

Machine Learning Summer School, March 8, 2024, OIST

### What Can We Further Learn from the Brain for AI?

Kenji Doya <u>doya@oist.jp</u> Neural Computation Unit <u>groups.oist.jp/ncu</u> Okinawa Institute of Science and Technology Graduate University



#### OCNC

Travel/Visa info for 2024 Design Code of Conduct Past Courses **OCNC 2004 OCNC 2005 OCNC 2006 OCNC 2007 OCNC 2008 OCNC 2009 OCNC 2010 OCNC 2011 OCNC 2012 OCNC 2013 OCNC 2014 OCNC 2015 OCNC 2016 OCNC 2017 OCNC 2018** Program / OCNC2018 Lecturers & Abstract / OCNC2018

#### OCNC: OIST Computational Neuroscience Course OCNC2004



#### Top | Schedule | Lectures | Projects | People

#### Okinawa Computational Neuroscience Course 2004

The aim of Okinawa Computational Neuroscience Course is to provide opportunities for young researchers with theoretical backgrounds to learn up-to-date neurobiological findings, and those with experiment backgrounds to have hands-on experience in computational modeling. This may also be a good opportunity for theoretical and experimental neuroscientists to meet together and enjoy attractive nature and culture of Okinawa, the southernmost island prefecture of Japan.

This course is the second of a series of tutorial courses that the Cabinet Office of the Japanese Government is sponsoring as a precursory activity for the Okinawa Institute of Science and Technology. The sponsor will provide lodging expenses during the course and support for travel to Okinawa.

# **OIST Neural Computation Unit**

#### Modeling

Yukako Yamane Yuzhe Li Soheil Keshmiri Florian Larande Shuhei Hara Hideyuki Yoshimura Shutashu Tomonaga Yi-Shan Cheng Yusaku Kasai

#### Robotics

Ekaterina Sangati Kristine Roque Yuji Kanagawa Tojo Rakotoaritina



#### (PhD Students)

#### Neurobiology

Katsuhiko Miyazaki Kayoko W Miyazaki Hajime Yamanaka Anupama Chaud Sergey Zobnin Miles Desforges Yuma Kajihara Jianning Chen Naohiro Yamauchi Terezie Sedlinska **Administration** Kikuko Matsuo Misuzu Saito Professor Kenji Doya

# **OIST Neural Computation Unit**

# Create flexible learning systemsrobot experiments



# Reveal brain's learning mechanisms neurobiology



## **Reinforcement Learning**



#### Learn action policy: $s \rightarrow a$ to maximize rewards

#### Efficient algorithms for artificial agents

Circuit and molecular mechanisms in the brain

# See Star

### **Al and Brain Science**

To make intelligent machines by electronics, we should not bother biological constraints.

There's a superb implementation of intelligence in the brain, so why don't we learn from that.

Al in 20th century: program human expertise Al in 21st century: learn from big data

Brain-like implementation like *Deep Learning* gives the best performance.

# **Coevolution in Pattern Recognition**







#### NEWS

2020-04-01 Dr.Hiroaki Gomi's group's study is featured in eLife Press Release



Tokyo, 10-12, October, 2020

2020-01-06 Prof. Kenji Doya received JNNS Academic Award and APNNS Outstanding Achievement Award

# What Should We Further Learn from the Brain?

**Energy Efficiency** 

#### **Data Efficiency**

World Models and Mental Simulation
 Modularity and Compositionality
 Meta-learning

**Autonomy and Sociality** 

### Simulating Whole Juman Brain Is Now Possible frontiers

frontiers (2019)in Neuroinformatics

Jun Igarashi<sup>1\*</sup>, Hiroshi Yamaura<sup>2</sup> and Tadashi Yamazaki<sup>2\*</sup>

L2/3 Exc

L6 Exc

ESS

#### Large-Scale Simulation of a Layered **Cortical Sheet of Spiking Network** Model Using a Tile Partitioning Method

L1

L6

1300µm



in Neuroinformatics (2020) Simulation of a Human-Scale **Cerebellar Network Model on the K** Computer

Hiroshi Yamaura<sup>1†</sup>, Jun Igarashi<sup>2†</sup> and Tadashi Yamazaki<sup>1\*</sup>



