeting interneurons that selectively control
inputs to pyramidal dendrites. In the synchronous gating mechanism, communication between two areas depends on the degree of temporal
synchrony of neural activity between the source and target areas. Recurrent gating mechanism involves selective integration of inputs based on
context-dependent dynamics of the network. Output gating is instantiated with perisoma-targeting interneurons that specifically inhibit pyramidal
neurons projecting to one pathway but not others. Gating may also involve subcortical structures, especially basal ganglia and thalamus.

Current Opinion in Neurobiology 2018, 49:75–83 www.sciencedirect.com



Reinforcement Learning
n Predict reward: value function

lV(s) = E[ r(t) + gr(t+1) + g2r(t+2)…| s(t)=s]

lQ(s,a) = E[ r(t) + gr(t+1) + g2r(t+2)…| s(t)=s, a(t)=a]

n Select action

lgreedy: a = argmax Q(s,a)

lBoltzmann: P(a|s) µ exp[ b Q(s,a)]

n Update prediction: temporal difference (TD) error
ld(t) = r(t) + gV(s(t+1)) - V(s(t))

lDV(s(t)) = a d(t)

lDQ(s(t),a(t)) = a d(t)

How to implement these steps?

How to tune these parameters?



Temporal Discount Factor g
n Large g

lreach for far reward

n Small g
lonly to near reward



Temporal Discount Factor g
n V(t) = E[ r(t) + gr(t+1) + g2r(t+2) + g3r(t+3) +…]

lcontrols the ‘character’ of an agent
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can’t resist temptation

no pain, no gain!

stay away from danger

better stay idle

V =18.7 

V = -22.9

V =-25.1 

V = 47.3

Depression?

Impulsivity?

Serotonin?



Neuromodulators for Metalearning
 (Doya, 2002)

nMetaparameter tuning is criMcal in RL

l How does the brain tune them?

Dopamine: TD error d

Acetylcholine: learning rate a

Noradrenaline: exploration b

Serotonin: temporal discount g



Chemical Measurement/Control
 (Kayoko Miyazaki et al., 2011, 2012)

Microdialysis measurement

nSerotonin release increased in 

delayed reward task

Serotonin neuron blockade
l5HT1A agonist in dorsal 

raphe

n Waiting error increased in 

long-delayed reward trials

2 
m
m



Dorsal Raphe Neuron Recording
 (Miyazaki et al. 2011 JNS)

n Keep firing while waiMng

n Stop firing before giving up
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Optogenetic Stimulation of Serotonin Neurons
(Miyazaki et al., 2014, Current Biology)

n Reward Delay Task (3, 6, 9, ∞ sec)

l3 sec: success

lomission: 12.1 s

lomission: 20.8 s



n Serotonin stimulation facilitates waiting when...

lreward delivery is certain lreward Mming is uncertain
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Recent experiments have shown that optogenetic activation of serotonin neurons in the

dorsal raphe nucleus (DRN) in mice enhances patience in waiting for future rewards. Here,

we show that serotonin effect in promoting waiting is maximized by both high probability and

high timing uncertainty of reward. Optogenetic activation of serotonergic neurons prolongs

waiting time in no-reward trials in a task with 75% food reward probability, but not with 50 or

25% reward probabilities. Serotonin effect in promoting waiting increases when the timing of

reward presentation becomes unpredictable. To coherently explain the experimental data, we

propose a Bayesian decision model of waiting that assumes that serotonin neuron activation

increases the prior probability or subjective confidence of reward delivery. The present data

and modeling point to the possibility of a generalized role of serotonin in resolving trade-offs,
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Bayesian Waiting Decision Model
n Mice have internal model of reward timing

lkeep guessing if it is a rewarded trial

n Likelihood of reward drops

lhigher prior sustains posterior

ltiming uncertainty makes

long-tailed likelihood

n Serotonin signal reward prior?

laverage reward response

(Cohen et al., 2015)



Effect of Timing Uncertainty
n 5-HT stimulation causes longer waiting when reward timing is more 

uncertain.

n Bayesian model replicates the effect by assuming that 5-HT enhances 

prior probability of reward.

 data model

respectively). The remainder of differences were not significant
(Supplementary Table 2). Subsequently, we tested variability of
waiting time ratio among mice. We compared the obtained mixed
model with the model including a fixed effect of reward-delay
condition, but not a random effect of MI. To evaluate likelihood
ratio of two models, we generated 1000 new samples of waiting
time ratios by means of a parametric bootstrap method. The
variability of waiting time ratio among mice was not significant
(P= 0.602).

The waiting time ratio in the D6 test was not significantly
different from the waiting time ratio in the 75% one-pellet test
with a 3 s delay in experiment 1 (D3 test) (P= 1.00, post hoc
Bonferroni correction) (Fig. 6e). The waiting time ratio in the
D10 test (1.11 ± 0.01, n= 34 tests) was not significantly different
from the waiting time ratios in the D6 test of experiment 2 (P=
1.00, post hoc Bonferroni correction) and in the D3 test of
experiment 1 (P= 1.00, post hoc Bonferroni correction) (Fig. 6e).
These results show that timing uncertainty, but not the longest
waiting time for future rewards, is critical for enhancing
serotonin’s effect at increasing waiting times.

Bayesian decision model of waiting. Can these effects of ser-
otonin on waiting, depending on the RP and timing uncertainty,
be explained in a coherent way? Here we consider the possibility
that serotonin signals the prior probability of reward delivery in a
Bayesian model of repeated decisions to wait or to quit. In this
model, the subject has an internal model of the timing of reward
delivery and infers whether the current trial is a reward trial or a
no-reward trial. As time goes by without a reward delivery, the
likelihood of its being a reward trial diminishes (Fig. 7a, top
panel). The posterior probability of a reward follows the same
time course scaled by the prior probability for a reward trial
(Fig. 7a, middle panel). The expected reward for waiting goes
down accordingly and the subject quits waiting as the expected
reward for waiting becomes close to that for quitting (zero). The
distribution of the time of quitting shifts later as the prior
probability of a reward trial increases (Fig. 7a, bottom panel).

If we assume that dorsal raphe serotonin neuron stimulation
causes an increase in the estimate of the prior probability when
the RP is high, the effect on the waiting time distribution with
different RPs (Fig. 2) can be reproduced (Fig. 7b). As the
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Fig. 5 Optogenetic activation of DRN serotonin neurons enhances waiting for temporally uncertain rewards. a Distribution of waiting time during omission
trials in the D6 test. b Distribution of waiting time during omission trials in the D4-6-8 test. c Distribution of waiting time during omission trials in the D2-
6-10 test. d Distribution of waiting time during omission trials in the D10 test. Orange circles illustrate the timing and number of food pellets presented in
rewarded trials. White circles denote omission trials
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depending on the RP and timing uncertainty are difficult to
explain in terms of a simple temporal discounting paradigm.

