
Deep Learning for Computer Vision:
A Crash Course

Yu-Chiang Frank Wang

Professor, Dept. Electrical Engineering, National Taiwan University

Research Director for Deep Learning & Computer Vision, NVIDIA

2024/03/15

About Myself

• Education
• Ph.D./M.S. in Electrical & Computer Engineering 2002 – 2009

Carnegie Mellon University, Pittsburgh, USA
• B.S. in Electrical Engineering 1997 – 2001

National Taiwan University, Taipei, Taiwan

• Experiences
• Research Director, NVIDIA 2022/08 ~
• Professor, Dept. EE, National Taiwan University
• Principal AI Consultant, Inventec 2021 – 2022
• AI Advisory Consultant, ASUS Intel. Cloud Services (AICS) 2019 – 2022
• Associate Professor, National Taiwan University 2017 – 2019
• Deputy Director, CITI, Academia Sinica 2015 – 2017
• Associate/Assistant Research Fellow 2009 – 2017

Research Center for IT Innovation (CITI), Academia Sinica

2

What’d Be Covered in This Crash Course…

• Learning-based Computer Vision
• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision
• Convolutional Neural Networks
• Self-Supervised Learning
• Segmentation & Detection

• Generative Models
• Autoencoder, Variational Autoencoder,

Generative Adversarial Networks & Diffusion Models

• Sequence-to-Sequence Learning
• Attention is All You Need: Transformer

• Vision & Language Foundation Models
• Image-to-Text vs. Text-to-Image
• Parameter-Efficient Fine-tuning

3

Linear Classification
• Linear Classifier

• Can be viewed as a parametric or algebraic approach.
• Consider that we have 10 object categories of interest

• E.g., CIFAR10 with 50K training & 10K test images of 10 categories.
Each image is of size 32 x 32 x 3 pixels.

4

Linear Classification (cont’d)
• Linear Classifier

• Can be viewed as a parametric or algebraic approach. Why?
• Consider that we have 10 object categories of interest
• Let’s take the input image as x, and the linear classifier as W.

We need y = Wx + b as a 10-dimensional output vector, indicating the score for each class.

5Image credit: Stanford CS231n

y =

Linear Classification (cont’d)
• Linear Classifier

• Can be viewed as a parametric or algebraic approach. Why?
• Consider that we have 10 object categories of interest
• Let’s take the input image as x, and the linear classifier as W.

We need y = Wx + b as a 10-dimensional output vector, indicating the score for each class.
• For example, an image with 2 x 2 pixels & 3 classes of interest

we need to learn a linear classifier W (plus a bias b),
so that desirable outputs y = Wx + b can be expected.

6Image credit: Stanford CS231n

A

B

C

Remarks
• Interpreting W in y = Wx + b

• Weights W are learned by observing (training) data X and their ground truth labels Y.
• Each row in W can be viewed as an exemplar of the corresponding class.
• Equivalently, we perform inner product between x and each row of W -> class similarity
• How to determine a proper objective/loss function for deriving W?

7
Image credit: Stanford CS231n

Loss Function

• Cross-Entropy Loss (Multinomial Logistic Regression)
• Interpret classifier scores as probabilities
• Softmax function:

• with as the classifier output for input xi

• See example below

8Slide credit: UMich EECS 498-007

Lcat = -log(0.13) = 2.04

What about this L?
What are its possibly min/max value??

• Cross-Entropy Loss (cont’d)
• Softmax function:

• with as the classifier output for input xi

or

• (Binary) Cross Entropy Loss (or LBCE; see example below):

9Slide credit: UMich EECS 498-007

• Searching for W from LBCE

• Computing gradients:
Following the slope to reach the (hopefully global) minimum for W.

• Gradient Descent via numeric or analytic gradients:
• Iteratively step in the direction of the negative gradient & search for W
• Hyperparameters: weight initialization, # of steps, learning rate, etc.

• Stochastic Gradient Descent
• Full sum in L is expensive when large N
• Approximate sum using a minibatch of instances (e.g., 32, 64, 128, etc.)
• Additional hyperparameters of batch size and data sampling

10Slide credit: UMich EECS 498-007

Hierarchical Representation Learning

• Successive model layers learn deeper intermediate representations.

11

Let’s Take a Closer Look…

一5 0 5
0

0.5

1

output of neuron

activity of neuron

inputs to neuron

• A single neuron in a single layer

12

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z 2

w = [0,1]

z 1

x

0
z 1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

13

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.6,0.8]

z1

x

z 2
0

z1

−5 5
−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

14

Input-Output Function of a Single Neuron

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [1,0]

z1

x

0
z1

z 2
−5 5

−5

0

5

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

15

Input-Output Function of a Single Neuron (cont’d)

0
一5

0
5 一5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,1]

z1

x

0
z1

z 2
一5 5

一5

0

5

contours
sets direction of boundary
sets steepness of boundary

x(z1, z2) = 1
1+exp(一w1z1一w2z2)