• 68 billion neurons • 5 trillion synapses



6 billion neurons

1300um

• 25 trillion synapses

Cortex + Cerebellum on Fugaku (2021)

96 billion neurons

• 57 trillion synapses





# **euromorph** Chips fast, energy-efficient

S. Cassidy<sup>a</sup>, Rathinakumar Appuswamy<sup>a</sup>, y<sup>a</sup>, Timothy Melano<sup>a</sup>, Davis R. Barch<sup>a</sup>, Carmelo di Nolfo<sup>a</sup>, and Dharmendra S. Modha<sup>a</sup>



#### news & views

ARTIFICIAL NEURAL NETWORKS

#### Memristors fire away



# What Should We Further Learn from the Brain?

**Energy Efficiency** 

#### **Data Efficiency**

World Models and Mental Simulation
 Modularity and Compositionality
 Meta-learning

**Autonomy and Sociality** 

#### Learning to Walk

(Doya & Nakano, 1985)

Explore actions (cycle of 4 postures)

Learn from performance feedback (speed sensor)



# **Reinforcement Learning**

Predict reward: value function

• V(s) = E[ r(t) +  $\gamma$ r(t+1) +  $\gamma^2$ r(t+2)... | s(t)=s]

• Q(s,a) = E[ r(t) +  $\gamma$ r(t+1) +  $\gamma$ <sup>2</sup>r(t+2)...| s(t)=s, a(t)=a]

Select action

#### How to implement these steps?

- greedy:a = argmax Q(s,a)
- Boltzmann:  $P(a|s) \propto exp[\beta Q(s,a)]$

Update prediction: temporal difference (TD) error

$$\delta(t) = r(t) + \gamma V(s(t+1)) - V(s(t))$$

•  $\Delta V(s(t)) = \alpha \delta(t)$ 

•  $\Delta Q(s(t),a(t)) = \alpha \delta(t)$ 

How to tune these parameters?

## **Pendulum Swing-Up**

state: angle θ, angular velocity ω
 reward function: potential energy: cos θ



ω

θ Value function

### Learning to Stand Up

(Morimoto & Doya, 2001)





Learning from reward and punishment

- reward: height of the head
- punishment: bump on the floor

### **TD Learning and Backprop**



#### **Deep Q-Network**

#### (Mnih et al. 2015)



- Experience replay
- Fixing the *target network*
- DNN captures important features
  - human level in 29/49 Atari games





### **Basal Ganglia**

Locus of Parkinson's and Huntington's diseases



What is their normal function??



### **Dopamine-dependent Plasticity**







#### SCIENCE VOL 310 25 NOVEMBER 2005 Representation of Action-Specific Reward Values in the Striatum

Kazuyuki Samejima,<sup>1</sup>\*† Yasumasa Ueda,<sup>2</sup> Kenji Doya,<sup>1,3</sup> Minoru Kimura<sup>2</sup>\*

About half of task-responsive neurons in the anterior striatum



# **Bayesian Inference of Action Values**

Hidden variables

•  $x = (Q, \alpha, \beta, \gamma)$ 

• y=(s,a,r)

Predictive prior

(Samejima et al. 2004)

• p(x' | x): learning rule Observable variables • p(y|x): action policy Decision •  $P(x_{t+1} | y_{1:t}) = \int P(x_{t+1} | x_t) P(x_t | y_{1:t}) dx_t$ Posterior given observation y<sub>t+1</sub> Get reward •  $P(x_{t+1} | y_{1:t+1}) \propto P(y_{t+1} | x_{t+1}) P(x_{t+1} | y_{1:t})$ 



Distinct Neural Representation in the Dorsolateral, Dorsomedial, and Ventral Parts of the Striatum during Fixed- and Free-Choice Tasks Makoto Ito and Kenji Doya

Right Left Center







- **Dorsolateral** movements Dorsomedial action value Ventral
  - state value

The Journal of Neuroscience, 2015









Left, no-reward Right, no-reward Right, reward

## **Striosome Neurons as Critic?**

Actor-critic (Houk et al., 1995) or state/action value (Doya, 2000)



• Do striosome neurons code state value?