Thus, we considered a Bayesian model in which serotonin
neuron stimulation affects the prior probability for the present
trial to be a reward trial. Our simulation results (Fig. 7) repro-
duced the critical features of the shifts in waiting time distribution

depending on RP and timing uncertainty. The present model is
based on several arbitrary assumptions, namely, the internal
model of reward timing distribution is Gaussian while the
experimental setting is multi-modal, serotonin neuron stimula-
tion causes overestimation of RP especially when the RP is high,
and the choice of some free parameters. Nevertheless, this model
is consistent with the effect of serotonin on emotional bias toward
positive outcomes33 and a recent report that serotonergic neuron
activity keeps track of average reward rate26, and further points to
the possibility of a generalized role of serotonin in arbitrating the
trade-off between (negative) sensory evidence and (positive)
subjective belief.

Selective serotonin reuptake inhibitors (SSRIs) are widely used
to treat psychiatric disorders, especially depression, by increasing
the serotonergic tone in the whole brain34,35. However, remission
rate is 36.8% for citalopram treatment alone36. Psychological
treatment, such as cognitive behavioral therapy combined with
antidepressant therapy, is associated with a higher improvement
rate than drug treatment alone37. Our finding that activation of
serotonin neurons alone is not enough and that it requires a
subject’s confidence in a positive outcome (i.e., high probability
for a future reward) to promote a goal-directed behavior, may
explain the combined effect of SSRI treatment and cognitive
therapies, which often removes patients’ negative biases in future
outcomes. The effect of cognitive behavioral therapy is gradual,
such that subjects cannot predict a specific time till recovery. Our
results in experiment 2 suggest that augmentation of serotonergic
tone by SSRI treatment is most effective for enhancing patience
for a gradual recovery, and could prevent patients from dropping
out. Therefore, SSRI treatment and cognitive behavioral therapy
may produce mutually positive effects to realize synergistic
therapy.

A recent study showed that inactivation of the orbitofrontal
cortex (OFC) disrupts waiting-based confidence reports without
affecting decision accuracy38. Previous recording studies have
also revealed that OFC neurons encode predictions of reward
outcomes39,40. Optogenetic serotonin activation modulates
reward anticipatory responses of OFC neurons41. These results
suggest that the OFC may produce causal signals for waiting with
serotonin neural activation42. Optogenetic stimulation of the
terminal sites to which DRN serotonin neurons project will
clarify the sites where serotonin contributes to enhance
patience43. Recent rabies virus tracing strategies have yielded a

Fig. 7 A Bayesian decision making model for waiting reproduces features of
effects of reward probability and timing uncertainty on promotion of
patience by serotonin. a Top panel: the model assumes that the subject has
a probabilistic model of reward delivery timing (magenta line), which is
assumed to be Gaussian with μ= 3 s and σ= 2 s in this example. As the
time passes without reward delivery, the likelihood of a reward trial
diminishes according to the cumulative density function (green line). Middle
panel: the posterior probability for a reward trial goes down along with the
likelihood, but persists longer if the prior probability for a reward trial is
higher. Bottom panel: the timing of quitting is shifted later with a higher prior
probability (Methods). b We assume that dorsal raphe serotonin neuron
stimulation causes an overestimation of the prior probability when the
reward probability is higher (p′= p+ p2− p3 in this example). The yellow
and blue lines show the time of quitting without and with increased prior
probability, respectively. The effect of serotonin neuron stimulation is largest
with a reward probability p= 0.75 (top panel; μ= 3 s and σ= 2 s). c With a
larger uncertainty σ of reward timing, the waiting time distribution shifts
later and the effect of serotonin neuron stimulation (increase of prior
probability from 0.75 to 0.95 in this example) increases. A shift in the
average reward timing (bottom panel; μ= 10 s and σ= 3 s) does not cause a
large increase in waiting time with serotonin neuron stimulation
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Serotonin for Model-based RL?
 Masakazu Taira

Two-step task for mice (Akam et al. 2020)

n Tph2-ArchT mice

n Hybrid model
!!"# " = $$%!&' " + $&(!&( "



What Should We Further Learn from the Brain?

Energy Efficiency

Data Efficiency
lWorld Models and Mental Simulation

lModularity and Compositionality

lMeta-learning

Autonomy and Sociality



Cyber Rodent Project (Doya & Uchibe, 2005)

What is the origin of rewards?

Robots with same constraint as biological agents

n Self-preservation

lcapture batteries

n Self-reproduction

lexchange programs

 through IR ports



Learning to Survive and Reproduce
n Catch battery packs

lsurvival

n Copy ‘genes’ by IR ports
lreproduction, evolution

(Doya & Uchibe, 2005)



Robots

Virtual agents
15-25

Population

w1, w2, …, wn

Genes

Embodied Evolu,on    (Elfwing et al., 2011)

Weights for top layer NN

Weights shaping rewards

Meta-parameters

v1, v2, …, vn

αγλτkτ 0

13

(a)

(b)

Figure 1. Two physical robots with six energy sources and the neural network controller.

(a) The Cyber Rodent robots used in the experiments were equipped infrared communication for the
exchange of genotypes and cameras for visual detection of energy sources (blue), tail-lamps of other
robots (green), and faces of other robots (red). (b) The control architecture consisted of a linear
artificial neural network. The output of the network was the weighted sum (

P
i wixi) of the five

network inputs (xi) and the five evolutionarily tuned neural network weights (wi). In each time step, if
the output was less or equal to zero then the foraging module was selected, otherwise the mating
module was selected. The basic behaviors were learned from by reinforcement learning with the aid of
evolutionarily tuned additional reward signals and meta-parameters. The foraging module learned a
foraging behavior for capturing energy sources. The mating module learned both a mating behavior for
the exchange of genotypes, when a face of another robot was visible, and a waiting behavior, when no
face was visible.



Evolution of Shaping Rewards
n Vision of battery n Vision of face

(Elfwing et al., 2011)



Evolution of Meta-Parameters
n Learning rate a
n ExploraMon temperature t

n Temporal discount factor g
n Eligibility trace decay factor l
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Polymorphism within Colony
 (Elfwing et al. 2014)

n Foragers and Trackers n Evolutional stability

14
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p < 0.0001

Figure 2. The Correlation between the average mating learning performance and the

average fitness in the final 20 generations in all experiments. The learning performance was
estimated as the number of time steps the mating behavior was selected divided with number of mating
events. The seven types of markers indicate the number of energy sources in the environment for each
simulation.