16

Weight Space of a Single Neuron

0 5 -5

0

0
-5

0 5 -5

0

5
0.5

1

0
-5

0 5 -5

0

5
0.5

1

0
-5

0 5 -5

0

5
0.5

1

-2

-2 0 2 4
W1

0
-5

0 5 -5

0

5
0

-5
0 5 -5

0

5
0.5

0
-5

0 5 -5

0

5
0.5

0
-5

0 5 -5

0

5
0.5

1

0
-5

0 5 -5

0

5

x 0.5

0
-5

5z2 -5
0

1

0 5 -5

0

5
0.5

1

0
-5

0 5 -5

0

5
0.5

1

0

2

W2 0.5

1 1 1

0
-5

0 5 -5

0

5
0.5

1

0.5

1

W = [2,2]

z1

17

Training a single neuron

0

training data
1

0

objective function:

0

inputs class labels

regulariser discourages the network using extreme weights

weight decay - shrinks weights
towards zero 18

Training a Single Neuron

0
−5

0

5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0,−1]

z1

x

−5 0
z

5
−5

0

5

1

z 2

0 5 10
iteration

15 20

10
0

ob
je

ct
iv

e

19

Training a Single Neuron

5 −5

0
−5

0

0

5

0.2

0.4

0.6

0.8

1

z2

w = [0.4,−0.7]

z1

x

−5
−5 0

z
5

0

5

1

z 2

0 5 10
iteration

15 20

10
0

ob
je

ct
iv

e

20

Training a Single Neuron

0
−5

0

5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [1.4,0.4]

z1

x

−5
−5 0

z
5

0

5

1

z 2

0 5 10
iteration

15 20

10
0

ob
je

ct
iv

e

21

Training a Single Neuron

0
−5

0

5 −5

0

5

0.2

0.4

0.6

0.8

1

z2

w = [9.7,25.3]

z1

x

−5
−5 0

z
5

0

5

1

z 2

0 10 20 30
iteration

40 50

10
−5

10
0

ob
je

ct
iv

e

22

Overfitting and Weight Decay

0

training data
1

0

objective function:

0

inputs class labels

regulariser discourages the network using extreme weights

weight decay - shrinks weights
towards zero 23

Training a Single Neuron (cont’d)

−5 0
z

5
−5

0

5

1

z 2

w = [1,1.1]reg

−5 0
z

5
−5

0

5

1

z 2

w = [2.5,4]

0 10 20 30 40 50

10
0

iteration

ob
je

ct
iv

e original
regularised

24

Training a Neural Network with Two Hidden Layers

objective function:
likelihood same as before

regulariser discourages extreme weights

Networks with hidden layers can be fit using gradient descent using an
algorithm called back-propagation.

25

Training a Neural Network with a Single Hidden Layer

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

−5 0
z

5
−5

0

5

1
z 2

26

Hierarchical Models with Many Layers

inputs
layer

output

hidden
layer

27

What’d Be Covered in This Crash Course…

• Learning-based Computer Vision
• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision
• Convolutional Neural Networks
• Self-Supervised Learning
• Segmentation & Detection

• Generative Models
• Autoencoder, Variational Autoencoder,

Generative Adversarial Networks & Diffusion Models

• Sequence-to-Sequence Learning
• Attention is All You Need: Transformer

• Vision & Language Foundation Models
• Image-to-Text vs. Text-to-Image
• Parameter-Efficient Fine-tuning

28

Recap: Linear Classification to Neural Nets

• Linear Classifier

• Neural Network (Multilayer Perceptron)

29Image credit: Stanford CS231n

Convolutional Neural Networks

• How many weights for MLPs for images?

30

Convolutional Neural Networks

• Property I of CNN: Local Connectivity
• Each neuron takes info only from a neighborhood of pixels.

31

Convolutional Neural Networks

• Property II of CNN: Weight Sharing
• Neurons connecting all neighborhoods have identical weights.

32

Putting them together → CNN
• Local connectivity

• Weight sharing
• Handling multiple input channels

• Handling multiple output maps

Image credit: A. Karpathy

output (activation) maps # input channels

Local connectivity

Weight sharing

33

Convolution Layer in CNN

34

What is a Convolution?

35

What is a Convolution?

• Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik
36

Putting them together

• The brain/neuron view of CONV layer

37

Putting them together (cont’d)

• The brain/neuron view of CONV layer

38

Putting them together (cont’d)

• The brain/neuron view of CONV layer

39

Putting them together (cont’d)

• Image input with 32 x 32 pixels convolved repeatedly with 5 x 5 x 3
filters shrinks volumes spatially (32 -> 28 -> 24 -> …).

40

Nonlinearity Layer in CNN

41

Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)

42

Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)

43

Nonlinearity Layer
• E.g., ReLU (Rectified Linear Unit)

• Pixel by pixel computation of max(0, x)

44

Pooling Layer in CNN

45

Pooling Layer
• Makes the representations smaller and more manageable

• Operates over each activation map independently
• E.g., Max Pooling

46

Pooling Layer
• Reduces the spatial size and provides spatial invariance

47

• Example
• Nonlinearity by ReLU

48

• Example
• Max pooling

49

Fully Connected (FC) Layer in CNN

50

FC Layer
• Contains neurons that connect to the entire input volume,

as in ordinary neural networks

51

FC Layer
• Contains neurons that connect to the entire input volume,

as in ordinary neural networks

52

CNN

53

Training Technique #1: Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Intuition: successful conspiracies
Example: 50 people planning a conspiracy
• Strategy A: plan a big conspiracy involving 50 people

• Likely to fail. 50 people need to play their parts correctly.
• Strategy B: plan 10 conspiracies each involving 5 people

• Likely to succeed!