- Do matrix neurons code action or action value?
- Need cell-type specific recording
  - optolodes or calcium imaging

#### eNeuro (2018) Reward-Predictive Neural Activities in Striatal Striosome Compartments

<sup>©</sup>Tomohiko Yoshizawa,<sup>1</sup> Makoto Ito,<sup>1,2</sup> and <sup>©</sup>Kenji Doya<sup>1</sup>

#### Imaging striosome neuron activity by endoscope



# **Questions in Neural Reinforcement Learning**

How is TD-like response computed by dopamine neurons?

Why should there be so many pathways?

- direct, indirect, hyperdirect
- striosome, matrix
- dorsal/ventral striatum, amygdala

SNc and VTA dopamine neurons





## **Soft Actor-Critic**

(Haarnoja et al. 2018)

- Stable, sample-efficient learning
- Learn state value, action value, and policy in parallel
  - objective
    T-1

$$J(\pi) = \sum_{t=0} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[ r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right]$$

- state value V
  - $\hat{\nabla}_{\psi} J_{V}(\psi) = \nabla_{\psi} V_{\psi}(\mathbf{s}_{t}) \left( V_{\psi}(\mathbf{s}_{t}) Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) + \log \pi_{\phi}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right)$
- action value Q

$$\hat{\nabla}_{\theta} J_Q(\theta) = \nabla_{\theta} Q_{\theta}(\mathbf{a}_t, \mathbf{s}_t) \left( Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - r(\mathbf{s}_t, \mathbf{a}_t) - \gamma V_{\bar{\psi}}(\mathbf{s}_{t+1}) \right)$$

• policy  $\pi$ 

 $\hat{\nabla}_{\phi} J_{\pi}(\phi) = \nabla_{\phi} \log \pi_{\phi}(\mathbf{a}_t | \mathbf{s}_t) \left( \log \pi_{\phi}(\mathbf{a}_t | \mathbf{s}_t) - Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) + V_{\psi}(\mathbf{s}_t) \right)$ 



# Model-free and Model-based RL

#### **Model-free RL**

- Memorize action values
  - Q( state, action)
- Reactive action
   P(a|s) ~ exp[ βQ(s,a)]

• On-line learning by TD error •  $\delta$  = reward +  $\gamma$ Q(s',a') – Q(s,a)

#### **Model-based RL**

- Learn internal models
  - P(next state | state, action)
  - R( state, action)
- Estimate current state

•  $P(s_t | o_t, a_{t-1}) \propto P(o_t | s_t) \Sigma_{s_{t-1}} P(s_t | s_{t-1}, a_{t-1}) P(s_{t-1})$ • Predict values

- $Q(s,a) = \sum_{s'} P(s'|s,a)[R(s,a)+\gamma V(s')]$
- V(s)=max<sub>a</sub>  $\Sigma_{s'}$ P(s'|s,a)[R(s,a)+ $\gamma$ V(s')]

Simple, but slow learning

Flexible, but heavy load

### **Bounce Up and Balance by PILCO**



1st try



2nd try





### **Mental Simulation**

#### Brain's process using an action-dependent state transition model s'=f(s,a) or P(s'|s,a)

Estimate the present from past state/action

- perception under noise/delay/occlusion
- Predicting the future
  - model-based decision, action planning
- Imagining in a virtual world
  - thinking, language, science,...

#### **Specialization by Learning Algorithms** (Doya, 1999)



# **Multiple Ways of Action Selection**


# SCIENTIFIC REPORTS



#### **OPEN** Model-based action planning involves cortico-cerebellar and basal ganglia networks

Received: 16 February 2016 Accepted: 19 July 2016

<sup>6</sup> Alan S. R. Fermin<sup>1,2,3</sup>, Takehiko Yoshida<sup>1,2</sup>, Junichiro Yoshimoto<sup>1,2</sup>, Makoto Ito<sup>2</sup>,
 <sup>6</sup> Saori C. Tanaka<sup>4</sup> & Kenji Doya<sup>1,2,3,4</sup>











#### nature neuroscience



## Neural substrate of dynamic Bayesian inference in the cerebral cortex

Akihiro Funamizu<sup>1,2</sup>, Bernd Kuhn<sup>2</sup> & Kenji Doya<sup>1</sup>
PPC two-photon imaging