(a) (b)

Figure 3. Example trajectories of the learned behaviors for the roamer strategy and the

stayer strategy. (a) The roamer ignores the tail-lamp of the mating partner and executes the learned
foraging behavior to capture the energy source. (b) The stayer executes the learned waiting behavior
and adjusts its position according to the trajectory of the mating partner.
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Figure 4. Difference in genotype, phenotype, and behavior between the roamer (green)

and stayer (red) subpopulations for all individuals (1600) in the final 20 generations. (a)
The distribution of values of the bias weights (x1) and the face distance weights (x5). (b) The
histogram of average waiting threshold values, Ēm. (c) The mean percentages of the lifetimes, with
standard deviation, the individuals spent executing the three basic behaviors.
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Figure 5. Average number of number of mating events, average proportion of mating

events with stayer mating partners, average energy level at the mating events, and average

fitness, as functions of the stayer proportion in the population, for the roamer (green solid

lines with circles) and stayer (red solid lines with circles) subpopulations. (a) The dotted
lines show the best linear fit for the two subpopulations and the black line shows average values for the
population as a whole. (b) The dotted lines show the best linear fit for the two subpopulations and the
black line shows average ratio of the number of roamer mating events to the number of stayer mating
events. (c) The dotted lines show the constant approximations as the average values over all phenotype
proportions. (d) The dotted lines show the estimated fitness values using Equations 6 and 8.
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Smartphone Robot Project
n Motor control

n Survival

n Reproduction

lLearning models of world and others

lMeta-learning

lEvolution of rewards and curiosity

l…



Evolution of Primary Rewards
 Yuji Kanagawa

Reproduction Model
lage t
lenergy e

n Birth rate b(e)

n Death rate h(t,e)

Evolution of Reward Function

Learning by Proximal Policy Optimization (PPO; Schulman et al. 2017)



Computational Correlates of “Curiosity”
n Model-free

lsupplementary reward: rint(s,a)
lshaping reward:  rsh(st) = gΦ st −Φ st–1
loptimistic initial value: Q0(s,a)
lhigh temperature t: P(a|s) ∝ exp[ Q(s,a)/t]

n Model-based
llearning internal models: P(o|s), P(s’|s,a), P(r|s,a)
lclarifying the present: P(st) ∝ P(ot|st)P(st|st–1,at–1)

lsimulating the future: P(st+1|st,a) …multiple steps
lfinding optimal policy: p*(a|s)



Evolving Intrinsic Rewards
 Tojo Rakotoari>na

How to model/implement curiosity?
(Oudeyer & Kaplan 2008; Sing et al. 2010; Aubret et al. 2023)

n Novelty … memory

lvisit count

l–log p(s)

n Surprise … prediction

lprediction error

l–log p(s’|s, a)

n Empowerment … control

l I(s’; a) = H(s’) – H(s’|a)

(Klybin et al. 2005)

rintrinsic = rnovelty + rsurprise + rempowerment



Inverse Reinforcement Learning
To estimate reward function from observed (optimal) 
behaviors

lstate value function is estimated at the same time

Environmental 
model

reward (cost)

value function optimal policy

forward RL
inverse RL



Inverse RL by Density Ratio Estimation
 (Uchibe & Doya, 2014, 2021)

n Based on KL control (Todorov 2009)

lapplicable to deep neural networks (Uchibe 2016)



Danger of Autonomous AI?
AI agents can be creative!
n Find new goals and try them out

n Create novel science, technology, culture, industry..

Needs assessment and control of dangers
n Runaway

n Side effect

n Exploitation by individuals/groups with ambition/hatred



Learning from the Human Society
n Humans are the most dangerous species on earth

Democracy: never give unlimited power to a person/group
n Politics

lelection

lterm limit

lseparation of powers

n Economy

lantitrust law

lright to strike

n Science

lpeer review

Peer reviewing among open-sourced, explainable AI agents



Social Value, Prefrontal Cortex and Amygdala
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B R I E F  COM M U N I C AT I O N S

Individual social value orientation1 determines behavior in economic 
games and many real-life situations2. Prosocials are defined as those 
who like to maximize the sum of resources for the self and the other, 
while simultaneously minimizing the difference between the two. 
By contrast, individualists like to maximize resources for the self, 
while competitors like to maximize the difference between the two. 
The question we address here is whether prosocial attitudes depend 
upon deliberate top-down control of selfish 
impulses3 or on automatic inequity aversion4, 
and what their neural substrates are. In the 
former case, we would expect prosocial atti-
tudes to be associated with greater prefrontal 
activity3, whereas the insula5,6 or amygdala7,8 
would be involved in the latter case.

We used a behavioral task to identify peo-
ple with different social value orientations. 
Subjects were paired and had to choose for 
themselves and their partner an option among 
three different patterns of money distribution 
(Fig. 1a), each designated as prosocial, indi-
vidualistic or competitive1. (See Appendix 1 
in Supplementary Methods.) We assigned 
subjects to a category if they made at least six 
consistent decisions out of eight. Informed con-
sent was obtained from all the subjects, and the 
protocol was approved by the ethics committees 
of the Advanced Telecommunications Research 
Institute and Tamagawa University.

Twenty-five prosocials and fourteen  
individualists proceeded to the imaging 
experiment (Fig. 1b and Supplementary 

Methods). In the magnetic resonance imaging (MRI) scanner, the 
subjects were presented with a pair of rewards for the self and the 
other. They were asked to evaluate the desirability of the reward pair 
on four different levels (least preferable (1) to most preferable (4)) 
by a button press.

Each subject’s evaluation was linearly regressed with the reward for 
the subject (Rs), the reward for the other (Ro) and the absolute value 
of their difference (Da) as implicated in the theory of social value 
orientation1, yielding coefficients WRs, WRo and WD, respectively 
(Supplementary Fig. 1). The two groups differed markedly in their 
response to the absolute reward difference, WD (t34 = 6.68, P < 
0.00001; Fig. 1c). The prosocials disliked large absolute differences 
in distributions (inequity aversion), whereas the individualists were 
unaffected by such differences. In contrast, individualists preferred 
higher self rewards (WRs; t34 = 6.54, P < 0.00001; Fig. 1c), but were 
indifferent to other rewards (WRo; Fig. 1c).

To identify the neural substrates corresponding to these behavio-
ral differences, we conducted a regression analysis of functional MRI 
(fMRI) data at the time of reward pair presentation with three explana-
tory variables: the reward for the subject (Rs), the reward for the other 
(Ro) and the absolute value of their difference (Da) using statistical 
parameter mapping9 (Supplementary Methods) and looked for brain 
structures whose activity distinguished between prosocials and indi-
vidualists (see Supplementary Tables 1 (Da) and 2 (Rs and Ro)).

Activity in the amygdala elicited 
by unfair divisions predicts 
social value orientation
Masahiko Haruno1,2 & Christopher D Frith3,4

‘Social value orientation’ characterizes individual differences 
in anchoring attitudes toward the division of resources. Here, 
by contrasting people with prosocial and individualistic 
orientations using functional magnetic resonance imaging, we 
demonstrate that degree of inequity aversion in prosocials is 
predictable from amygdala activity and unaffected by cognitive 
load. This result suggests that automatic emotional processing 
in the amygdala lies at the core of prosocial value orientation.

