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What’'d Be Covered in This Crash Course...

Learning-based Computer Vision
e From Linear to Non-Linear Classifiers

Start of Deep Learning for Computer Vision
e Convolutional Neural Networks
e Self-Supervised Learning
e Segmentation & Detection

Generative Models

e Autoencoder, Variational Autoencoder,
Generative Adversarial Networks & Diffusion Models

Sequence-to-Sequence Learning
e Attention is All You Need: Transformer

Vision & Language Foundation Models
* Image-to-Text vs. Text-to-Image
e Parameter-Efficient Fine-tuning



Linear Classification

e Linear Classifier
* Can be viewed as a parametric or algebraic approach.

* Consider that we have 10 object categories of interest

e E.g., CIFAR10 with 50K training & 10K test images of 10 categories.
Each image is of size 32 x 32 x 3 pixels.
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e Let’s take the input image as x, and the linear classifier as W.
We need y = Wx + b as a 10-dimensional output vector, indicating the score for each class.

3072x1

= [ f(x,W)|= (WK +|b | 10x1
10x1_ 10x3072

- f(x, W) ——

Array of 32x32x3 numbers 1

(3072 numbers total) W

parameters
or weights

10 numbers giving
class scores

Image credit: Stanford CS231n 5



Linear Classification (cont’d)

Linear Classifier

For example, an image with 2 x 2 pixels & 3 classes of interest
we need to learn a linear classifier W (plus a bias b),
so that desirable outputs y = Wx + b can be expected.

Stretch pixels into column

Input image
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Remarks

* InterpretingWiny=Wx+b
* Weights W are learned by observing (training) data X and their ground truth labels Y.
e Each row in W can be viewed as an exemplar of the corresponding class.
e Equivalently, we perform inner product between x and each row of W -> class similarity

* How to determine a proper objective/loss function for deriving W?
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Loss Function

e Cross-Entropy Loss (Multinomial Logistic Regression)

* Interpret classifier scores as probabilities

e Softmax function:

expLs
P(Y=k|X=xi)=M
Y exp(sj)
* See example below
Probabilities Probabilities
must be >=0 must sum to 1
cat 24.5 0.13
exp normalize
car 51 |=—|164.0|=—>| 0.87
frog | -1.7 0.18 0.00
Unnormalized log- unnormalized e
probabilities / logits probabilities probabilities

with s = f(x;; W) as the classifier output for input x;

Li=—=logP(Y =y; | X = x;)

L, = -log(0.13) = 2.04

What about this L?
What are its possibly min/max value??

Slide credit: UMich EECS 498-007 8



Cross-Entropy Loss (cont’d)

B

L; = —log(

exp (Sys)

% exp(sy)

)

e (Binary) Cross Entropy Loss (or Ly; see example

below):

Probabilities Probabilities

must be >=0 must sum to 1
cat 24.5 0.13 | = compare «[1.00

exp normalize

car 51 [(=—=|164.0|=—>| 0.87 Cross Entropy 0.00
frog | -1.7 0.18 0.00 0.00
Unnormalized log- unnormalized s Correct
probabilities / logits probabilities probabilities probs

Slide credit: UMich EECS

498-007



| score function

T
Yi

f(wi,W) data loss

Searching for W from L

e Computing gradients:
Following the slope to reach the (hopefully global) minimum for W.

* Gradient Descent via numeric or analytic gradients:

* |teratively step in the direction of the negative gradient & search for W
: o : negative
* Hyperparameters: weight initialization, # of steps, learning rate, etc. gradient

irecti iginal W
# Vanilla gradient descent WE direcian Rgina

w = initialize_weights()

for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)
w —= learning_rate * dw

e Stochastic Gradient Descent

* Full sumin Lis expensive when large N
e Approximate sum using a minibatch of instances (e.g., 32, 64, 128, etc.)

e Additional hyperparameters of batch size and data sampling

# Stochastic gradient descent

w = initialize_weights()

for t in range(num_steps):
minibatch = sample_data(data, batch_size)
dw = compute_gradient(loss_fn, minibatch, w)
w —= learning_rate * dw

Slide credit: UMich EECS 498-007



Hierarchical Representation Learning
Successive model layers learn deeper intermediate representations.

High-level
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Let’s Take a Closer Look...
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Input-Output Function of a Single Neuron

w = [0.6,0.8]
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron (cont’d)

w =1[0,1] contours Wiz + wyzy = c=w'z
51 ]%f sets direction of boundary
|w| sets steepness of boundary

X(z1,22) = 1+exp(—wW1z1 —W2z2)

16



Weight Space of a Single Neuron




Training a single neuron

training data

{z(n)}i\,f:l {t(n)}}yzl

inputs class labels

objective function:
[ G(w) ==, [t logx(z");w) + (1 — ") log (1 — x(2"); w))] ]

E(w) = 3> .w? regulariser discourages the network using extreme weights

w* = argmin M (w) = arg min [G(w) + o E(w)]
d w w
—M(w) = — Z(t(") — ™) 2™ L qw  weight decay - shrinks weights

dw - towards zero .



Training a Single Neuron
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Training a Single Neuron
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Overfitting and Weight Decay

training data

{z(n)}i\;l {t(n)}}yzl

inputs class labels

objective function:
Gw)=—->_ [t(") logx(2");w) + (1 — ") log (1 —x(z™); w)ﬂ

[ E(w)=3>", wf] regulariser discourages the network using extreme weights

w* = argmin M (w) = arg min [G(w) + o E(w)]
d w w
— M (w) = — Z(t(") — ™M) 2™ L qw  weight decay - shrinks weights

dw - towards zero -



Training a Single Neuron (cont’d)

®  original
® regularised

0 10 20 30 40 50
iteration

o
o b
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Training a Neural Network with Two Hidden Layers

Networks with hidden layers can be fit using gradient descent using an
algorithm called back-propagation.

_ 1
2(0) = T

K
p _ 1
, 'L(ak) — 14exp(—ag)
Wicxn
D
21 A, D A = Zd:l Wk,dzd

objective function:
GW,w) == [t logx™ + (1 — ") log (1 — x(™))] likelihood same as before

) _ 1 2 1 2 requlariser discourages extreme weights
EW,w) =55 ,w;i+ 5>, Wi g g g

{W,w*} = argmin M (W, w) = arg min [G(W, w) + o« E(W, w)]
W, w W, w

dG W w) Z dG(W, w) du™ -3 dG(W, w) de'™ da!™

aw;, da () aw,;

- Z 4Gt W w) 'E(n) da(™ d.JJ(”) dG (W, w) dz™ da(™ d:J:-,(n) da!™

1

dx()  daln ‘dWW ; dz(m) dal) d:l:_sn)<da$”5 dW;;




Training a Neural Network with a Single Hidden Layer

26




Hierarchical Models with Many Layers

output T

hidden
layer

inputs 2 29 2D
layer




What’'d Be Covered in This Crash Course...

e Start of Deep Learning for Computer Vision
e Convolutional Neural Networks
e Self-Supervised Learning
e Segmentation & Detection



Recap: Linear Classification to Neural Nets

e Linear Classifier

Image

f(x,W)|=[Wi

10x1

Array of 32x32x3 numbers

t

(3072 numbers total) W

parameters
or weights

10IX3072
f(x,W) ——

3072x1
+ b [ 10x1

10 numbers giving
class scores

Stretch pixels into column

ol 55
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Input image
2
hidden units

 Neural Network (Multilayer Perceptron)

Input

Weights

Qutput: o(w-x + b)

Sigmoid function:

I

a(l)= =
l+e

Image credit: Stanford CS231n
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- outputs
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Bishop 2006
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Convolutional Neural Networks

e How many weights for MLPs for images?