Auditory virtual environment
 intermittent sensory input

#### Probabilistic population decoding





### **Duality of Inference and Control**

**Optimal filtering** (Kalman 1960)  $\Sigma_{k+1} = S + A\Sigma_k A^{\mathsf{T}} - A\Sigma_k H^{\mathsf{T}} (P + H\Sigma_k H^{\mathsf{T}})^{-1} H\Sigma_k A^{\mathsf{T}}$ 



Bayesian inference: log posterior



• Optimal control (Bellman et al. 1958)  $V_k = Q + A^{\mathsf{T}}V_{k+1}A - A^{\mathsf{T}}V_{k+1}B\left(R \oint B^{\mathsf{T}}V_{k+1}B\right)^{-1}B^{\mathsf{T}}V_{k+1}A$ 



Reinforcement learning: state value



(Todorov 2007, 08; Toussaint 2009; Levine 2018)



#### **Prism Lens Imaging during Lever Pull Task** Yuzhe Li, Sergey Zobnin

Integrated microscope

Base plate















### Light/Heavy Lever Pull Task

#### Sergey Zobnin, Naohiro Yamauchi





#### **Expected and Actual Trial Type Coding**







e re action is code tion

sk.

#### **Population Decoding**

time



#### Peak amplitude after pull

time

150

200

20

20

0





How can models and policies in separate brain areas be activated and connected as needed?

fMRI study assumes that brain areas that perform required computations for given task are activated.

But we don't know why that can be made possible!



### Learning to Stand Up

(Morimoto & Doya, 2001)





Learning from reward and punishment
 reward: height of the head

• punishment: bump on the floor

### **Hierarchical Reinforcement Learning**

- **Upper level**: reward: task goal
  - state: joint angles, center of mass
  - action: desired postures
- **Lower level**: reward: achieving a subgoal
  - state: joint/pitch angles, angular velocity
  - action: motor torque







(Morimoto & Doya, 2001)

### **How to Select/Connect Right Modules?**

#### **Computational principles**

- prediction error (Wolpert & Kawato, 1998)
- Bellman error (Sugimoto et al., 2012)
- uncertainty (Daw et al., 2005)
- modular infomax?

#### **Biophysical mechanisms**

- basal ganglia/thalamus (Eliasmith et al. 2012)
- affordance competition (Cisek, 2007)
- dendritic disinhibition (Wang & Yang, 2018)
- rhythm/coherence?





### **Reinforcement Learning**

Predict reward: value function

• V(s) = E[ r(t) +  $\gamma$ r(t+1) +  $\gamma^2$ r(t+2)... | s(t)=s]

• Q(s,a) = E[ r(t) +  $\gamma$ r(t+1) +  $\gamma$ <sup>2</sup>r(t+2)...| s(t)=s, a(t)=a]

Select action

How to implement these steps?

- greedy:a = argmax Q(s,a)
- Boltzmann:  $P(a|s) \propto exp[\beta Q(s,a)]$

Update prediction: *temporal difference* (*TD*) *error* 

•  $\delta(t) = r(t) + \gamma V(s(t+1)) - V(s(t))$ 

•  $\Delta V(s(t)) = \alpha \delta(t)$ 

How to tune these parameters?

•  $\Delta Q(s(t),a(t)) = \alpha \delta(t)$ 



### Temporal Discount Factor **y**

Large γ
 reach for far reward



Small γ

• only to near reward





### **Temporal Discount Factor** γ

■ V(t) = E[ r(t) +  $\gamma$ r(t+1) +  $\gamma$ <sup>2</sup>r(t+2) +  $\gamma$ <sup>3</sup>r(t+3) +...] • controls the 'character' of an agent



#### **Neuromodulators for Metalearning**

(Doya, 2002)

Metaparameter tuning is critical in RL

• How does the brain tune them?