1Advanced Telecommunication Research Institute Computational Neuroscience Laboratories, Kyoto, Japan. 2Tamagawa University Brain Science Institute, Tokyo, 
Japan. 3Wellcome Trust Centre for Neuroimaging, University College London, London, UK. 4Center for Functionally Integrative Neuroscience, University of Aarhus, 
Åarhus, Denmark. Correspondence should be addressed to M.H. (mharuno@lab.tamagawa.ac.jp).
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Figure 1 Task design and behavior. (a) Triple-dominance measure task. Subjects chose one of three 
alternatives: prosocial (1), individualistic (2) and competitive (3) distributions of money between the 
self and the unknown other. 90 yen y $1. (b) Reward pair evaluation task. (c) Comparison of model’s 
three regression coefficients (WD, WR s and WRo for the absolute value or difference, the self reward and 
the other reward, respectively) between prosocials and individualists. Error bars, s.d. over subjects.
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Individual social value orientation1 determines behavior in economic 
games and many real-life situations2. Prosocials are defined as those 
who like to maximize the sum of resources for the self and the other, 
while simultaneously minimizing the difference between the two. 
By contrast, individualists like to maximize resources for the self, 
while competitors like to maximize the difference between the two. 
The question we address here is whether prosocial attitudes depend 
upon deliberate top-down control of selfish 
impulses3 or on automatic inequity aversion4, 
and what their neural substrates are. In the 
former case, we would expect prosocial atti-
tudes to be associated with greater prefrontal 
activity3, whereas the insula5,6 or amygdala7,8 
would be involved in the latter case.

We used a behavioral task to identify peo-
ple with different social value orientations. 
Subjects were paired and had to choose for 
themselves and their partner an option among 
three different patterns of money distribution 
(Fig. 1a), each designated as prosocial, indi-
vidualistic or competitive1. (See Appendix 1 
in Supplementary Methods.) We assigned 
subjects to a category if they made at least six 
consistent decisions out of eight. Informed con-
sent was obtained from all the subjects, and the 
protocol was approved by the ethics committees 
of the Advanced Telecommunications Research 
Institute and Tamagawa University.

Twenty-five prosocials and fourteen  
individualists proceeded to the imaging 
experiment (Fig. 1b and Supplementary 

Methods). In the magnetic resonance imaging (MRI) scanner, the 
subjects were presented with a pair of rewards for the self and the 
other. They were asked to evaluate the desirability of the reward pair 
on four different levels (least preferable (1) to most preferable (4)) 
by a button press.

Each subject’s evaluation was linearly regressed with the reward for 
the subject (Rs), the reward for the other (Ro) and the absolute value 
of their difference (Da) as implicated in the theory of social value 
orientation1, yielding coefficients WRs, WRo and WD, respectively 
(Supplementary Fig. 1). The two groups differed markedly in their 
response to the absolute reward difference, WD (t34 = 6.68, P < 
0.00001; Fig. 1c). The prosocials disliked large absolute differences 
in distributions (inequity aversion), whereas the individualists were 
unaffected by such differences. In contrast, individualists preferred 
higher self rewards (WRs; t34 = 6.54, P < 0.00001; Fig. 1c), but were 
indifferent to other rewards (WRo; Fig. 1c).

To identify the neural substrates corresponding to these behavio-
ral differences, we conducted a regression analysis of functional MRI 
(fMRI) data at the time of reward pair presentation with three explana-
tory variables: the reward for the subject (Rs), the reward for the other 
(Ro) and the absolute value of their difference (Da) using statistical 
parameter mapping9 (Supplementary Methods) and looked for brain 
structures whose activity distinguished between prosocials and indi-
vidualists (see Supplementary Tables 1 (Da) and 2 (Rs and Ro)).

Activity in the amygdala elicited 
by unfair divisions predicts 
social value orientation
Masahiko Haruno1,2 & Christopher D Frith3,4

‘Social value orientation’ characterizes individual differences 
in anchoring attitudes toward the division of resources. Here, 
by contrasting people with prosocial and individualistic 
orientations using functional magnetic resonance imaging, we 
demonstrate that degree of inequity aversion in prosocials is 
predictable from amygdala activity and unaffected by cognitive 
load. This result suggests that automatic emotional processing 
in the amygdala lies at the core of prosocial value orientation.
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Figure 1 Task design and behavior. (a) Triple-dominance measure task. Subjects chose one of three 
alternatives: prosocial (1), individualistic (2) and competitive (3) distributions of money between the 
self and the unknown other. 90 yen y $1. (b) Reward pair evaluation task. (c) Comparison of model’s 
three regression coefficients (WD, WR s and WRo for the absolute value or difference, the self reward and 
the other reward, respectively) between prosocials and individualists. Error bars, s.d. over subjects.
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Individual social value orientation1 determines behavior in economic 
games and many real-life situations2. Prosocials are defined as those 
who like to maximize the sum of resources for the self and the other, 
while simultaneously minimizing the difference between the two. 
By contrast, individualists like to maximize resources for the self, 
while competitors like to maximize the difference between the two. 
The question we address here is whether prosocial attitudes depend 
upon deliberate top-down control of selfish 
impulses3 or on automatic inequity aversion4, 
and what their neural substrates are. In the 
former case, we would expect prosocial atti-
tudes to be associated with greater prefrontal 
activity3, whereas the insula5,6 or amygdala7,8 
would be involved in the latter case.

We used a behavioral task to identify peo-
ple with different social value orientations. 
Subjects were paired and had to choose for 
themselves and their partner an option among 
three different patterns of money distribution 
(Fig. 1a), each designated as prosocial, indi-
vidualistic or competitive1. (See Appendix 1 
in Supplementary Methods.) We assigned 
subjects to a category if they made at least six 
consistent decisions out of eight. Informed con-
sent was obtained from all the subjects, and the 
protocol was approved by the ethics committees 
of the Advanced Telecommunications Research 
Institute and Tamagawa University.

Twenty-five prosocials and fourteen  
individualists proceeded to the imaging 
experiment (Fig. 1b and Supplementary 

Methods). In the magnetic resonance imaging (MRI) scanner, the 
subjects were presented with a pair of rewards for the self and the 
other. They were asked to evaluate the desirability of the reward pair 
on four different levels (least preferable (1) to most preferable (4)) 
by a button press.

Each subject’s evaluation was linearly regressed with the reward for 
the subject (Rs), the reward for the other (Ro) and the absolute value 
of their difference (Da) as implicated in the theory of social value 
orientation1, yielding coefficients WRs, WRo and WD, respectively 
(Supplementary Fig. 1). The two groups differed markedly in their 
response to the absolute reward difference, WD (t34 = 6.68, P < 
0.00001; Fig. 1c). The prosocials disliked large absolute differences 
in distributions (inequity aversion), whereas the individualists were 
unaffected by such differences. In contrast, individualists preferred 
higher self rewards (WRs; t34 = 6.54, P < 0.00001; Fig. 1c), but were 
indifferent to other rewards (WRo; Fig. 1c).

To identify the neural substrates corresponding to these behavio-
ral differences, we conducted a regression analysis of functional MRI 
(fMRI) data at the time of reward pair presentation with three explana-
tory variables: the reward for the subject (Rs), the reward for the other 
(Ro) and the absolute value of their difference (Da) using statistical 
parameter mapping9 (Supplementary Methods) and looked for brain 
structures whose activity distinguished between prosocials and indi-
vidualists (see Supplementary Tables 1 (Da) and 2 (Rs and Ro)).