54

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Training Technique #2: Data Augmentation

• Create virtual training samples
• Horizontal flip
• Random crop
• Color casting
• Geometric distortion

Deep Image [Wu et al. 2015] 55

http://arxiv.org/pdf/1501.02876v2.pdf

Training Technique #3: Batch Normalization

Credit: Andrew Ng 56

Batch Normalization (cont’d)

• Remarks
• Differentiable function; back propagation OK

• Procedure

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

Per-channel mean
across N samples

Per-channel std
across N samples

57

http://arxiv.org/pdf/1502.03167v3.pdf

What’d Be Covered in This Crash Course…

• Learning-based Computer Vision
• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision
• Convolutional Neural Networks
• Self-Supervised Learning
• Segmentation & Detection

• Generative Models
• Autoencoder, Variational Autoencoder,

Generative Adversarial Networks & Diffusion Models

• Sequence-to-Sequence Learning
• Attention is All You Need: Transformer

• Vision & Language Foundation Models
• Image-to-Text vs. Text-to-Image
• Parameter-Efficient Fine-tuning

58

Supervised Learning

59

• Deep learning plus supervised learning are rocking the world ...

60

• In real world scenarios, data-annotation is quite time-consuming

• Could one exploit supervised signals from unlabeled data?

Self-Supervised Learning (SSL)

61

• Learning discriminative representations from unlabeled data

• Create self-supervised tasks via data augmentation

Rotation
90。 Jigsaw Puzzle

Colorization

Self-Supervised Learning (SSL)

62

• Self-Supervised Pretraining

• Supervised Fine-tuning

Self-Supervised Learning (SSL)

63

• Pretext Tasks
• Jigsaw (ECCV’16)
• RotNet (ICLR’18)

• Contrastive Learning
• CPC (ICML’20)
• SimCLR (ICML’20)

• Learning w/o negative samples
• BYOL (NeurIPS’20)
• Barlow Twins (ICML’21)

RotNet

64

• Learning to predict the rotation angle

Gidaris et al. “Unsupervised Representation Learning by Predicting Image Rotations.” ICLR 2018

Jigsaw Puzzle

65

• Assign the permutation index and perform augmentation

• Solve jigsaw puzzle by predicting the permutation index

Noroozi et al. “Unsupervised learning of visual representations by solving jigsaw puzzles.” ECCV 2016

SimCLR

66Chen et al. "A simple framework for contrastive learning of visual representations." ICML 2020

• Attract augmented images and repel negative samples

• Improve the representation quality with projection heads (g)…why?

What’d Be Covered in This Crash Course…

• Learning-based Computer Vision
• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision
• Convolutional Neural Networks
• Self-Supervised Learning
• Segmentation & Detection

• Generative Models
• Autoencoder, Variational Autoencoder,

Generative Adversarial Networks & Diffusion Models

• Sequence-to-Sequence Learning
• Attention is All You Need: Transformer

• Vision & Language Foundation Models
• Image-to-Text vs. Text-to-Image
• Parameter-Efficient Fine-tuning

67

Image Segmentation

• Goal:
Group pixels into meaningful or perceptually similar regions

68

A Practical Segmentation Task

• Semantic Segmentation
• Supervised learning
• Assign a class label to each pixel in the input image (i.e., pixel-level classification)
• Not like instance segmentation, do not differentiate instances;

only care about pixel labels

69

Semantic Segmentation

• Sliding Window

70

Semantic Segmentation

• Fully Convolutional Nets

71

Fully Convolutional Networks (FCN)

• Remarks
• All layers are convolutional
• End-to-end training

72

SegNet

“SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation” [link]

• Efficient architecture (memory + computation time)
• Upsampling reusing max-unpooling indices
• Reasonable results without performance boosting addition
• Comparable to FCN

73

https://arxiv.org/pdf/1511.00561.pdf

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation [link]

74

Roadmap

Slide from A. Karpathy 75

Object Detection
• Focus on object search: “Where is it?”

• Build templates that quickly differentiate object patch from background patch

Object or
Non-Object?

Dog Model

76

Type of Approaches

• Sliding Windows
• “Slide” a box around the input image

or even across image scales (i.e., image pyramid)
• Classify each cropped image region inside the box

and determine if it’s an object of interest or not
• E.g., HOG (person) detector by Dalal and Triggs (2005)

Deformable part-based model by Felzenswalb et al. (2010)
Real-time (face) detector by Viola and Jones (2001)

• Region (Object) Proposals
• Generate region (object) proposals
• Classify each image region and determine it’s an object or not

77

Type of Approaches (cont’d)
• CNN-based Methods

78Slide credit: UMich EECS 498-007

Two-Stage vs. One-Stage Object Detection

Methods

Sliding Windows

Two−stage Frameworks

R−CNN
Fast R−CNN

Mask R−CNN
⋮

One−stage Frameworks

YOLO
YOLOv2
YOLOv3

⋮

79

Region Proposal

• Solution
• Use pre-processing algorithms to filter out some regions first,

and feed the regions of interest (i.e., region proposals) into CNN
• E.g., selective search

Uijilings et al. IJCV 2013 80

R-CNN, Fast R-CNN, & Faster R-CNN

81R-CNN (Ren et al. NIPS/NeurIPS 2015), Fast R-CNN (Girshick ICCV 2015), Faster R-CNN (arxiv. 2016)

One-Stage Object Detection:
Detection without Proposals

82

You Only Look Once (YOLO)
Divide the image into an S × S grid and for each grid cell predicts B bounding boxes,
confidence for those boxes, and C class probabilities.