Dopamine: TD error  $\delta$ Acetylcholine: learning rate  $\alpha$ Noradrenaline: exploration  $\beta$ Serotonin: temporal discount  $\gamma$ 

### **Chemical Measurement/Control**

#### **Microdialysis measurement**



delayed reward task

#### Serotonin neuron blockade

(Kayoko Miyazaki et al., 2011, 2012)

5HT1A agonist in dorsal



#### **Dorsal Raphe Neuron Recording** (Miyazaki et al. 2011 JNS)





#### Keep firing while waiting

| 20<br>trial<br>10 |                                       |                       |           |
|-------------------|---------------------------------------|-----------------------|-----------|
| 0_1               | 15 −10 −5 0 5<br>food                 | 10 15 s<br>site entry |           |
|                   | Stop firing                           | before                | giving up |
|                   | 0-8 -6 -4 -2 0 2 4<br>↑<br>water site | 4 6 8 10 s<br>exit    |           |

### **Optogenetic Stimulation of Serotonin Neurons**



■ Reward Delay Task (3, 6, 9, ∞ sec)



3 sec: success
omission: 12.1 s
omission: 20.8 s

(Miyazaki et al., 2014, Current Biology)







Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience Katsuhiko Miyazaki <sup>1</sup>, Kayoko W. Miyazaki<sup>1</sup>, Akihiro Yamanaka<sup>2</sup>, Tomoki Tokuda<sup>3</sup>, Kenji F. Tanaka<sup>4</sup> & Kenji Doya<sup>1</sup>

Serotonin-stimulation facilitates waiting when...



### **Bayesian Waiting Decision Model**

Mice have internal model of reward timing
 keep guessing if it is a rewarded trial

 Likelihood of reward drops
 higher prior sustains posterior
 timing uncertainty makes long-tailed likelihood

 Serotonin signal reward prior?
 average reward response (Cohen et al., 2015)



### **Effect of Timing Uncertainty**

- 5-HT stimulation causes longer waiting when reward timing is more uncertain.
- Bayesian model replicates the effect by assuming that 5-HT enhances prior probability of reward.



### Serotonin for Model-based RL?



#### Two-step task for mice (Akam et al. 2020)





2

0

8

6

 $\beta_{mf}$ 

Masakazu Taira

### What Should We Further Learn from the Brain?

**Energy Efficiency** 

Data Efficiency
World Models and Mental Simulation
Modularity and Compositionality
Meta-learning

**Autonomy and Sociality** 

### Cyber Rodent Project (Doya & Uchibe, 2005)

#### What is the origin of rewards?

#### **Robots with same constraint as biological agents**

Self-preservation

 capture batteries

 Self-reproduction

 exchange programs through IR ports



### Learning to Survive and Reproduce

## Catch battery packssurvival



Copy 'genes' by IR portsreproduction, evolution



(Doya & Uchibe, 2005)

#### Embodied Evolution (Elfwing et al., 2011)



### **Evolution of Shaping Rewards**

Vision of battery

Vision of face



(Elfwing et al., 2011)

### **Evolution of Meta-Parameters**

Learning rate α
 Exploration temperature τ

- Temporal discount factor γ
- Eligibility trace decay factor  $\lambda$





### **Smartphone Robot Project**

#### Motor control



#### Survival



#### Reproduction



- Learning models of world and others
- Meta-learning
- Evolution of rewards and curiosity

• ...

### **Evolution of Primary Rewards**



#### Yuji Kanagawa

#### **Reproduction Model**

• age t

- energy e
- Birth rate b(e)
- Death rate *h*(*t*,*e*)

**Evolution of Reward Function** 



 $r = r_{\text{agent}} + r_{\text{food}} + r_{\text{wall}} + r_{\text{action}}$ 

Learning by Proximal Policy Optimization (PPO; Schulman et al. 2017)

### **Computational Correlates of "Curiosity"**

- Model-free
  - supplementary reward: r<sub>int</sub>(s,a)
  - shaping reward:  $r_{sh}(s_t) = \gamma \Phi(s_t) \Phi(s_{t-1})$
  - optimistic initial value: Q<sub>0</sub>(s,a)
  - high temperature  $\tau$ : P(a|s)  $\propto \exp[Q(s,a)/\tau]$
- Model-based
  - Iearning internal models: P(o|s), P(s'|s,a), P(r|s,a)
  - clarifying the present:  $P(s_t) \propto P(o_t|s_t)P(s_t|s_{t-1},a_{t-1})$
  - simulating the future:  $P(s_{t+1}|s_t,a)$  ...multiple steps
  - finding optimal policy:  $\pi^*(a|s)$