30



Convolutional Neural Networks

e Property | of CNN: Local Connectivity

e Each neuron takes info only from a neighborhood of pixels.

31



Convolutional Neural Networks

e Property Il of CNN: Weight Sharing

* Neurons connecting all neighborhoods have identical weights.

VEVEIA VA VA Vi

(RVEeR A TA
A

Ay
(el
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Putting them together > CNN

Local connectivity

Weight sharing

Handling multiple input channels

Handling multiple output maps

liD

# input channels # output (activation) maps

Weight sharing

Local connectivity

Image credit: A. Karpathy



Convolution Layer in CNN

CONVOLUTIOMAL LAYER

32x32x D

16 x 16 = I

ouTPUT

Full Connediion
1=x1=10

34



What is a Convolution?

‘1 0—1\

Filter

Output —3|-3|5| 3|1

Convolution is a local linear operator



What is a Convolution?

e Weighted moving sum

slide credit: S. Lazebnik



Putting them together

e The brain/neuron view of CONV layer

32x32x3 image
__ Ox9ox3 filter

A=
i

* 1 number:

g wn
synapse

—_—p
axon fram a neuron
Wy

cell body

E'{um + b

T“11',.r, -

activation
function

lt's just a neuron with local
connectivity...

the result of taking a dot product between

the filter and this part of the image
(l.e. 9"5*3 = 75-dimensional dot product)
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Putting them together (cont’d)

e The brain/neuron view of CONV layer

/
O

28 An activation map is a 28x28 sheet of neuron
outputs:
1. Each is connected to a small region in the input

A /
It

2. All of them share parameters
A AS “ox3 filter” -> “5x5 receptive field for each neuron”

Wl

38



Putting them together (cont’d)

* The brain/neuron view of CONV layer

=\

W

32

OO0 O(

D

28

28

E.g. with S filters,

CONYV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different

neurons all looking at the same
region in the input volume

39



Putting them together (cont’d)

* Image input with 32 x 32 pixels convolved repeatedly with 5 x5 x 3

filters shrinks volumes spatially (32 -> 28 -> 24 -> ..)).

A

7

32

CONV,
RelLU
e.g.6
5x5x3
filters

A

28

CONV,

RelLU
e.g. 10
5x5x6
filters

24

CONYV,

RelLU



Nonlinearity Layer in CNN

NOMLINEARITY LAYER

ouTPUT

Full Connedtion
1=x1=10

J2=32=3 16 % 16 x D

41



Nonlinearity Layer

E.g., ReLU (Rectified Linear Unit)

 Pixel by pixel computation of max(0, x)

FEATURE MAPS FEATURE MAPS
| | Rell | |
32x 32 x D 32x32x D

o
o
]
(mp]
-]
o
oo

Signal |_D

42



Nonlinearity Layer

E.g., ReLU (Rectified Linear Unit)

Pixel by pixel computation of max(0, x)

43



Nonlinearity Layer

E.g., ReLU (Rectified Linear Unit)

Pixel by pixel computation of max(0, x)

44



Pooling Layer in CNN

POOLING LAYER

ouTPUT

32x32=3 1=x1=10
32x32x D

45



Pooling Layer

Makes the representations smaller and more manageable
Operates over each activation map independently

E.g., Max Pooling

FEATURE MAPS
FEATUHEMAPS
lﬁwlﬁxD
32x32xD
Signal |_{]5‘.1267980
Convolution 9(-3|-3|5 3|1 |-9
Nonlinearity 9|0(0|5]|3|1]0
Pooling }
,—'N_.‘
max(9,0)

46



Pooling Layer
Reduces the spatial size and provides spatial invariance

Single depth slice

« 1112 ] 4
max pool with 2x2 filters
5| 6 |7 |8 and stride 2 6
32110 ' 3
1123 | 4
v >
224x224x64

112x112x64

pool

> 112
224 downsampling 5

224




Example

Nonlinearity by RelLU

48



Example
e Max pooling

49



Fully Connected (FC) Layer in CNN

FULL COMMECTION LAYER

32 x32x3

50



FC Layer

Contains neurons that connect to the entire input volume,
as in ordinary neural networks

FEATURE MAPS oUTRUT
‘ Full Connedion
16 % 16 % DD 1x1=10
9

Convolution 9-3|-3| 5| 3|1 |-

Nonlinearity

Pooling

Full Connection




FC Layer

Contains neurons that connect to the entire input volume,
as in ordinary neural networks

FEATURE MAPS
‘ Full Connedion
lﬁylﬁ}(D L1 =10
Signal 0151926 |7 |9|8]0
/ / / // / 3 weights Most computation
Convolution 9(-3|-3|5 (3|19
0 weights
Nonlinearity
0 weights
Pooling
8 weights Most parameters
Full Connection

52



CNN

FEATURE MAPS FEATURE MAPS
INPUT
h FEATURE MAPS OUTPUT
Comvolution | Relll Pooling | ‘ Full Connedion
32 x32x3 16 % 16 x I 1=1=10
32x32x D 32 x 32 x D

RELU RELU  RELU RELU  RELU RELU
cowlmw cowvlcomvj CONV u::crwl

.

L

'
2

airplane
ghip

I;mrse

Figure by Andre] Karpathy



Training Technique #1: Dropout

{a) Standard Neural Net (b) After applving dropont.

Intuition: successful conspiracies
Example: 50 people planning a conspiracy
e Strategy A: plan a big conspiracy involving 50 people
e Likely to fail. 50 people need to play their parts correctly.
e Strategy B: plan 10 conspiracies each involving 5 people
e Likely to succeed!

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]



http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Training Technique #2: Data Augmentation

e Create virtual training samples

e Horizontal flip
e Random crop
e Color casting

e Geometric distortion

\Y b * ‘

Horiomal strewch Moce Llorzonsal stretch Viertcal strewh More vertical sireich |

Deep Image [Wu et al. 2015]
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http://arxiv.org/pdf/1501.02876v2.pdf

Training Technique #3: Batch Normalization

?}’O_’ % ‘A — g
2 y A‘ Gt #
Cat  Non-Cat il T

“losuite chitt

X =Y

Credit: Andrew Ng
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Batch Normalization (cont’d)

* Remarks
» Differentiable function; back propagation OK
B _ 2(k) _ E[:E(k)]
Var|[z(¥)]

* Procedure

N
1. . Per-channel mean
1
across N samples

1=1
N
o2 — l} :(:C L u')z Per-channel std
J N bJ J7° across N samples
N X i=1
. Lij — Hyj ,
Tij = J J Normalized x,

| 1/0'32-+€ ShapeisNxD

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [loffe and Szegedy 2015]

57


http://arxiv.org/pdf/1502.03167v3.pdf

What’'d Be Covered in This Crash Course...

e Start of Deep Learning for Computer Vision

e Self-Supervised Learning



Supervised Learning

e Deep learning plus supervised learning are rocking the world ...

C1: feats C3:f. maps16@10x180 ; ®
: feature maps 4 f. maps 16@5x5
INPUT H7 1

32x32 82:f. may r
r

el

‘ | FuIIcunrJ|ec|ion ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

CS:layer rg:jayer OUTPUT
120 e o

o & 1' :

A woman is throwing a frisbee in a park. A dog Is standing on a hardwood floor.

STATIONARY BUILDING

STATIONARY VEGETATION

STATIONARY PAVEMENT

A little girl sitting on a bed with A group of peaple sitting on a boat
a teddy bear. in the water,

59



* Inreal world scenarios, data-annotation is quite time-consuming

e Could one exploit supervised signals from unlabeled data?