Activity in the amygdala elicited 
by unfair divisions predicts 
social value orientation
Masahiko Haruno1,2 & Christopher D Frith3,4

‘Social value orientation’ characterizes individual differences 
in anchoring attitudes toward the division of resources. Here, 
by contrasting people with prosocial and individualistic 
orientations using functional magnetic resonance imaging, we 
demonstrate that degree of inequity aversion in prosocials is 
predictable from amygdala activity and unaffected by cognitive 
load. This result suggests that automatic emotional processing 
in the amygdala lies at the core of prosocial value orientation.
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Figure 1 Task design and behavior. (a) Triple-dominance measure task. Subjects chose one of three 
alternatives: prosocial (1), individualistic (2) and competitive (3) distributions of money between the 
self and the unknown other. 90 yen y $1. (b) Reward pair evaluation task. (c) Comparison of model’s 
three regression coefficients (WD, WR s and WRo for the absolute value or difference, the self reward and 
the other reward, respectively) between prosocials and individualists. Error bars, s.d. over subjects.
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The dorsal amygdala10 was the only area where the groups differed in 
the correlation of activity with the absolute value of reward difference Da 
(Fig. 2a, P < 0.001; uncorrected). This activity was positively correlated 
with Da in prosocials but slightly negatively correlated in individualists. 
The amygdala activity increased only in prosocials when the absolute 
value of reward difference Da was large (Fig. 2b, significantly positive 5 s 
after the reward pair onset (P < 0.01); and Fig. 2c). The same effect was 
seen in the left amygdala with weaker significance (P < 0.005, uncor-
rected; Supplementary Fig. 2). In addition, the activity in the amygdala 
predicted individual differences in how much each person disliked the 
imbalance of reward (Da). We found a negative correlation in prosocials 
(P = 0.029) but not in individualists (P = 0.69; Fig. 2c).

Several other brain structures, including the insula, anterior cingu-
late cortex, striatum and dorsolateral prefrontal cortex, also showed 
activity correlated with the absolute value of reward difference Da, but 
this effect was largely driven by trials on which the reward for the other 
Ro was larger than the reward for the subject Rs and did not distin-
guish between prosocials and individualists (Supplementary Table 1 
and Supplementary Figs. 3–7). Previous studies have implicated these 
regions in various aspects of decision making11–13 and, more particu-
larly, as responsive to offers that the subject considers to be unfair5,6. It 
is possible that the lack of impact of social value orientation on activity 
in these regions arises because they are involved with more deliberate, 
top-down appraisals of outcomes that are unfair to the self 3.

Because inequity aversion in the prosocials was associated with activ-
ity in amygdala and not prefrontal cortex, we hypothesized that this 
reflected a rapid intuitive response rather than deliberation. To test 
this hypothesis, we conducted a further behavioral experiment of the 
reward pair evaluation task in which we measured speed of response 
and applied a cognitive load to prevent the use of deliberative proc-
esses14 (Supplementary Fig. 8 and Supplementary Methods).

Twenty-four prosocials and eight individualists were instructed to 
evaluate the reward pair and press a corresponding button as soon as 
possible. They were also required to memorize a five-digit number 
sequence before the presentation of each reward pair, and their mem-
ory was probed after each evaluation. A high-load, random number 
sequence was contrasted with a low-load, fixed number sequence 
(01234). There were no differences between the groups in their per-
formance of the memory tasks (Supplementary Fig. 9). As in the 
imaging study, the prosocials showed inequity aversion, whereas the 
individualists did not (F1,30 = 12.98, P = 0.0006). However, there was  
no effect of cognitive load on inequity aversion for the prosocials  
(t23 = 0.08; P = 0.94). In contrast, the individualists became slightly 
more competitive under cognitive load, showing greater dislike 
of higher reward to the other (paired t-test; t7 = 1.94, P < 0.05; 
Supplementary Fig. 10). Evaluation times were also unaffected by 
cognitive load (Supplementary Fig. 10).

These results suggest that prosocial value orientation is driven by an 
intuitive aversion for the iniquitable division of resources. Our find-
ings highlight an important role for automatic intuitive processing in 
social interaction, in addition to the slow strategic processes that were 
the focus of previous studies5–7,15 using interactive games.

Note: Supplementary information is available on the Nature Neuroscience website.
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Figure 2 Difference between prosocials and individualists in the correlation 
of brain activity with the absolute value of reward difference Da. (a) Coronal 
section of the right amygdala, where the two groups showed a significant 
difference in correlation with the absolute value of reward difference 
Da (Montreal Neurological Institute coordinates 20, –2, –12). (b) BOLD 
signal increase at the amygdala peak during 12 trials with the largest Da 
values (solid line) and 12 trials with the smallest Da values (dotted line) for 
prosocials and individualists. Time 0 specifies the presentation of reward pair. 
Error bars, s.e. over subjects. (c) Left: beta values of each prosocial (gray) and 
individualist (black) in correlation with Da. Right: correlation of each subject’s 
beta value and WD (the subject’s dislike of Da) (gray, prosocials; black, 
individualists). t-test for a regression coefficient significantly different from 0.
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Representation of economic 
preferences in the structure and 
function of the amygdala and 
prefrontal cortex
Alan S. R. Fermin1, Masamichi Sakagami1, Toko Kiyonari2, Yang Li1, Yoshie Matsumoto1 & 
Toshio Yamagishi3

Social value orientations (SVOs) are economic preferences for the distribution of resources – prosocial 
individuals are more cooperative and egalitarian than are proselfs. Despite the social and economic 
implications of SVOs, no systematic studies have examined their neural correlates. We investigated the 
amygdala and dorsolateral prefrontal cortex (DLPFC) structures and functions in prosocials and proselfs 
by functional magnetic resonance imaging and evaluated cooperative behavior in the Prisoner’s 
Dilemma game. We found for the first time that amygdala volume was larger in prosocials and positively 
correlated with cooperation, while DLPFC volume was larger in proselfs and negatively correlated 
with cooperation. Proselfs’ decisions were marked by strong DLPFC and weak amygdala activity, and 
prosocials’ decisions were marked by strong amygdala activity, with the DLPFC signal increasing only in 
defection. Our findings suggest that proselfs’ decisions are controlled by DLPFC-mediated deliberative 
processes, while prosocials’ decisions are initially guided by automatic amygdala processes.

In everyday life, humans experience social dilemmas regarding whether to follow social norms and cooperate 
with others at some personal cost or behave selfishly and maximize their own welfare. Social and economic stud-
ies have demonstrated that economic decisions are considerably influenced by individual differences in social 
value orientation (SVO)1–6, a social preference where individuals are classified as either prosocials or proselfs 
based on weights they assign to the distribution of resources between oneself and others2–5. Prosocials prefer a 
distribution of resources in which they and their partners jointly earn the most. In contrast, proselfs prefer the 
distribution that gives themselves the highest earnings, regardless of the partner’s payoff. SVO is consistently 
related to behavior in economic games3,6 and relates to self-sacrifice in real-life social relations7 as well as dona-
tion to charity8. Despite the strong implications of SVO on society, it has not yet been established whether these 
decisional dispositions have distinct structural and functional representations in the brain.