### **Evolving Intrinsic Rewards**



Tojo Rakotoaritina

#### How to model/implement curiosity?

(Oudeyer & Kaplan 2008; Sing et al. 2010; Aubret et al. 2023)



 $\mathbf{r}_{\text{intrinsic}} = \mathbf{r}_{\text{novelty}} + \mathbf{r}_{\text{surprise}} + \mathbf{r}_{\text{empowerment}}$ 

## **Inverse Reinforcement Learning**

## To estimate reward function from observed (optimal) behaviors

• state value function is estimated at the same time



#### Inverse RL by Density Ratio Estimation (Uchibe & Doya, 2014, 2021)

- Based on KL control (Todorov 2009)
  - applicable to deep neural networks (Uchibe 2016)


# **Danger of Autonomous AI?**

#### Al agents can be creative!

- Find new goals and try them out
- Create novel science, technology, culture, industry..

### Needs assessment and control of dangers

- Runaway
- Side effect
- Exploitation by individuals/groups with ambition/hatred

# Learning from the Human Society

Humans are the most dangerous species on earth

### **Democracy: never give unlimited power to a person/group**

- Politics
  - election
  - term limit
  - separation of powers
- Economy
  - antitrust law
  - right to strike
- Science
  - peer review

Peer reviewing among open-sourced, explainable AI agents



#### nature neuroscience

Activity in the amygdala elicited by unfair divisions predicts social value orientation

Masahiko Haruno<sup>1,2</sup> & Christopher D Frith<sup>3,4</sup>

Reward





**Representation of economic** preferences in the structure and function of the amygdala and prefrontal cortex

SCIENTIFIC REPORTS

Alan S. R. Fermin<sup>1</sup>, Masamichi Sakagami<sup>1</sup>, Toko Kiyonari<sup>2</sup>, Yang Li<sup>1</sup>, Yoshie Matsumoto<sup>1</sup> & Toshio Yamaqishi<sup>3</sup>





# What Should We Further Learn from the Brain?



## Acknowledgements

- Striatum recording
- Makoto Ito (Progress Technology)
- Tomohiko Yoshizawa (Tamagawa U)
- Charles Gerfen (NIH)
- Kazuyuki Samejima (Tamagawa U)
- Minoru Kimura (Tamagawa U)
- Human fMRI/behavior
- Alan Fermin (Tamagawa U)
- Takehiko Yoshida (NAIST)
- Saori Tanaka (ATR)
- Nicolas Schweighofer (USC)
- Jun Yoshimoto (NAIST)
- Yu Shimizu
- Tomoki Tokuda (ATR)
- Shoko Ota
- Serotonin recording/manipulation/modeling
- Kayoko W Miyazaki
- Katsuhiko Miyazaki
- Gaston Sivori
- Masakazu Taira (UCLA)
- Thomas Akam (Oxford U)
- Mark Walton (Oxford U)
- Kenji Tanaka (Keio U)
- Akihiro Yamanaka (Nagoya U)

**Scientific Research on Innovative Areas** Strategic Research Program for Brain Sciences

- Cortical imaging
  - Akihiro Funamizu (U Tokyo)
- Bernd Kuhn
- Yuzhe Li
- Sergey Zobnin
- Naohiro Yamauchi
- Marmoset data analysis
  - Carlos Gutierrez (Softbank)
  - Hiromichi Tsukada (Chubu U)
  - Junichi Hata, Henrik Skibbe, Alex Woodward (RIKEN)
- Ken Nakae, (NINS)
- Basal ganglia model
  - Benoit Girard, Daphne Heraiz (Sorbonne)
  - Jean Lienard
  - Shuhei Hara
- Robotics
  - Jun Morimoto (ATR)
  - Eiji Uchibe (ATR)
  - Stefan Elfwing (ATR)
  - Jiexin Wang (ATR)
  - Paavo Parmas (Kyoto U)
  - Kristine Roque
  - Yuji Kanagawa
  - Tojoarisoa Rakotoaritina

• Christopher Buckley Brain/MINDS Project Fugaku Supercomputing Program