60



Self-Supervised Learning (SSL)

e Learning discriminative representations from unlabeled data

* Create self-supervised tasks via data augmentation

Colorization =x¢ (I Y/
90 ° Jigsaw Puzzle
Rotation

61



Self-Supervised Learning (SSL)

e Self-Supervised Pretraining

e Supervised Fine-tuning

___________________

Knowledge Transfer

Supervised Downstream Task Training
Labeled Dataset

P
2

62



Self-Supervised Learning (SSL)

* Pretext Tasks
e Jigsaw (ECCV’16) |
« RotNet (ICLR’18) é‘

Tmage X

* Contrastive Learning
e CPC (ICML'20)
e SimCLR (ICML’20)

e Learning w/o negative samples
e BYOL (NeurlPS’20)
e Barlow Twins (ICML'21)

Representations
(for transfer tasks)
Distorted A .
images ; Embeddings
— — ! -1 Empirical Target

— —>
B > 7B / feature
Y — dimension 63

Encoder  Projector

Al a|  cross-corr : Cross-Ccorr.
Images Y _,-——F-""'_k_. Z \ C T
Tt ] " Lot
0 L




RotNet

e Learning to predict the rotation angle

| Objectives:
| Obj K
o [
Maximize prob.
—» g(X,y=0) F(x°) [
Rotate 0 degrees : o | Predict 0 degrees rotation (y=0)
Rotated image: | [
| |
— Maximize prob.
—> g(X,y=1) F‘(x’l;mb |
Rotate 90 degrees o = | Predict 90 degrees rotation (y=1) l
otated image:
l
| Maximize prob |
— g(X,y=2 '
g(X,y=2) | F(x?)
Rotate 180 degrees S iage' LA | Predict 180 degrees rotation (y=2)
| I

- l

= I Predict 270 degrees rotation (3.r'=3‘,lJ

Rotate 270 degrees

Rotated image: X*

Gidaris et al. “Unsupervised Representation Learning by Predicting Image Rotations.” ICLR 2018 64



Jigsaw Puzzle

* Assign the permutation index and perform augmentation

* Solve jigsaw puzzle by predicting the permutation index

|

[
|
T

e

w

+

o~

Permutation Set

index permutation Reorder patches according to
the selected permutation

~

=]

L R T

64 9.4,683251,7

AN Y
w
0!3
l
I
5

0

1x11x96  5x5x256  3x3x384 3x3x384 3x3x256

Noroozi et al. “Unsupervised learning of visual representations by solving jigsaw puzzles.” ECCV 2016 65



SImCLR

e Attract augmented images and repel negative samples

* Improve the representation quality with projection heads (g)...why?

" attract I I attract \

C C

2] 22 22N-1 22N

8 8 g 8
h hy
[\ |\

Input
X1 .o

representation h 2N-1

han
ees L F N F N

augmentation

Input
Xn

Chen et al. "A simple framework for contrastive learning of visual representations." ICML 2020
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What’'d Be Covered in This Crash Course...

e Start of Deep Learning for Computer Vision

e Segmentation & Detection



Image Segmentation

e Goal:
Group pixels into meaningful or perceptually similar regions

68



A Practical Segmentation Task

Semantic Segmentation
e Supervised learning

e Assign a class label to each pixel in the input image (i.e., pixel-level classification)

* Not like instance segmentation, do not differentiate instances;
only care about pixel labels

69



Semantic Segmentation

e Sliding Window

Classify center
Extract patch pixel with CNN

Full image

P Cow
Cow
Grass

Problem: Very inefficient! Not
reusing shared features between

overlapping patches Farabet et al, “Leaming Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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Semantic Segmentation

e Fully Convolutional Nets

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv

Conv argmax

—

Input: J .
3xHxW Y Scores: Predictions:

CxHxW HxW

Sroblem: i Convolutions:
roblem: convolutions at DxHxW

original image resolution will
be very expensive ...

71



Fully Convolutional Networks (FCN)

e Remarks
* All layers are convolutional
e End-to-end training

Downsampling: Design network as a bunch of convolutional layers, with Bﬁsggliiﬂ;l%:strided

) : : ina inei 1
Pooling, Istrlded downsampling and upsampling inside the network! transpose convolution
convolution

Med-res: Med-res:
D2x H/4 x W/4 D2x H/4 x W/4

f

Low-res:
D3 X H/4 x W/4

High-res: High-res: Predictions:
3xHxW D, x H/I2 x W/2 D, x H/2 x W/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”®, CVPR 2015
MNoh et al, “Leaming Deconvolution Metwork for Semantic Segmentation”, ICCV 2015 72



SegNet

e Efficient architecture (memory + computation time)

e Upsampling reusing max-unpooling indices

e Reasonable results without performance boosting addition
e Comparable to FCN

Convolutional Encoder-Decoder

Output

Pooling Indices »

EY

RGB Image

I Conv + Batch Normalisation + RelLU Segmentation
I Pooling I Upsampling Softmax

“SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation” [link]
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https://arxiv.org/pdf/1511.00561.pdf

U-Net

input
image
tile

572 x 572

¥

570 x 570
568 x 568

| 64 64

128 64 64 2

output
segmentation
map

¥
\ 4
\J

392 x 392
388 388
288 x388 ¥

¥ 126 128 I

256 128
Jall s = E B
[=e] W=so] (9]
3] B3N od '
' 256 256 512 256

«& copy and crop
¥ max pool 2x2
4 up-conv 2x2

=» CONV 1x1

» %I:IEIEI =» conv 3x3, RelLU

512

512 512

522

U-Net: Convolutional Networks for Biomedical Image Segmentation [link]
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Roadmap

Classification Object Detection Instance

Classification

+ Localization

Segmentation

» r- ,
1} i, "f
g . "
4

CAT, DOG, DUCK CAT, DOG, DUCK

A K W
N

Single object Multiple objects

Slide from A. Karpathy 75



Object Detection

e Focus on object search: “Where is it?”

e Build templates that quickly differentiate object patch from background patch

Object or
Non-Object?
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| Lewel 4
Blurand ‘4415 resolution

subsample & | Level3

Blurand 1/8 msalulion
Type of Approaches
yp pp : 1/4 = solution
Blur and
subsample :
Level 1
Blur and 1/2 resolution
T . subsample
e Sliding Windows vl
eve
e “Slide” a box around the input image Original

. . . . P E image
or even across image scales (i.e., image pyramid) L

» Classify each cropped image region inside the box
and determine if it’s an object of interest or not

e E.g., HOG (person) detector by Dalal and Triggs (2005)
Deformable part-based model by Felzenswalb et al. (2010)
Real-time (face) detector by Viola and Jones (2001)

e Region (Object) Proposals
e Generate region (object) proposals
» Classify each image region and determine it’s an object or not
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Type of Approaches (cont’d)

e CNN-based Methods

“\What” Correct label:
Cat J
Fully Class Scores
Connected: Cat: 09 — Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01 l
Weighted Loss
Sum
Treat localization as a 4096 ggggctacc)tjd: Box _ — L2 LossS
regression problem! Coordinates ‘
(x, y, w, h)
“Where” Correct box:

(x’, ¥, w’, h')

Slide credit: UMich EECS 498-007 78



Two-Stage vs. One-Stage Object Detection

Methods

( Sliding Windows
( R-CNN
Fast R-CNN

Two-stage Frameworks -« Mask R=CNN

. \

( YOLO
YOLOv2
One-stage Frameworks - YOLOV3

\ \
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Region Proposal

e Solution

» Use pre-processing algorithms to filter out some regions first,
and feed the regions of interest (i.e., region proposals) into CNN

e E.g., selective search

80

Uijilings et al. IJCV 2013



R-CNN, Fast R-CNN, & Faster R-CNN

I Log loss + Smooth L1 loss

j‘/ Li

|_E.-b_;;g_i|—g;‘l'h:15-| Linear + .