A wealth of behavioral evidence demonstrates that humans use distinct decision-making strategies for self-
ish and prosocial behaviors. Normative prosocial behaviors such as fairness, cooperation, spontaneous giving, 
and helping are increased by a number of factors that reduce deliberation, including the seriousness of social 
decisions9, cognitive load10, priming intuition11, and time pressure12,13. In addition, prosocial decisions occur 
significantly more quickly than selfish ones do12,13, while subjects make more selfish choices when a time delay is 
available for deliberation12,14. These findings suggest that humans may have an initial automatic impulse to behave 
prosocially that is sometimes overridden by deliberative processes necessary to implement selfish decisions.

Neuroscience studies support the existence of distinct neural networks for automatic and deliberative decision 
strategies in humans and animals15,16. Of special interest are the dorsolateral prefrontal cortex (DLPFC) and the 
amygdala. The role of the DLPFC has been demonstrated in the control of deliberative behaviors such as strategic 
decision-making17, inference, and reasoning18,19. On the other hand, the amygdala has been implicated in the con-
trol of automatic behaviors such as the expression of innate responses20, the acquisition of conditioned reactions 
to biologically significant stimuli21, and has recently been implicated in automatic social decision processes22–24.
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prosocials’ decisions were marked by strong amygdala activity, with the DLPFC signal increasing only in 
defection. Our findings suggest that proselfs’ decisions are controlled by DLPFC-mediated deliberative 
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decisional dispositions have distinct structural and functional representations in the brain.
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significantly more quickly than selfish ones do12,13, while subjects make more selfish choices when a time delay is 
available for deliberation12,14. These findings suggest that humans may have an initial automatic impulse to behave 
prosocially that is sometimes overridden by deliberative processes necessary to implement selfish decisions.

Neuroscience studies support the existence of distinct neural networks for automatic and deliberative decision 
strategies in humans and animals15,16. Of special interest are the dorsolateral prefrontal cortex (DLPFC) and the 
amygdala. The role of the DLPFC has been demonstrated in the control of deliberative behaviors such as strategic 
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The amygdala and DLPFC show SVO-dependent activity. We investigated whether the amygdala 
and DLPFC showed differential SVO-dependent activity. We hypothesized that proselfs’ decisions (which are self-
ish) are controlled by deliberative processes implemented in the DLPFC, and that prosocials’ decisions (which are 
predominantly cooperative and egalitarian) are controlled by automatic processes implemented in the amygdala. 
To test this hypothesis we used the voxel clusters in the left amygdala and left DLPFC, which showed positive and 
negative correlations, respectively, with cooperation rate in the VBM analysis. The activity in the right amygdala 
and right DLPFC was estimated after creating mask images by reversing the sign of the x-coordinate of the left 
amygdala and left DLPFC.

Our analysis focused on the 4–6-s delay between the display of stake size and the start of the response period. 
First, we examined differences in BOLD signal between prosocials and proselfs, regardless of choice type. 
The analysis found a significantly higher BOLD signal in proselfs compared to prosocials in the left DLPFC 
(F(1,31) =  57.5, P <  0.0001) and right DLPFC (F(1,31) =  29, P <  0.0001) (Fig. 4a). In contrast, the BOLD signal in the 
amygdala was stronger in prosocials compared to proselfs in both the left (F(1,31) =  45.48, P <  0.0001) and right 
(F(1,31) =  15.52, P =  0.0004) hemispheres (Fig. 4a).

Next, we analyzed the activity in the amygdala and DLPFC during the delay-period separated by choice type 
and SVO. This analysis revealed no significant differences between defection and cooperation choices among 
proselfs in the activity of the left (F(1,33) =  0.97, P =  0.33) or right DLPFC (F(1,33) =  0.16, P =  0.69) (Fig. 4b), or 
in the left (F(1,33) =  0.02, P =  0.89) or right amygdala (F(1,33) =  0.2, P =  0.65) (Fig. 4b). In prosocials, however, we 
found significantly higher activity in the left and right DLPFC (F(1,23) =  4.34, P =  0.048; F(1,23) =  4.54, P =  0.044, 
respectively) for defection compared to cooperation trials (Fig. 4b). No significant differences between defection 

Figure 3. Correlation between amygdala and dorsolateral prefrontal cortex (DLPFC) gray matter volumes 
with social value orientation (SVO) and cooperative behavior in the Prisoner’s Dilemma game. (a) Left 
amygdala volume was significantly larger in prosocials than it was in proselfs (positive correlation with SVO, 
66 voxels, x =  − 17, y =  − 9, z =  − 12, t =  2.61, P <  0.05 family-wise error (FWE) corrected) and (b,c) positively 
correlated with cooperation rate (81 voxels, x =  − 24, y =  0, z =  − 21, t =  2.57, P <  0.05 FWE corrected).  
(d) Right DLPFC volume was significantly larger in proselfs than it was in prosocials (negative correlation with 
SVO, 118 voxels, x =  29, y =  41, z =  30, t =  3.28, P <  0.05 FWE corrected), and (e,f) negatively correlated with 
cooperation rate (65 voxels, x =  − 30, y =  48, z =  33, t =  2.77, P <  0.05 FWE corrected). In (c,f), the regression 
line was computed for the whole sample; the red and blue dots represent individual data points of prosocials and 
proselfs, respectively. For visualization purposes, panels (a–d) and the voxel clusters are displayed at P <  0.001, 
uncorrected.
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We hypothesize that the DLPFC and amygdala are candidate regions underlying the respective deliberative 
and automatic processes of social decisions, and that their contributions depend on individual differences in 
SVO. More specifically, because DLPFC functions and selfish decisions have been associated with deliberation, 
and proselfs are predominantly selfish decision-makers, our hypothesis is that proselfs recruit DLPFC-mediated 
deliberative functions more than prosocials do. Conversely, because amygdala functions and prosocial behaviors 
have been associated with automaticity, and prosocials are predominantly cooperative, we hypothesize that proso-
cials recruit amygdala-mediated automatic functions more than proselfs do.

In order to test these hypotheses and identify differences in brain structure and function between proso-
cials and proselfs, we conducted voxel-based morphometry (VBM) and functional magnetic resonance imaging 
(fMRI) analyses on human subjects, and examined the relationship between these data with SVO and cooperative 
behavior in a sequential one-shot Prisoner’s Dilemma game (PDG; Fig. 1). In the sequential PDG used in this 
study, the subject was always the first player to make a choice, which was observed and followed by the partner’s 
decision. In the PDG, the players have the choice to either cooperate or defect, and their payoffs depend on the 
combination of their choices. Unilateral defection results in the highest payoff for the defector and nothing for the 
cooperator, while the payoff for mutual cooperation is higher than that for mutual defection. The PDG is a relia-
ble experimental paradigm to study the conflict between the selfish choice to defect to maximize one’s own gain 
and the prosocial choice to cooperate and run the risk of being exploited by others. The rational choice for both 
players is to defect because, regardless of the partner’s choice, defection maximizes one’s own payoff. However, if 
individuals have predispositions to behave in a selfish or cooperative manner, then significant differences should 
be expected in choice behavior, with proselfs defecting more than prosocials.