These predictions are encoded as an S × S × (B ∗ 5 + C) tensor.

83

What’d Be Covered in This Crash Course…

• Learning-based Computer Vision
• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision
• Convolutional Neural Networks
• Self-Supervised Learning
• Segmentation & Detection

• Generative Models
• Autoencoder, Variational Autoencoder,

Generative Adversarial Networks & Diffusion Models

• Sequence-to-Sequence Learning
• Attention is All You Need: Transformer

• Vision & Language Foundation Models
• Image-to-Text vs. Text-to-Image
• Parameter-Efficient Fine-tuning

84

Discriminative vs. Generative Models (cont’d)

86Slide credit: UMich EECS 498-007

Discriminative vs. Generative Models (cont’d)

87Slide credit: UMich EECS 498-007

Discriminative vs. Generative Models (cont’d)

88Slide credit: UMich EECS 498-007

Discriminative vs. Generative Models (cont’d)

89Slide credit: UMich EECS 498-007

GenAI? Let’s Start from Autoencoder

• Autoencoder
• Autoencoding = encoding itself with recovery purposes
• In other words, encode/decode data with reconstruction guarantees
• Latent variables/features as deep representations
• Example objective/loss function at output:

• L2 norm between input and output, i.e.,

90Slide credit: W. Chiu

Take a Deep Look to Discover
Latent Variables/Representations (cont’d)

• What’s the Limitation of Autoencoder?

91Slide credit: W. Chiu

From Autoencoder to Variational Autoencoder

92Slide credit: W. Chiu

From Autoencoder to Variational Autoencoder (cont’d)

• Example Results

93Kingma et al., 2013

From Autoencoder to Variational Autoencoder (cont’d)

• Example Results
• A’ – A + B = B’

94Radford et al., 2015

Limitation of VAE?
• Remarks

• Why Gaussian distribution is sufficient?
• What if we only need the decoder/generator in practice?
• How do we know if the output images are sufficiently good?

95
Slide credit: W. Chiu

Generative Adversarial Network

• Idea
• Generator to convert a vector z (sampled from Pz)

into fake data x (from PG), while we need PG = Pdata

• Discriminator classifies data as real or fake (1/0)
• How? Impose an adversarial loss on the observed data distribution!

96Image credit: W. Chiu

Generative Adversarial Network (cont’d)

• Key idea:
• Impose adversarial loss on data distribution
• Let’s see a practical example…

97Slide credit: W. Chiu

Training Objective of GAN

• Jointly train generator G and discriminator D with a min-max game

• Train G & D with alternating gradient updates

98Slide credit: I. Goodfellow

Denoising Diffusion Models

• Recently emerging as powerful visual generative models
• Unconditional image synthesis
• Conditional image synthesis
• Outperforms GANs

99Slide credit: Kreis, Gao, & Vahdat

Diffusion Models Beat GANs on Image Synthesis,
Dhariwai & Nochol, OpenAI, 2021

Cascaded Diffusion Models for High Fidelity Image
Generation, Ho et al., Google, 2021

Denoising Diffusion Probabilistic Models (DDPM)
Learning to generate by denoising

• 2 processes required for training:
• Forward diffusion process – gradually add noise to input
• Reverse diffusion process

• learns to generate/restore data by denoising
• typically implemented via a conditional U-net)

• Comments about noise scheduling (see next slide)

100Slide credit: Kreis, Gao, & Vahdat

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

DDPM:
Learning to generate by denoising (cont’d)

• Forward diffusion process
• Gradually add noise to the input in T steps (e.g., via linear scheduling)
• Recall that x0 denotes clean input image, and xT is the final noisy one.
• Comments on q(xt|xt-1)

101
Slide credit: Kreis, Gao, & Vahdat

variance schedule
(hyperparameter)

Normal
distribution mean var

output

Learning of Diffusion Models

• Summary
• Training and sample generation

102
Slide credit: Kreis, Gao, & Vahdat

https://medium.com/@vedantjumle/class-conditioned-
diffusion-models-using-keras-and-tensorflow-9997fa6d958c

Learning of Diffusion Models

• Summary
• Training and sample generation

103
Slide credit: Kreis, Gao, & Vahdat
https://medium.com/ai-blog-tw/%E9%82%8A%E5%AF%A6%E4%BD%9C%E9%82%8A%E5%AD%B8%E7%BF%92diffusion-model-
%E5%BE%9Eddpm%E7%9A%84%E7%B0%A1%E5%8C%96%E6%A6%82%E5%BF%B5%E7%90%86%E8%A7%A3-4c565a1c09c

E.g., MNIST

https://medium.com/ai-blog-tw/%E9%82%8A%E5%AF%A6%E4%BD%9C%E9%82%8A%E5%AD%B8%E7%BF%92diffusion-model-%E5%BE%9Eddpm%E7%9A%84%E7%B0%A1%E5%8C%96%E6%A6%82%E5%BF%B5%E7%90%86%E8%A7%A3-4c565a1c09c

What’d Be Covered in This Crash Course…

• Learning-based Computer Vision
• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision
• Convolutional Neural Networks
• Self-Supervised Learning
• Segmentation & Detection

• Generative Models
• Autoencoder, Variational Autoencoder,

Generative Adversarial Networks & Diffusion Models

• Sequence-to-Sequence Learning
• Attention is All You Need: Transformer

• Vision & Language Foundation Models
• Image-to-Text vs. Text-to-Image
• Parameter-Efficient Fine-tuning

104

What Are The Limitations of CNN?