L - softmax p—— G -
P

'r__Ebm-t WEJ_?':MS_J / ‘t ; o Lilsi-'.flh‘\tatmn Bounding-box
A ) regression los
Bhoxreg | | SvMs | P i _ FCs 2 =
ad BV Cony Net /:"//"_!; P " proposals

M Region Proposal Network 25
feature map '

R-CNN (Ren et al. NIPS/NeurlPS 2015), Fast R-CNN (Girshick ICCV 2015), Faster R-CNN (arxiv. 2016) 81



One-Stage Object Detection:
Detection without Proposals

Go from input image to tensor of scores with one big convolutional network! -

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- | Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3XHxW 7x7 TxTx(d"8B+C)
Image a set of base boxes
Redmon et al, “You Only Look Once: centered at each grid cell
Unified, Real-Time Object Detection”, CVPR 2016 H ere B - 3

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
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You Only Look Once (YOLO)

Divide the image into an S x S grid and for each grid cell predicts B bounding boxes,
confidence for those boxes, and C class probabilities.

These predictions are encoded asan S xS x (B * 5 + C) tensor.

S x S grid on input Final detectlons

Class probability map

83



What’'d Be Covered in This Crash Course...

* Generative Models

e Autoencoder, Variational Autoencoder,
Generative Adversarial Networks & Diffusion Models



Discriminative vs. Generative Models (cont’d)

P(cat| gt )

Discriminative Model:

Learn a probability -
distribution p(y|x) . p(dog | )

Generative Model:
Learn a probability
distribution p(x)

P(dog |[Z4)

Conditional Generative

Model: Learn p(x|y) Discriminative model: the possible labels for
each input “compete” for probability mass.
But no competition between images

Slide credit: UMich EECS 498-007 86



Discriminative vs. Generative Models (cont’d)

Discriminative Model:

Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Discriminative model: No way for the model
to handle unreasonable inputs; it must give

label distributions for all images

Slide credit: UMich EECS 498-007 87



Discriminative vs. Generative Models (cont’d)

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability

distribution p(x)

Conditional Generative
Model: Learn p(x]|y)

0]

P(
o

N “
:I
i i

\ we
I e I e ¥ + &,
R e i L i i /)
L b . - ‘K‘ ol -
RN 4 5 § 2 & AR
Bl 4 sl iR =

Generative model: All possible images compete
with each other for probability mass

)

Model can “reject” unreasonable inputs by
assigning them small values

Slide credit: UMich EECS 498-007 88



Discriminative vs. Generative Models (cont’d)

P(g | cat)
Discriminative Model: ] P([Icat) P(#|cat) p(B | cat)
Learn a probability ] [ =
distribution p(y|x) P dog)

Generative Model:

Learn a probability
distribution p(x)

Con(;:llTlonal Generative Conditional Generative Model: Each possible
Model: Learn p(x|y) label induces a competition among all images

Slide credit: UMich EECS 498-007 89




GenAl? Let’s Start from Autoencoder

e Autoencoder

e Autoencoding = encoding itself with recovery purposes
* In other words, encode/decode data with reconstruction guarantees
e Latent variables/features as deep representations

* Example objective/loss function at output:

* L2 norm between input and output, i.e.,

-

Original
input

Encoder

— Decoder —>.2
Reconstructed
input

Compressed P

representation

most important information
of input image = latent space

Slide credit: W. Chiu
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Take a Deep Look to Discover
Latent Variables/Representations (cont’d)

e What’s the Limitation of Autoencoder?

Reconstructed

input

latent space

i
by Y
i
'] = W | 1
%
1 gl
o, il
g = LY
O] < e A
== iy e
Ry - 3 !
e S 1
"y g
iy

]
= Rwhat might it
be? We wanna to have “distribution” (2 )

Only samples, how about other where we can sample from any location
regions not covered?

Z" Encoder —»E—» Decoder —rz
compressed
representation
=
|
&
M

Original
input

Slide credit: W. Chiu 91



From Autoencoder to Variational Autoencoder

Now is a “distribution”, we can assume it to be
a distribution easy to sample from, e.g. Gaussian

||X — fI(S\IHl

/(2)
1

38(0‘1512 ructed

input

assume p(z) = N(0,) | Decoder
KELIN (e X), S (XA (0. 1) ()

A

Sample = from N (j¢( X), (X))

representation

Conpressed
tatis

Encoder

(@)

A

-f-‘i.'

z—) Encoder —ri—» Decoder —b-z

driginal
input

Slide credit: W. Chiu 92



ld)

From Autoencoder to Variational Autoencoder (cont

* Example Results

E 2
ﬂmﬂ#mummﬂlal

>~
DA ANNAALRE LN NSNS
VIV ELLELLLLW NN~~~
VAV boboveww~~
QUAVQD Iy by g to e WV W W~~~
QAUAVUUIDINn o ot VYYDV e = ——
QOO0 NOINININH o N BPIDIIDD 9 = = —
QOOOMIMMNMMo DI ID D = ——
QOODMIM NI ) MM ) 0Y WD DD D o e = —
QODMIN MMM M) 0N 0D D DD e = —
QODWMM MMM D D s e —
QOMME MMM N D00 OO e am o e =
QO 0 0000 00 0 o B B
QAN PPt s oo~~~
Ol e e O o~
oo ororororororrrseor~r~
JandadadocrorrrrrrT 0N~
JddadadadocorocrrrrTTTRO0NMN
SddddagrorrrrrdrFrTTR2N
SAdTTFTTrTrrrrrdFrrRIRREN
bqqqqqqqﬂﬂq????????F

(b) Learned MNIST manifold

(a) Learned Frey Face manifold

93

Kingma et al., 2013



From Autoencoder to Variational Autoencoder (cont’d)

* Example Results
« N—A+B=B

Man

with glasses

Woman with Glasses

Radford et al., 2015 94



PIER)
P(mll)

P(iRN)
Limitation of VAE? ] I =

e
- = L
) o ¢

* What if we only need the decoder/generator in practice?

e Remarks
* Why Gaussian distribution is sufficient?

 How do we know if the output images are sufficiently good?
‘ 2 7%

—» Encoder E Decoder —»

original
input

| just want to learn generator!
o9

oF 3

latent generated image
code

might look like a fake image,
how to get it more realistic?

generated distribution true data distribution

B(x)

unit gaussian

generative
O model .
2 || (neural net) loss
image space image space 95

Slide credit: W. Chiu



Generative Adversarial Network

e |dea

e Generator to convert a vector z (sampled from P,)
into fake data x (from P;), while we need P, =P_,.

» Discriminator classifies data as real or fake (1/0)
e How? Impose an adversarial loss on the observed data distribution!

o

latent
code

discriminator

tralnlng |mag

Image credit: W. Chiu



Generative Adversarial Network (cont’d)

* Key idea:
* Impose adversarial loss on data distribution
e Let’s see a practical example...

generator: try to generate more realistic images to cheat discriminator
. nerated or real

Slide credit: W. Chiu 97



o3 Q
Training Objective of GAN

generated image
code

= iy * Ty
= g A
/

e Jointly train generator G and discriminator D with a min-max game tmining image

discriminator

i/

Discriminator wants

Discriminator wants
D(x) = 1 for real data D(x) = 0 for fake data
A A
( (

min max (E

\
inmax { Exp ., [log D) + E, () [log (1 — D(G(z)))D

Generator

Generated
Network

\
Discriminator

Sample
Sample

Y
Network Generator wants
z from p, S L

[ Fake D(x) = 1 for fake data
D

B L

* Train G & D with alternating gradient updates

m(jn mDaX V(G,D) Fortinl,..T:

1. (Update D) D =D + apg—z
2. (Update G) G =G — a(;%

Slide credit: I. Goodfellow
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Denoising Diffusion Models

* Recently emerging as powerful visual generative models
* Unconditional image synthesis
e Conditional image synthesis
e Qutperforms GANs

DALL-E 2 Imagen

A group of teddy bears in suit in a corporate office celebrating
the birthday of their friend. There is a pizza cake on the desk.