Figure 1. Experimental design and task diagram. (a) Stake size used in the sequential one-shot Prisoner’s 
Dilemma game and reconstructed payoff matrices. The payoff matrices themselves were not shown to subjects. 
(b) Player 2 preprogrammed the conditional choice probability based on the preceding choice of Player 1. 
(c) Task events. Following the inter-trial interval (ITI), each trial started with the random selection of an 
anonymous partner for the role of Player 2. The subject inside the fMRI scanner played the role of Player 1 
and was the first to make a choice. Following the indication of whose turn it was to make a choice, a pseudo-
randomly chosen stake size was displayed for 4–6 s. The subject was allowed to make a button press only during 
the response period (~12 s) indicated by a go signal (circle displayed around the buttons). A choice made within 
the response period highlighted the chosen button, while failing to make a choice displayed a failure message, 
although subjects were still requested to press a button. Player 1’s choice was observed and followed by the 
choice of Player 2. Both players had the choice to either Provide (G, cooperate) and transfer to the partner the 
whole stake, which was doubled in value, or Not Provide (N, defect) and keep the original stake value. Feedback, 
displayed at the end of every trial, showed the earned payoff by each player.
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a b s t r a c t

Advances in artificial intelligence (AI) and brain science are going to have a huge impact on society.
While technologies based on those advances can provide enormous social benefits, adoption of new
technologies poses various risks. This article first reviews the co-evolution of AI and brain science
and the benefits of brain-inspired AI in sustainability, healthcare, and scientific discoveries. We then
consider possible risks from those technologies, including intentional abuse, autonomous weapons,
cognitive enhancement by brain–computer interfaces, insidious effects of social media, inequity, and
enfeeblement. We also discuss practical ways to bring ethical principles into practice. One proposal is to
stop giving explicit goals to AI agents and to enable them to keep learning human preferences. Another
is to learn from democratic mechanisms that evolved in human society to avoid over-consolidation
of power. Finally, we emphasize the importance of open discussions not only by experts, but also
including a diverse array of lay opinions.
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1. Introduction

Artificial intelligence (AI) has made remarkable progress in the
last several years. Computers can now see, listen, and drive a
car, in some cases as well as humans, or even better. Machine
translation is no longer an embarrassment. Much of today’s AI is
based on deep learning (DL), a brain-inspired machine learning
framework (Goodfellow et al., 2016; Sejnowski, 2018). Together
with other brain-inspired and statistical approaches, AI is ex-
pected to further benefit human life and society in areas such
as information services, manufacturing, mobility, environment,
healthcare, and science. However, rapid advances also pose large
risks. Here we consider expected benefits and potential risks of
AI and neurotechnologies and how these technologies can be
managed so as to minimize undesirable outcomes.

This article is based on presentations and discussions at the
International Symposium on AI and Brain Science held online in
October 2020 (http://www.brain-ai.jp/symposium2020/). In the
following sections, we first review how AI and brain science
have co-evolved and what else can be learned from the brain
to guide future progress of AI. We then review how progress in
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AI and neurotechnologies can deliver helpful innovations, with a
focus on the potential of AI to promote scientific discoveries. We
then consider the risks associated with AI and neurotechnologies,
including intentional misuse, unintended side effects, and loss of
control. We then consider ethics and governance of AI, with two
specific viewpoints. For the issue of goal misspecification by AI
systems, a theoretical framework of assistance games is proposed,
in which AI agents continually infer human preferences, rather
than pursuing a specific goal. Another view proposes, by learning
from the history of human society, to implement democratic peer
reviewing among open-source, explainable AI agents, to avoid
catastrophes by over-concentration of power.

2. Co-evolution of AI and neuroscience

There are two opposing views of the relationship between
AI and the brain. One holds that to make intelligent machines
with electronics, we do not need to be concerned with biological
constraints. However, the other maintains that since there is
already a superb implementation of intelligence in the brain, it
makes more sense to reverse engineer that. In fact, there are
many intermediate views and historically, dominant views have
oscillated between the two extremes.

For example, in visual pattern recognition, the discovery by
Hubel and Wiesel (Hubel & Wiesel, 1959) that the primary visual
cortex is composed of neurons that respond to different local
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a b s t r a c t

Advances in artificial intelligence (AI) and brain science are going to have a huge impact on society.
While technologies based on those advances can provide enormous social benefits, adoption of new
technologies poses various risks. This article first reviews the co-evolution of AI and brain science
and the benefits of brain-inspired AI in sustainability, healthcare, and scientific discoveries. We then
consider possible risks from those technologies, including intentional abuse, autonomous weapons,
cognitive enhancement by brain–computer interfaces, insidious effects of social media, inequity, and
enfeeblement. We also discuss practical ways to bring ethical principles into practice. One proposal is to
stop giving explicit goals to AI agents and to enable them to keep learning human preferences. Another
is to learn from democratic mechanisms that evolved in human society to avoid over-consolidation
of power. Finally, we emphasize the importance of open discussions not only by experts, but also
including a diverse array of lay opinions.
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1. Introduction

Artificial intelligence (AI) has made remarkable progress in the
last several years. Computers can now see, listen, and drive a
car, in some cases as well as humans, or even better. Machine
translation is no longer an embarrassment. Much of today’s AI is
based on deep learning (DL), a brain-inspired machine learning
framework (Goodfellow et al., 2016; Sejnowski, 2018). Together
with other brain-inspired and statistical approaches, AI is ex-
pected to further benefit human life and society in areas such
as information services, manufacturing, mobility, environment,
healthcare, and science. However, rapid advances also pose large
risks. Here we consider expected benefits and potential risks of
AI and neurotechnologies and how these technologies can be
managed so as to minimize undesirable outcomes.

This article is based on presentations and discussions at the
International Symposium on AI and Brain Science held online in
October 2020 (http://www.brain-ai.jp/symposium2020/). In the
following sections, we first review how AI and brain science
have co-evolved and what else can be learned from the brain
to guide future progress of AI. We then review how progress in
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AI and neurotechnologies can deliver helpful innovations, with a
focus on the potential of AI to promote scientific discoveries. We
then consider the risks associated with AI and neurotechnologies,
including intentional misuse, unintended side effects, and loss of
control. We then consider ethics and governance of AI, with two
specific viewpoints. For the issue of goal misspecification by AI
systems, a theoretical framework of assistance games is proposed,
in which AI agents continually infer human preferences, rather
than pursuing a specific goal. Another view proposes, by learning
from the history of human society, to implement democratic peer
reviewing among open-source, explainable AI agents, to avoid
catastrophes by over-concentration of power.