• Deal with image data
• Both input and output are images/vectors

• Simply feed-forward processing

DOG

CAT

MONKEY

105

More Applications in Vision

Image Captioning

Figure from Vinyals et al, “Show and tell: A neural image caption generator”, CVPR 2015
106

e.g., video indexinge.g., video predictione.g., image caption e.g., action recognition

107

Sequence-to-Sequence Modeling

Input in time tOutput in time t

tanh

tanh

tanh

108

Vanilla RNN, LSTM, & GRU

𝑥𝑥

RNN

𝑦𝑦

RNN

LSTM GRU

What’s the Potential Problem in RNN?

• Each hidden state vector extracts/carries information across time steps
(some might be diluted downstream).

• Information of the entire input sequence is embedded into
a single hidden state vector.

109

• Outputs at different time steps have particular meanings.

• However, synchrony between input and output seqs is not required.

What’s the Potential Problem? (cont’d)

110

• Connecting every hidden state between encoder and decoder?

• Infeasible!
• Both inputs and outputs are with varying sizes.
• Overparameterized
• Possible solution: attention

What’s the Potential Problem? (cont’d)

111

• Attention in a pre-defined sequential order

• Information loss due to long sequences…

• Connecting every hidden state between encoder and decoder?

• Infeasible!
• Both inputs and outputs are with varying sizes.
• Overparameterized

112

RNN with Attention is Good, But..

Transformer

• “Attention is all you need”, NIPS/NeurIPS 2017

• Self-attention for text translation

• Say goodbye to CNN & RNN

• More details available at:
http://jalammar.github.io/illustrated-transformer/

113

http://jalammar.github.io/illustrated-transformer/

Self-Attention (1/5)
• Query q, key k, value v vectors

are learned from each input x

114

𝑞𝑞𝑖𝑖 = 𝑊𝑊𝑄𝑄𝑥𝑥𝑖𝑖
𝑘𝑘𝑖𝑖 = 𝑊𝑊𝐾𝐾𝑥𝑥𝑖𝑖
𝑣𝑣𝑖𝑖 = 𝑊𝑊𝑉𝑉𝑥𝑥𝑖𝑖

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑞𝑞1 𝑘𝑘1 𝑣𝑣1 𝑞𝑞2 𝑘𝑘2 𝑣𝑣2 𝑞𝑞𝑁𝑁 𝑘𝑘𝑁𝑁 𝑣𝑣𝑁𝑁

…

Self-Attention (2/5)
• Relation between each input is modeled

by inner-product of query q and key k.

115

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑞𝑞1 𝑘𝑘1 𝑣𝑣1

𝒂𝒂𝟏𝟏,𝟏𝟏

𝑞𝑞2 𝑘𝑘2 𝑣𝑣2

𝒂𝒂𝟏𝟏,𝟐𝟐

𝑞𝑞𝑁𝑁 𝑘𝑘𝑁𝑁 𝑣𝑣𝑁𝑁

𝒂𝒂𝟏𝟏,𝑵𝑵

…

𝑎𝑎1,𝑖𝑖 = 𝑞𝑞1�𝑘𝑘𝑖𝑖
𝑑𝑑

, where 𝑎𝑎 ∈ 𝑅𝑅, 𝑞𝑞, 𝑘𝑘 ∈ 𝑅𝑅𝑑𝑑

Self-Attention (3/5)

• SoftMax is applied:

0 ≤ �𝑎𝑎𝑖𝑖 = 𝑒𝑒𝑎𝑎𝑖𝑖/∑𝑗𝑗N 𝑒𝑒𝑎𝑎𝑗𝑗 ≤ 1 , for I =1, …, N

116

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑞𝑞1 𝑘𝑘1 𝑣𝑣1

𝒂𝒂𝟏𝟏,𝟏𝟏

𝑞𝑞2 𝑘𝑘2 𝑣𝑣2

𝒂𝒂𝟏𝟏,𝟐𝟐

𝑞𝑞𝑁𝑁 𝑘𝑘𝑁𝑁 𝑣𝑣𝑁𝑁

𝒂𝒂𝟏𝟏,𝑵𝑵

…

SoftMax

�𝒂𝒂𝟏𝟏,𝟏𝟏 �𝒂𝒂𝟏𝟏,𝟐𝟐 �𝒂𝒂𝟏𝟏,𝑵𝑵

Self-Attention (4/5)

• Value vectors v are aggregated
with attention weight �𝑎𝑎 , i.e., 𝑦𝑦1 = ∑𝑖𝑖𝑁𝑁 �𝑎𝑎𝑖𝑖 � 𝑣𝑣𝑖𝑖

117

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁

𝑞𝑞1 𝑘𝑘1 𝑣𝑣1

�𝒂𝒂𝟏𝟏,𝟏𝟏

𝑞𝑞2 𝑘𝑘2 𝑣𝑣2

�𝒂𝒂𝟏𝟏,𝟐𝟐

𝑞𝑞𝑁𝑁 𝑘𝑘𝑁𝑁 𝑣𝑣𝑁𝑁

�𝒂𝒂𝟏𝟏,𝑵𝑵

…

x x x

𝑦𝑦1

Self-Attention (5/5)

• All 𝑦𝑦𝑖𝑖 can be computed in parallel

• Each 𝑦𝑦𝑖𝑖 considers 𝑥𝑥1~𝑥𝑥𝑁𝑁, modeling their long-distance dependencies.