“a teddy bear on a skateboard in times square”

Diffusion Models Beat GANs on Image Synthesis, Cascaded Diffusion Models for High Fidelity Image
Dhariwai & Nochol, OpenAl, 2021 Generation, Ho et al., Google, 2021

Slide credit: Kreis, Gao, & Vahdat
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Denoising Diffusion Probabilistic Miodels (DDPM)

Learning to generate by denoising

e 2 processes required for training:
e Forward diffusion process — gradually add noise to input
* Reverse diffusion process
* learns to generate/restore data by denoising
e typically implemented via a conditional U-net)
 Comments about noise scheduling (see next slide)

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Slide credit: Kreis, Gao, & Vahdat 100



DDPM:

Learning to generate by denoising (cont’d)

e Forward diffusion process
e Gradually add noise to the input in T steps (e.g., via linear scheduling)
* Recall that x, denotes clean input image, and x; is the final noisy one.
e Comments on q(x,|X,)

Forward diffusion process (fixed)

Data Noise
.. b e o . "
Normal
distribution mean var ;i
q(xi|xi—1) = N(x¢; V1 — Bixe1. BI) = q(x17|X0) = H(_I(xtle~1) (joint)
output f t=1
variance schedule
(hyperparameter)
101

Slide credit: Kreis, Gao, & Vahdat



St

Learning of Diffusion Models

Conv 2D
Con2d

e Summary ( U d ) a2
* Training and sample generation Noieg TwAE  Noke Enpngs MO
Algorithm 1 Training Algorithm 2 Sampling (Hfuson-motls-ueingeres.nd-tenorflow 5997 aba5tc
:12: repeat (x0) 1: x7 ~N(0,I)
At Zdowt=1T,...,18

3: t~ Uniform({1,...,T}) 3. 0er N(6 n 0

4: €~ N(0,I) ) ’ =

5: Take gradient descent step on 4 X1 = ﬁ (xt - \}T%GG (xt, t)) + o1z

Vo ||€ — ea((Varxo + VI — ae t)||2 5: end for
6: return x,

6: until converged

Forward diffusion process (fixed)

Data Noise
X Xj Xg X3 Xy e Xt
\ /
 Reverse denoising process (generative)
Data Noise

Slide credit: Kreis, Gao, & Vahdat



Learning of Diffusion Models

e Summary
e Training and sample generation

Algorithm 1 Training Algorithm 2 Sampling
;’ repeat x0) 1: x7 ~ N(0,I)
. Xp ~ q(Xo —
3: t~ Uniform({1,...,T}) g fozri NfO I),ldo
4. €~ N(O, I) ‘ —ox
5: Take gradient descent step on 4 X1 = \/L—t (xt = \}1—?.-‘,766 (xt,t)) + o1z
Vo ||€ — €o(v/@exo + I — aze t)||2 5: end for
6: until converged 6: return x,

L e L L (e n e [0 N N MW W 8 B
B P i e Lt I R R
s aw (e[ 0[50 n

.--Lhmmhhhﬁﬂhhh&

More steps

Slide credit: Kreis, Gao, & Vahdat
https://medium.com/ai-blog-tw/%E9%82%8A%E5%AF%A6%E4%BD%ICHEI%82%SABESBAD%BE%ET7%BF%92diffusion-model-

%E5%BE%IEddpm%E7%9A%84%E7%B0%A1%ES%8C%I6%E6%A6%82%ES5%BF%B5%E7%90%86%E8%A7%A3-4c565a1c09¢

E.g., MNIST
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https://medium.com/ai-blog-tw/%E9%82%8A%E5%AF%A6%E4%BD%9C%E9%82%8A%E5%AD%B8%E7%BF%92diffusion-model-%E5%BE%9Eddpm%E7%9A%84%E7%B0%A1%E5%8C%96%E6%A6%82%E5%BF%B5%E7%90%86%E8%A7%A3-4c565a1c09c

What’'d Be Covered in This Crash Course...

e Sequence-to-Sequence Learning
e Attention is All You Need: Transformer



What Are The Limitations of CNN?

e Deal with image data
* Both input and output are images/vectors

e Simply feed-forward processing

DOG

CAT

MONKEY
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More Applications in Vision

Image Captioning

Vision

O

Language

Deep CNN Generating

RNN

—

o

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

Figure from Vinyals et al, “Show and tell: A neural image caption generator”, CVPR 2015
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Sequence-to-Sequence Modeling

one to many many to one many to many many to many

e.g., image caption e.g., action recognition e.g., video prediction e.g., video indexing

107



Vanilla RNN, LSTM, & GRU

hi—1
Tt

)

A

Y

Outputintimet

Inputin time t

108



What’s the Potential Problem in RNN?

e Each hidden state vector extracts/carries information across time steps
(some might be diluted downstream).

* |Information of the entire input sequence is embedded into
a single hidden state vector.

An pomum comedit me
A A + A
RNN - > b » BRNN G- I > RNN - > b » RNN - » o b > BRNN - > - » BRNN - > e » RNN - > e » RNN




RNN -

What’s the Potential Problem? (cont’d)

e QOutputs at different time steps have particular meanings.

e However, synchrony between input and output seqs is not required.

A \ 4 \

An pomum comedit
A ‘.“ A
e > BNN - » > BNN - > - > BNN > > RBRNN - > » BNN - > e > BNN - »
3 A A A
ate an apple <BOS> An pomum

comedit

110



What’s the Potential Problem? (cont’d)

 Connecting every hidden state between encoder and decoder?

RANN i» » BNN l» > BNN > > RNN D» ANN oy % BNN > % BNN [-» » RNN

e Infeasible!
e Both inputs and outputs are with varying sizes.
e QOverparameterized
» Possible solution: attention

111



RNN with Attention is Good, But..

e Attention in a pre-defined sequential order

* Information loss due to long sequences...

e Connecting every hidden state between encoder and decoder?

RNN - b bl L aam bl b AN bl e A sl L A Ll L s
A ]
[ ]

* Infeasible!
e Both inputs and outputs are with varying sizes.

e Qverparameterized



Transformer

* “Attention is all you need”, NIPS/NeurlPS 2017

. : . .
Self-attention for text translation
e Say goodbye to CNN & RNN f\
. . F
* More details available at: il
http://jalammar.github.io/illustrated-transformer/ ’_%
e | B Add & Norm
- CAkiE o) Multi-Head
Feed Attention
Forward 7 7 Nx
e
Add & Norm
$ Nx | —»(TAdd & Norm ) e
[ e Multi-Head Multi-Head
1 3 Attention Attention
[ Feed Forward J ( Encoder-Decoder Attention ‘ ’ ‘ } ,
) —_— I (\—— Q —
( Self-Attention Self-Attention .
Positional o) Positional
f t Encoding E._ Encoding
Input Output
Embedding Embedding
INnputs Qutputs

(shifted right)

113


http://jalammar.github.io/illustrated-transformer/

Self-Attention (1/5)

Embedding b 1 I x [
* Query g, key k, value v vectors
are learned from each input x Quertes « [ we
q; = W,
ki = Wle'
Vi = vai

L.