2. Co-evolution of AI and neuroscience

There are two opposing views of the relationship between
AI and the brain. One holds that to make intelligent machines
with electronics, we do not need to be concerned with biological
constraints. However, the other maintains that since there is
already a superb implementation of intelligence in the brain, it
makes more sense to reverse engineer that. In fact, there are
many intermediate views and historically, dominant views have
oscillated between the two extremes.

For example, in visual pattern recognition, the discovery by
Hubel and Wiesel (Hubel & Wiesel, 1959) that the primary visual
cortex is composed of neurons that respond to different local
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Figure 2. The Correlation between the average mating learning performance and the

average fitness in the final 20 generations in all experiments. The learning performance was
estimated as the number of time steps the mating behavior was selected divided with number of mating
events. The seven types of markers indicate the number of energy sources in the environment for each
simulation.

(a) (b)

Figure 3. Example trajectories of the learned behaviors for the roamer strategy and the

stayer strategy. (a) The roamer ignores the tail-lamp of the mating partner and executes the learned
foraging behavior to capture the energy source. (b) The stayer executes the learned waiting behavior
and adjusts its position according to the trajectory of the mating partner.

0.12 

N
or

m
al

iz
ed

 m
ea

n 
∆R

/R
 

0 

1 

PPC: N = 43 

N
or

m
al

iz
ed

 
m

ea
n 
∆

R
/R

 
N

or
m

al
iz

ed
 

lik
el

ih
oo

d 

-10 

15 

P
os

te
rio

r 

Goal distance (cm) 
67 33 0 

33 0 33 0 

0.04 

0 

0 

Goal distance (cm) 
67 33 0 67 33 0 67 67 

Sound 
zone 

a 

figure4 

Hypothetical cortical algorithm of model-based state prediction 
with Bayesian inference 

Probabilistic population code in PPC 
0327-mouse23: PPC Layer2 0416-mouse23: PM Layer2 

Decoding_Bayes_160324_17_detail 

0327-mouse23: State2(17),71 trial, --300, 200, -100, 0  
0416-mouse23: State2(16), 
132 trial, -200, -100, 0  

Probability 

E
st

im
at

ed
 d

is
ta

nc
e 

(c
m

) 

Layer2 

PM 

PPC 
Continuous Intermittent1 Intermittent2 

b 

67 

33 

0 

67 

33 

0 
Sound zone Sound zone 

0 0.078 

Goal distance (cm) 
67 33 0 67 33 0 67 33 0 

Decoding_Bayes…150227_17_kaiseki_all_all 

[0 0.078] 

Rank_sum_test 
*: p < 0.01 

Flat prior 
Moving 
average  
3 frames 

Decoding_Bayes_160324_17_A22 

Decoding_Bayes…150227_17_kaiseki_all4_all2 

Using Bayes603: MAP, STD 

Bayes160324 / Cor_newを使う。 

Decoding_Bayes_160120_17_kaiseki_all7 

Decoding_Bayes…150227_17_kaiseki_correct 

Decoding_Bayes…150227_17_kaiseki_map 

  
           
                  
                  
                  
                  
             
             
             
             
             
             
             
             
                  
                  
                  
                            

  
          
         
         
         
          
          
          
          
            
            
           
          
          
         
         
         
         

  
                
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  

  
                  

          
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             

 
                 

                 
                            
                            
                            
                            
                            
                            
                   
                            
                            
                            
                            
                                     
                                     
                            
                                     
                                     

  
          
          
          
           
           
           
           
           
           
           
            
            
             
             
             
             
             

  
        
          
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             

  
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
        

  
               
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                   

  
                  

        
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

 
                 

   
                       
                       
                       
                       
                       
                       
                       
                  
                       
                       
                       
                       
                            
                            
                       
                            
                            

      
                                              

   
         
                   
                   
                   
                   
          
          
          
          
          
          
          
          
                   
                   
                   
                                     

R
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r 

(c
m

) 

4 

36 

Layer2 c 
Continuous Intermittent1 Intermittent2 

Goal distance (cm) 
67 33 0 

M
A

P
 (c

m
) 

67 33 0 67 33 0 

67 

33 

0 

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 

po
st

er
io

r 
(c

m
) 

0 

25 

PPC PM 

* * * * * 

* * * 

* 

Sound 
zone 

No-sound 
zone 

* * 

* * * * * 

* * 

* * * 
* * 

* 
* * * * * 

* * * * 
* 

* 

* 

* 

* * 
* * 

* 
* 

* * * 

* * * 

 

 

d 

e 

Condition 1 � Condition 3A Condition 2 � Condition 3B

C D

!"#$%&'(

Condition 1 � Condition 3A Condition 2 � Condition 3B

C D

!"#$%&'(

Condition 1 � Condition 3A Condition 2 � Condition 3B

C D

!"#$%&'(

respectively). The remainder of differences were not significant
(Supplementary Table 2). Subsequently, we tested variability of
waiting time ratio among mice. We compared the obtained mixed
model with the model including a fixed effect of reward-delay
condition, but not a random effect of MI. To evaluate likelihood
ratio of two models, we generated 1000 new samples of waiting
time ratios by means of a parametric bootstrap method. The
variability of waiting time ratio among mice was not significant
(P= 0.602).

The waiting time ratio in the D6 test was not significantly
different from the waiting time ratio in the 75% one-pellet test
with a 3 s delay in experiment 1 (D3 test) (P= 1.00, post hoc
Bonferroni correction) (Fig. 6e). The waiting time ratio in the
D10 test (1.11 ± 0.01, n= 34 tests) was not significantly different
from the waiting time ratios in the D6 test of experiment 2 (P=
1.00, post hoc Bonferroni correction) and in the D3 test of
experiment 1 (P= 1.00, post hoc Bonferroni correction) (Fig. 6e).
These results show that timing uncertainty, but not the longest
waiting time for future rewards, is critical for enhancing
serotonin’s effect at increasing waiting times.

Bayesian decision model of waiting. Can these effects of ser-
otonin on waiting, depending on the RP and timing uncertainty,
be explained in a coherent way? Here we consider the possibility
that serotonin signals the prior probability of reward delivery in a
Bayesian model of repeated decisions to wait or to quit. In this
model, the subject has an internal model of the timing of reward
delivery and infers whether the current trial is a reward trial or a
no-reward trial. As time goes by without a reward delivery, the
likelihood of its being a reward trial diminishes (Fig. 7a, top
panel). The posterior probability of a reward follows the same
time course scaled by the prior probability for a reward trial
(Fig. 7a, middle panel). The expected reward for waiting goes
down accordingly and the subject quits waiting as the expected
reward for waiting becomes close to that for quitting (zero). The
distribution of the time of quitting shifts later as the prior
probability of a reward trial increases (Fig. 7a, bottom panel).

If we assume that dorsal raphe serotonin neuron stimulation
causes an increase in the estimate of the prior probability when
the RP is high, the effect on the waiting time distribution with
different RPs (Fig. 2) can be reproduced (Fig. 7b). As the
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Fig. 5 Optogenetic activation of DRN serotonin neurons enhances waiting for temporally uncertain rewards. a Distribution of waiting time during omission
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