• Global feature can be obtained by average-pooling over 𝑦𝑦1~𝑦𝑦𝑁𝑁

118

𝑣𝑣𝑁𝑁𝑣𝑣𝑁𝑁

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁…

𝑦𝑦1

Self-attention layer

𝑦𝑦2 𝑦𝑦3…

Multi-Head Self-Attention (1/4)

• Perform self-attention at different subspaces,
implying performing attention over different input feature types
(e.g., representations, modalities, positions, etc.)

119

Multi-Head Self-Attention (2/4)

• Perform self-attention at different subspaces,
implying performing attention
over different input feature types

• See example below

120

Attention weights
of Head 1

Attention weights
of Head 2

Multi-Head Self-Attention (3/4)

• A 2-head example, output of two heads are concatenated.

121

x x

𝑦𝑦𝑖𝑖,1

𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗

𝑞𝑞𝑖𝑖 𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖 𝑞𝑞𝑖𝑖 𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖 𝑞𝑞𝑁𝑁𝑞𝑞𝑗𝑗 𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗 𝑞𝑞𝑗𝑗 𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗

Head 1 Head 2 Head 1 Head 2

Multi-Head Self-Attention (4/4)

• A 2-head example, output of two heads are concatenated.

122

𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗

𝑞𝑞𝑖𝑖 𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖 𝑞𝑞𝑖𝑖 𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖 𝑞𝑞𝑁𝑁

x x

𝑦𝑦𝑖𝑖,1

𝑞𝑞𝑗𝑗 𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗 𝑞𝑞𝑗𝑗 𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗

Head 1 Head 2 Head 1 Head 2

𝑦𝑦𝑖𝑖,2 = 𝑦𝑦𝑖𝑖

The Residuals
• A residual connection followed by layer normalization

123

The Decoder in Transformer
• Encoder-decoder attention

• Q from self-attn in decoder, K & V from encoder outputs

• Masked multi-head attention
• Design similar to that of encoder, except for decoder #1

which takes additional inputs (of GT/predicted word embeddings).
• Mask unpredicted tokens during softmax: why?

124

The Decoder in Transformer (cont’d)
• Encoder-decoder attention

• Q from self-attn in decoder, K & V from encoder outputs

• Masked multi-head attention
• Design similar to that of encoder, except for decoder #1

which takes additional inputs (of GT/predicted word embeddings).
• Mask unpredicted tokens during softmax: why?

125

Overview of Decoding in Transformer

• Encoder/Decoder Cross-Attention + Decoder self-attention

126https://medium.com/ml-note/autoencoder-%E4%B8%89-self-attention-transformer-c37f719d222

https://medium.com/ml-note/autoencoder-%E4%B8%89-self-attention-transformer-c37f719d222

Vision Transformer
• “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”,

ICLR, 2021. (Google Research)

• Partition the input image into a patch sequence

• An additional token (*) is appended to perform attention on patches

• Both the “*” token and positional embeddings (denoted by 0, 1, 2 …)
are trainable vectors.

127

Query-Key-Value Attention in ViT

• E.g., An input image is partitioned into 4 patches,
with feature dimension = 3 (i.e., P=4 and D=3).

• Note that there are (P+1) rows since we have an additional token of *.

128

Query-Key-Value Attention in ViT (cont’d)

• By performing attention, the input sequence X (of length P+1) is
“transformed” into another sequence Y with the same length

• Again, that’s why it is called “Transformer” and as a seq2seq model.

129

Query-Key-Value Attention in ViT (cont’d)

• In standard vision transformer, we only take the first output token of
the output sequence (the first row of Y) for classification purposes

• This corresponds to the output when token “0” serves as query

130

Visualization of ViT

• To visualize the attention maps, we take the attention scores from the
first row of A (when token “0” serves as query)

• Note the first element is excluded, and thus there are P scores
corresponding to the P image patches

131

Example Visualization for Image Classification

132

What’d Be Covered in This Crash Course…

• Learning-based Computer Vision
• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision
• Convolutional Neural Networks
• Self-Supervised Learning
• Segmentation & Detection

• Generative Models
• Autoencoder, Variational Autoencoder,

Generative Adversarial Networks & Diffusion Models

• Sequence-to-Sequence Learning
• Attention is All You Need: Transformer

• Vision & Language Foundation Models
• Image-to-Text vs. Text-to-Image
• Parameter-Efficient Fine-tuning

133

Image Captioning

• Caption Transformer (CPTR) -
CPTR: Full Transformer Network for Image Captioning, arxiv 2021

• Motivation: patch translation for image captioning

134

Beyond Image Captioning:
Unified Vision & Language Model

135

• Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)
• Training data:

triplets of caption-tag-region
• Objectives:

1. Masked token loss for words & tags
2. Contrastive loss tags and others

• Fine-tuning:
5 vision & language tasks (VQA, image-text retrieval, image captioning, NOC, etc.)