114



Self-Attention (2/5)

e Relation between each input is modeled
by inner-product of query g and key k.

a,; = iwhereaER k € R4
1l \/Hr ;q;

Input

Embedding
Queries
Keys

Values

Score

Thinking

x [

Machines

x. [T
o [
« DI

11T
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Input Thinking Machines
e Embedding X4 I:I:I:D le:l:l:D
Self-Attention (3/5) S D
Keys k[ k: [
e SoftMax is applied: Value . [ (111
N . Sco e k= qr e ke =
0<a =e%/Y;eY <1, forl=1,.,N
Divide by 8 (/d )
o L Softmax
a1 aq? .
A al,N A
[ SoftMax
ai ai?2 ain
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Self-Attention (4/5)

* \Value vectors v are aggregated
with attention weight d,i.e,y, =YV a; - v;

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (vd; )

Softmax

Thinking
x+ IR
o O
« [
[
qie k

117



Self-Attention (5/5)

e All y; can be computed in parallel
* Each y; considers x; ~x,, modeling their long-distance dependencies.

» Global feature can be obtained by average-pooling over y; ~yy

V1 Y2 Y3

Self-attention layer
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Multi-Head Self-Attention (1/4)

* Perform self-attention at different subspaces,
implying performing attention over different input feature types
(e.g., representations, modalities, positions, etc.)

X

ATTENTION HEAD #0 ATTENTION HEAD #1

Qo Q1

ﬁ Wo@

s

w;Q

ERE

Calculating attention separately in
eight different attention heads

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

H 3 +H
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The
Law

The
Law

Multi-Head Self-Attention (2/4) Se—

*‘ 1' Wo@ |

e Perform self-attention at different subspaces, Th ‘ 3

: : : ) HH
implying performing attention
over different input feature types ‘ 2
L I
e See example below
5 :
- = o c A = o
. 5} 8z £ S @O A k3] T D e s
5 0 L 3 = = 2 S 5 8 g3 i £ 9
= = = = 2 0 5 ) o 0 0 = O = o'z _ 2 = B s 3 o ] & =
5288 228633 £20388¢ EE‘?,‘.'#G‘ E5S588 TS5BS  Eaz2RE :BE
S08F EL53I8E2LCEYLP CSE5 4t ZRTISF L3323 2FIgE SEs
2 2 a £ g e % g 2 2 3
o [=}
(U @©
Attention weights Attention weights

of Head 1 of Head 2

120
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Multi-Head Self-Attention (3/4)

* A 2-head example, output of two heads are concatenated.

Yi1




Multi-Head Self-Attention (4/4)

* A 2-head example, output of two heads are concatenated.

Yii JYi2 = Vi

1
KMB
1

L1 1

Head 1 @ Head 2




2
(C
-

2
n
Y

oc
v

N o

-

e A residual connection followed by layer normalization

Add & Normalize

C

( Feed Forward ) ( Feed Forward )

Z2

Z1

A

A Add & Normalize

LayerNorm(

Self-Attention

L# 43d0ON3

123
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Thinking
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The Decoder in Transformer

e Encoder-decoder attention
e Qfrom self-attn in decoder, K & V from encoder outputs

e Masked multi-head attention

e Design similar to that of encoder, except for decoder #1
which takes additional inputs (of GT/predicted word embeddings).

e Mask unpredicted tokens during softmax: why?

( — )
,-i;( : Add & Normalize + )\ ' ( Lin‘:ar )

E ( Feed Forward ) ( Feed Forward ) ' - ‘ -

1 s T R S 3 E Sk . ECODER # .

9 ‘.p( : Add & Normalize . ) "( T )
\\::. _(_ ______ 7 T S:e_!f_—;i«t-tn-arjt-iczrj Y 3 ‘2/ ( Feed Forward ) ( Feed Forward )
r//,-b( Add & Normalize )\ ; "‘( Add & Normalize )

. [ L | T )
_ i ( Feed Forward ) ( Feed Forward ) ";'( Encoder-Decoder Attention )
G | i e S v e N e S e e Y o i BB i ¥
,.p( Add & Normalize ) ‘-p( Add & Normalize )
E ( 4 $ ) : ( 1 4 )
| Self-Attention ' Self-Attention
T TR o S ¥ Whsromrr errrr——
e & S S &
30 I I I [ [T 1]
Thinking Machines
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The Decoder in Transformer (cont’d)

* Encoder-decoder attention
e Q from self-attn in decoder, K & V from encoder outputs

* Masked multi-head attention
e Design similar to that of encoder, except for decoder #1

which takes additional inputs (of GT/predicted word embeddings).

e Mask unpredicted tokens during softmax: why?

Decoding time step: 1(2)3 4 5 6 OUTPUT

t

r

( Linear + Softmax
Iy Y I B

CEEsREEs

)\
[ ENCODERS ] [ DECODERS ]
/

Y

EMBEDDING t t U 1A
WITHTIME 0[O0 [
SIGNAL
EMBEDDINGS NN [EEE  [EEED T
INPUT Je suis  étudiant PREVIOUS

OUTPUTS
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Overview of Decoding in Transformer

* Encoder/Decoder Cross-Attention + Decoder self-attention

https://medium.com/ml-note/autoencoder-%E4%B8%89-self-attention-transformer-c37f719d222 126



https://medium.com/ml-note/autoencoder-%E4%B8%89-self-attention-transformer-c37f719d222

Vision Transformer

* “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”,
ICLR, 2021. (Google Research)

e Partition the input image into a patch sequence
e An additional token (*) is appended to perform attention on patches

e Both the “*” token and positional embeddings (denoted by 0, 1, 2 ...)
are trainable vectors.

Vision Transformer (ViT)

MLP
Head
Transformer Encoder ]
i
P et 30 60

* Extra learnable
[class] embedding Lll‘lt‘.dl‘ Pr(}Jectmn nf Fldttcncd Patches

NN I ) Y
mma%allmm.ﬁwﬂ

A s P 127




Query-Key-Value Attention in VIiT

 E.g., Aninputimage is partitioned into 4 patches,
with feature dimension = 3 (i.e., P=4 and D=3).

* Note that there are (P+1) rows since we have an additional token of *.

(P+1)xD QKT
Attention(Q, K, V') = softmax( 1%
X W, vV dk
" (P+1)x (P+1)
]
Q v
(P+1)xD X— 1 (P+1)xD
Dx(P+1)
X Wy A '
> = X L 5
KT )
X Y
(P+1)xD
P: Patch Number
X WV D: Dimension

Wy kv Learnable Matrices
Q, K, V: Query, Key, Value
V A: Attention Matrix
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Query-Key-Value Attention in ViT (cont’d)

e By performing attention, the input sequence X (of length P+1) is
“transformed” into another sequence Y with the same length

e Again, that’s why it is called “Transformer” and as a seq2seq model.