Semantics-Aligned Pre-training for V+L Tasks

136

• Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)
• Training:

• Inputs: triplets of caption-tag-region
• Objectives: Masked token loss for words & tags + Contrastive loss tags and others

• Fine-tuning:
5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

Semantics-Aligned Pre-training for V+L Tasks (cont’d)

137

• Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)
• Training:

• Inputs: triplets of word-tag-region
• Objectives: Masked token loss for words & tags + Contrastive loss tags and others

• Fine-tuning:
• 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

139

• Oscar (cont’d)
• Fine-tuning:

5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)
• Take image-text retrieval as an example

• Training: aligned/mis-aligned image-text pairs as positive/negative input pairs,
with [CLS] for binary classification (1/0)

• Inference: for either image or text retrieval,
calculate classification score of [CLS] for the input query

Holding an apple or

CLIP: Contrastive
Language-Image
Pretraining

• OpenAI, Learning Transferable
Visual Models From Natural
Language Supervision, NeurIPS
WS 2021 (w/ 9000+ citations)

• Why DL/CNN not good enough?
• Require annotated data for

training image classification
• Domain gap between

closed-world and open-
world domain data

• Lack of ability for zero-shot
classification

140

CLIP (cont’d)

• Why DL/CNN not good enough?
• Require annotated data for training image classification
• Domain gap between closed-world and open-world domain data
• Lack of ability for zero-shot classification

• Motivation/Objectives
• Cross-domain contrastive learning from large-scale image-language data

141

CLIP (cont’d)

• (Zero-shot) Inference:

• Potential concerns/disadvantages?

142

BLIP-2 (ICML’23)
● BLIP:

Bootstrapping Language-Image Pre-training for Unified Vision-Language
Understanding and Generation, NeurIPS 2021

● Goal:
Bridge the modality gap between off-the-shelf frozen pre-trained image encoders and
frozen large language models with a lightweight Querying Transformer (Q-Former).

● Result:
1. SOTA performance on various downstream vision-language tasks.
2. Zero-shot image-to-text generation that can follow natural language instructions.

143

● Two-stage Pre-training
○ Stage 1:

VL representation learning which enforces the Q-Former to learn
visual representation that is most relevant to the text.

○ Stage 2:
VL generative learning makes the output representation of Q-Former
to be understood by LLMs.

Pre-training

144

Pre-training Stage 1 - VL Representation Learning

● Goal:
enforce the Q-Former to extract visual representation relevant to the text.

● Method: three pre-training tasks
○ Image-Text Matching (ITM):

for each learnable query -> linear classifier for binary decision

○ Image-grounded Text Generation (ITG):
self-attn in Q for encoder training; T->Q for image-to-text generation

○ Image-Text Contrastive Learning (ITC):
self-attn in Q/T, followed by max (sim(Q, T))

145

Pre-training Stage 2 - VL Generative Learning

● Goal:
Learning with LLM guidance
i.e., make the output representation of Q-Former to be understood by LLMs.

● Method:
pre-training with Image-grounded Text Generation (ITG)

146

Parameter-Efficient Fine-Tuning

● Adapter
○ VL-ADAPTER: Parameter-Efficient Transfer Learning for Vision-and-

Language Tasks (CVPR, 2022)
● Visual Prompt Tuning

○ Visual Prompt Tuning (ECCV, 2022)
● LoRA

○ LoRA: Low-Rank Adaptation of Large Language Models (ICLR, 2022)

147

Parameter Efficient Fine Tuning

Adapter Prompt Tuning

LoRA 148

VL-ADAPTER: Parameter-Efficient
Transfer Learning for Vision-and-Language Tasks

https://arxiv.org/abs/2112.06825

149

https://arxiv.org/abs/2112.06825

Visual Prompt Tuning

● Shallow:

● Deep:

https://arxiv.org/abs/2203.12119 150

https://arxiv.org/abs/2203.12119

LoRA: Low-Rank Adaptation of Large Language Models

● Previous problems
○ Adapter Layers Introduce Inference Latency
○ Directly Optimizing the Prompt is Hard

● LoRA

https://arxiv.org/abs/2106.09685 151

https://arxiv.org/abs/2106.09685

LoRA: Low-Rank Adaptation of LLMs (cont’d)

152

Adv. Topic: Knowledge Editing

● Motivation:
Knowledge updates everyday while retraining LLMs is expensive.

● Goal:
Propose more efficient & effective solutions to update knowledge in LLM

Editing Large Language Models: Problems, Methods, and Opportunities (EMNLP’23)
153

Adv. Topic: Unlearning

● Goal:
Erase the undesirable visual concepts from Diffusion Models.
Concepts can be abstractive concept, artistic style, object, or personality.

● Method:
Diffusion Model Fine-tuning.

154

What We (Try to) Cover Today…
• Learning-based Computer Vision

• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision
• Convolutional Neural Networks
• SSL, Segmentation & Detection

• Generative Models
• AE, VAE, GAN, & Diffusion Models

• Sequence-to-Sequence Learning
• Attention is All You Need: Transformer

• Vision & Language Foundation Models
• Image-to-Text vs. Text-to-Image
• Parameter-Efficient Fine-tuning

• Lots of research topics we haven’t covered…
• 3D vision
• Video-based synthesis & analysis, etc.

155

156

Feel free to reach me at ycwang@ntu.edu.tw

mailto:ycwang@ntu.edu.tw

	�Deep Learning for Computer Vision:�A Crash Course
	About Myself
	What’d Be Covered in This Crash Course…
	Linear Classification
	Linear Classification (cont’d)
	Linear Classification (cont’d)
	Remarks
	Loss Function
	Slide Number 9
	Slide Number 10
	Hierarchical Representation Learning
	Let’s Take a Closer Look…
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron
	Input-Output Function of a Single Neuron (cont’d)
	Weight Space of a Single Neuron
	Training a single neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Training a Single Neuron
	Overfitting and Weight Decay
	Training a Single Neuron (cont’d)
	Training a Neural Network with Two Hidden Layers
	Training a Neural Network with a Single Hidden Layer
	Hierarchical Models with Many Layers
	What’d Be Covered in This Crash Course…
	Recap: Linear Classification to Neural Nets
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	Putting them together → CNN
	Convolution Layer in CNN
	What is a Convolution?
	What is a Convolution?
	Putting them together
	Putting them together (cont’d)
	Putting them together (cont’d)
	Putting them together (cont’d)
	Nonlinearity Layer in CNN
	Nonlinearity Layer
	Nonlinearity Layer
	Nonlinearity Layer
	Pooling Layer in CNN
	Pooling Layer
	Pooling Layer
	Slide Number 48
	Slide Number 49
	Fully Connected (FC) Layer in CNN
	FC Layer
	FC Layer
	CNN
	Training Technique #1: Dropout
	Training Technique #2: Data Augmentation
	Training Technique #3: Batch Normalization
	Batch Normalization (cont’d)
	What’d Be Covered in This Crash Course…
	Supervised Learning
	Slide Number 60
	Self-Supervised Learning (SSL)
	Self-Supervised Learning (SSL)
	Self-Supervised Learning (SSL)
	RotNet
	Jigsaw Puzzle
	SimCLR
	What’d Be Covered in This Crash Course…
	Image Segmentation
	A Practical Segmentation Task
	Semantic Segmentation
	Semantic Segmentation
	Fully Convolutional Networks (FCN)
	SegNet
	U-Net
	Roadmap
	Object Detection
	Type of Approaches
	Type of Approaches (cont’d)
	Two-Stage vs. One-Stage Object Detection
	Region Proposal
	R-CNN, Fast R-CNN, & Faster R-CNN
	One-Stage Object Detection: �Detection without Proposals
	You Only Look Once (YOLO)
	What’d Be Covered in This Crash Course…
	Discriminative vs. Generative Models (cont’d)
	Discriminative vs. Generative Models (cont’d)
	Discriminative vs. Generative Models (cont’d)
	Discriminative vs. Generative Models (cont’d)
	GenAI? Let’s Start from Autoencoder
	Take a Deep Look to Discover �Latent Variables/Representations (cont’d)
	From Autoencoder to Variational Autoencoder
	From Autoencoder to Variational Autoencoder (cont’d)
	From Autoencoder to Variational Autoencoder (cont’d)
	Limitation of VAE?
	Generative Adversarial Network
	Generative Adversarial Network (cont’d)
	Training Objective of GAN
	Denoising Diffusion Models
	Denoising Diffusion Probabilistic Models (DDPM)�Learning to generate by denoising
	DDPM:�Learning to generate by denoising (cont’d)
	Learning of Diffusion Models
	Learning of Diffusion Models
	What’d Be Covered in This Crash Course…
	What Are The Limitations of CNN?
	More Applications in Vision
	Sequence-to-Sequence Modeling
	Slide Number 108
	What’s the Potential Problem in RNN?
	What’s the Potential Problem? (cont’d)
	What’s the Potential Problem? (cont’d)
	RNN with Attention is Good, But..
	Transformer
	Self-Attention (1/5)
	Self-Attention (2/5)
	Self-Attention (3/5)
	Self-Attention (4/5)
	Self-Attention (5/5)
	Multi-Head Self-Attention (1/4)
	Multi-Head Self-Attention (2/4)
	Multi-Head Self-Attention (3/4)
	Multi-Head Self-Attention (4/4)
	The Residuals
	The Decoder in Transformer
	The Decoder in Transformer (cont’d)
	Overview of Decoding in Transformer
	Vision Transformer
	Query-Key-Value Attention in ViT
	Query-Key-Value Attention in ViT (cont’d)
	Query-Key-Value Attention in ViT (cont’d)
	Visualization of ViT
	Example Visualization for Image Classification
	What’d Be Covered in This Crash Course…
	Image Captioning
	Beyond Image Captioning:�Unified Vision & Language Model
	Semantics-Aligned Pre-training for V+L Tasks
	Semantics-Aligned Pre-training for V+L Tasks (cont’d)
	Slide Number 139
	CLIP: Contrastive Language-Image Pretraining
	CLIP (cont’d)
	CLIP (cont’d)
	BLIP-2 (ICML’23)
	Pre-training
	Pre-training Stage 1 - VL Representation Learning
	Pre-training Stage 2 - VL Generative Learning
	Parameter-Efficient Fine-Tuning
	Parameter Efficient Fine Tuning
	VL-ADAPTER: Parameter-Efficient
Transfer Learning for Vision-and-Language Tasks
	Visual Prompt Tuning
	LoRA: Low-Rank Adaptation of Large Language Models
	LoRA: Low-Rank Adaptation of LLMs (cont’d)
	Adv. Topic: Knowledge Editing
	Adv. Topic: Unlearning
	What We (Try to) Cover Today…
	Slide Number 156