(P+1)xD
X WQ
(P+1)x(P+1)
]
Q
(P+1)xD X— 1 (P+1)xD
Dx(P+1)
X Wy A '
L — X _’
KT Y
X Y
(P+1)xD
P: Patch Number
% WV D: Dimension

Wy kv Learnable Matrices
Q, K, V: Query, Key, Value
V A: Attention Matrix




Query-Key-Value Attention in ViT (cont’d)

* |n standard vision transformer, we only take the first output token of
the output sequence (the first row of Y) for classification purposes

e This corresponds to the output when token “0” serves as query

(P+1)xD
X WQ Vision Transformer (ViT)
P+ x(P+1) E
. Head
Q v ,
(P + 1) X D X > (P + 1) X D Transformer Encoder ’
D x (P + 1) )
> e x 5
KT 1
Y
(P+1)xD
P: Patch Number
X Wy D: Dimension

Wy k,v: Learnable Matrices
Q, K, V: Query, Key, Value
|74 A: Attention Matrix
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Visualization of ViT

* To visualize the attention maps, we take the attention scores from the
first row of A (when token “0” serves as query)

* Note the first element is excluded, and thus there are P scores
corresponding to the P image patches

(P+1)xD
X W,
- P+1)x(P+1)
Q 3
(P+1)xD X (P+1)xD
Dx(P+1)
X Wy A
L ——— x _’
KT y
X Y
(P+1)xD
P: Patch Number
X WV D: Dimension

> Wq kv Learnable Matrices
Q, K, V: Query, Key, Value
V A: Attention Matrix
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Example Visualization for Image Classification
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What’'d Be Covered in This Crash Course...

e Vision & Language Foundation Models
* Image-to-Text vs. Text-to-Image
e Parameter-Efficient Fine-tuning



Image Captioning

e Caption Transformer (CPTR) -

CPTR: Full Transformer Network for Image Captioning, arxiv 2021

e Motivation: patch translation for image captioning
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Beyond Image Captioning:
Unified Vision & Language Model

Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)
* Training data:

triplets of -tag-region
* Objectives:
1. Masked token loss for & tags

2. Contrastive loss tags and others
* Fine-tuning:
5 vision & language tasks (VQA, image-text retrieval, image captioning, NOC, etc.)

~

Image-Text Pairs: 6.5M Understanding
(I) Masked Token Loss (2) Contrastive Loss O VOQA OGQA ONLVR2
Image-Text Representation O Image-Text Retrieval O Text-Image Retrieval

( A dog is sitting Dog

: ) Generation
onacouch ! Couch 'I

~Tag- ik O Image Captioning O Novel Object Captioning

S

Pre-training —— Fine-tuning
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Semantics-Aligned Pre-training for V+L Tasks

e Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)

* Training:
* Inputs: triplets of -tag-region
e Objectives: Masked token loss for & tags + Contrastive loss tags and others
Contrastive Loss Masked Token Loss
Fawes () O O O O OO OC O OO O O O
Network Multi-Layer Transformers
Emeddingg (Y (O OO OO O OO O O O O O O
[CLS] A dog is [MASK] on a [SEP] dog
Data “ — 2 %\/—J
Word Tokens Object Tags Region Features
Modality
Dictionary
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Semantics-Aligned Pre-training for V+L Tasks (cont’d)

e Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)

* Fine-tuning:
e 5vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

Contrastive Loss Masked Token Loss
Fawes () O O O O OO OC O OO O O O
Network Multi-Layer Transformers
Embeddngs () () (O OO O O O O O O O O O

[CLS] A dog is [MASK] on a [SEP] dog ‘

Data h g g %\/—j
Word Tokens Object Tags Region Features

Modality
Dictionary
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Oscar (cont’d)
* Fine-tuning:

/
Holding an apple “ ﬁ or Q}

* Take image-text retrieval as an example
e Training: aligned/mis-aligned image-text pairs as positive/negative input pairs,
with [CLS] for binary classification (1/0)
* Inference: for either image or text retrieval,
calculate classification score of [CLS] for the input query

Contrastive Loss

Masked Token Loss

rewes (O] O O O OO0 0 O O 0 O 0O O

Network

Multi-Layer Transformers

Embeddings Q Q Q Q Q Q Q Q Q Q Q Q Q Q

T =
[CLS] A dog is [MASK] on a . [SEP] dog couch  [SEP]
Data - -~ s H_/ H_/
Word Tokens Object Tags Region Features
Image
Modality Language g N
Language
Dictionary o Image
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CLIP: Contrastive
Language-Image
Pretraining

e OpenAl, Learning Transferable
Visual Models From Natural
Language Supervision, NeurlIPS
WS 2021 (w/ 9000+ citations)

e Why DL/CNN not good enough?
* Require annotated data for

training image classification

 Domain gap between
closed-world and open-
world domain data

e Lack of ability for zero-shot
classification

IMAGENET
RESNET101

| f,(im‘:ﬁi‘
1ageNet Rendition

rjectNet

e // \\
A N —_
- 25.2%
geNet Sketch

\‘ Jm i

| 't Adversarial




CLIP (cont’d)

 Why DL/CNN not good enough?
e Require annotated data for training image classification
 Domain gap between closed-world and open-world domain data
* Lack of ability for zero-shot classification

* Motivation/Objectives
e Cross-domain contrastive learning from large-scale image-language data

1. Contrastive pre-training

Text

IR

Tf T_? T3 TN
— I L LT, LT I; Ty
— I LT Il IxTs I Ty
Image
Ericodar >~ I IsTy IgT, Igly - Igly
— I, T T BT, BT T Ty
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CLIP (cont’d)

e (Zero-shot) Inference:

2. Create dataset classifier from label text

a photo of Text
a {object}. Encoder )

3. Use for zero-shot prediction

Image

a photo of
a dog.

e Potential concerns/disadvantages?
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BLIP-2 (ICML’23)

e BLIP:
Bootstrapping Language-Image Pre-training for Unified Vision-Language
Understanding and Generation, NeurIPS 2021

e Goal:
Bridge the modality gap between off-the-shelf frozen pre-trained image encoders and
frozen large language models with a lightweight

e Result:
1. SOTA performance on various downstream vision-language tasks.
2. Zero-shot image-to-text generation that can follow natural language instructions.

Vision-and-Language
Representation Learning

Vision-to-Language
Generative Learning

|mage Q'Former :
QUEWing Transformer - Write a romantic message
¥ 5 that goes along this photo.
Love is like a sunset, it's
00-88) Text hard to see it coming but
when it does it's so beautiful.

Bootstrapping Pre-trained Bootstrapping Pre-trained

Image Models Large Language Models (LLMs) 4

I

I

I

I

I

I

I

| —
i Encoder
I

I

I

I

I

I

I

I

I
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]
:
1
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Pre-training

Two-stage Pre-training

©)

Stage 1:

VL representation learning which enforces the Q-Former to learn
visual representation that is most relevant to the text.

Stage 2:

VL generative learning makes the output representation of Q-Former
to be understood by LLMs.

Vision-and-Language
Representation Learning

Image Models

Image Q-Former
Encoder Querying Transformer
i f
Text
Queries

Bootstrapping Pre-trained

|

Vision-to-Language
Generative Learning

Write a romantic message
that goes along this photo.

Love is like a sunset, it's
hard to see it coming but
when it does it's so beautiful.

Bootstrapping Pre-trained
Large Language Models (LLMs)
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Pre-training Stage 1 - VL Representation Learning

e Goal:
enforce the Q-Former to extract visual representation relevant to the text.
e Method: three pre-training tasks

©)

Input Image

Image  Inmailaddll (oss Attention
Encoder

Image-Text Matching (ITM):

for each learnable query -> linear classifier for binary decision

Image-grounded Text Generation (ITG):

self-attn in Q for encoder training; T->Q for image-to-text generation

Image-Text Contrastive Learning (ITC):
self-attn in Q/T, followed by max (sim(Q, T))

Q-Former
Image-Text
Matching

Feed Forward

Image-Grounded
Text Generation

Feed Forward
I

Image-Text
Contrastive
Learning

for every
other block
Attention Masking

+— Dbidirectional —¢
x N -— mutlimodal causal —

o ] 1 S e
uni-modal

Learned
Queries [D 0-8 D]

¥

XN

Input Text | a cat wearing sunglasses ]

Q: query token positions; T: text token positions.
@ masked [J unmasked

Q T Q T T
o La 4] ULl NN DD BN
‘0000 0 Bl ‘COmm
L0000 000s + HE L]
'oooo "oooo "mm 00
Bi-directional Multi-modal Causal Uni-modal

Self-Attention Mask  Self-Attention Mask Self-Attention Mask

Image-Text Image-Grounded Image-Text
Matching Text Generation Contrastive Learning
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Pre-training Stage 2 - VL Generative Learning

e Goal:

Learning with LLM guidance
i.e., make the output representation of Q-Former to be understood by LLMs.

e Method:

pre-training with Image-grounded Text Generation (ITG)

Bootstrapping from a
Decoder-based
Large Language Model

(e.g. OPT)

Bootstrapping from an
Encoder-Decoder-based
Large Language Model
(e.g. FlanT5)

Input Image

Encoder

Encoder

Output Text [a cat wearing sunglasses ]

—"‘ Q-Former ‘ {

Fully
Connected

Learned Queries

o0-00

LLM Decoder

Suffix Text [ wearing sunglasses ]

— | Q-Former 1 {

Fully
Connected LLM Encoder

Learned Queries

\-[D O-00)(acat |

Prefix Text

% LLM Decoder
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Parameter-Efficient Fine-Tuning

o Adapter
o VL-ADAPTER: Parameter-Efficient Transfer Learning for Vision-and-
Language Tasks (CVPR, 2022)
e Visual Prompt Tuning
o Visual Prompt Tuning (ECCV, 2022)
e LORA
o LoRA: Low-Rank Adaptation of Large Language Models (ICLR, 2022)



Parameter Efficient Fine Tuning

(a) Full fine-tuning (b) Adapter training (Ours) # —— N\ [ Tuned 7 Frozen |
+ VQA Accuracy: 77.6 + VQA Accuracy: 77.4 T
« Updated Param: 100% « Updated Param: 4.18% Partial
“Brown” “Brown” MLP @
4 'Y <

’

[ L ]
Language Model ] Language Model j:Adapters

\ \ ]

Full
Backbone-oriented: ]
Backbone O Sidetune Backbone
Adapter e
Bias .

1t 1 y
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the color of the the color of the
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(a) Existing tuning protocols (b) Visual-Prompt Tuning (VPT)
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Weights

W € Raxd
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VL-ADAPTER: Parameter-Efficient
Transfer Learning for Vision-and-Language Tasks

(a) Vision-and-Language Framework
Output

4 )

[ Feed-forward ]

[ Self-attention ]

Visual
Projection

Image Sentence

\.

»
[ Cross-AttentIon‘L

[ Salf—antion I

—/

A

r

|

D Updated D Frozen

https://arxiv.org/abs/2112.06825

(b) Adapter Modules
Hyperformer
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https://arxiv.org/abs/2112.06825

Visual Prompt Tuning

. [xerIrEl] = Ll([x(]rPﬁEU]) (4)
o Shallow: %1, Zs, B] = Lo([xi 1, % 1, Ea 1)) i=23,...,N (5)
y = Head(xy) , (6)

. [Xz’;_; Et] = Li([xifl,Pi,l,Eifl]) 1= 1,2, e ,N (7)

i Deep' y = Head(xy) . (8)

_ Eg . Head
11011
m Backbonel
T I :

Bl

o Transformer Encoder Layer
.l_'

Transformer Encoder Layer

Transformer Encoder Layer

AT
4.' .
_.l.

Transformer Encoder Layer

pmmmmm e e —————

______________________________________________________________________________________________

0 Py Ey 0 Py Ey
(a) Visual-Prompt Tuning: Deep (b) Visual-Prompt Tuning: Shallow
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https://arxiv.org/abs/2203.12119

LoRA: Low-Rank Adaptation of Large Language Models

e Previous problems

o Adapter Layers Introduce Inference Latency

o Directly Optimizing the Prompt is Hard

e LORA

W, € Rdxk
Wy + AW = Wy + BA
B e RdXT,A c R7xkE
rank r < min(d, k)

h=Wyx + AWax = Wyx + BAx

Pretrained
Weights

W e R*4

X | |

Figure 1: Our reparametriza-
tion. We only train A and B.

https://arxiv.org/abs/2106.09685
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LoRA: Low-Rank Adaptation of LLMs (cont’d)

Model & Method |# Trainable
Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

125.0M| 87.6 948 90.2 63.6 928 919 787 91.2 864

ROBbase (FT}yg

RoBpase (BitFit)* 0.1M| 847 937 92.7 62.0 91.8  84.0 81.5 90.8 85.2
ROBpase (Adpt®)* 03M|87.1+0 9424, 885+ 60844 931+, 90244 T1.5+27 89.7+3 844
ROBpace (Adpt”)* 0.9M|87.3+1 947415 88441 62640 93.0+5 90.640 75.9422 9034+, 854
RoBpase (LORA) 03M|[87.5+3 95145 89.7+7 63445 93.3+3 90.84+, 86.6-7 91.5., 87.2
RoBje (FT)* 355.0M| 902 96.4 90.9 68.0 947 922 86.6 92.4 889
RoBiarge (LORA) 0.8M|90.6+-> 96.2+5 90.9115 68.2110 9495 91.64; 87415 92.6.-> 89.0
RoBiarge (Adpt™)t 3.0M|90.2+3 96143 90.2+7 683110 948> 919, 838100 92,117 884
ROBiare (Adpt")f 0.8M|90.5+:3 96.6+> 89.7112 678425 94.8:3 91.745 80.1420 91944 879
RoBiasge (Adpt™)t 6.0M (8995 96.24 3 88.7400 665444 947515 9214 8344, 91.04,7 878
RoBiasge (Adpt™)t 0.8M|90.3+3 96345 87. 7417 603120 94745 91.54 1 729429 91545 864
RoBiarge (LoORA)T 0.8M|90.6+: 96.2+5 90.2+10 682410 94.8+3 91.6+- 852+, 92.3+5 88.6
DeBxx (FT)* 1500.0M| 918 97.2 92.0 72.0 96.0 927 939 929 91.1
DeBxx. (LoRA) 47M 919+ 96945 926+ 72441 960+, 929, 949.., 93.0., 913
Model & Method # Trainable E2E NLG Challenge

Parameters | BLEU NIST MET ROUGE-L CIDEr
GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 247
GPT-2 M (Adaptcr")* 0.37M 66.3 8.41 45.0 69.8 2.40
GPT-2 M (Adaptcr")* 11.09M 68.9 8.71 46.1 71.3 247
GPT-2 M (Adapte:r“) 11.09M 67.31_5 8.501_07 46.01_2 70.7:}:_2 2.441_01
GPT-2 M (FT™P?)* 25.19M | 68.1 8.59 46.0 70.8 241
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 0.35M | 70.4.; 885,10 46.8.1 T1.84 1 253, 02
GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 245
GPT-2 L (Adaptcr]“] 0.88M | 69.1L; 8.68Lp3 46.3., T1.445 249,
GPT-2 L (Adaptcr]‘) 23.00M | 689,35 8700 46.1,, 71345 245, p»
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.2 71.7 247
GPT-2 L (LoRA) 077M | 704, , 889,y 4638, 72045 2.47 4L 00

B ———————————
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Adv. Topic: Knowledge Editing

e Motivation:

Knowledge updates everyday while retraining LLMs is expensive.
e Goal:

Propose more efficient & effective solutions to update knowledge in LLM

— o o o o mm mm Em e o o o o e mm mm o e mm o Em e mm e o o e

Donald Trump Donald Trump
Joe Biden x Joe Biden \/

Editing Large Language Models: Problems, Methods, and Opportunities (EMNLP’23)




Adv. Topic: Unlearning

e Goal:

Erase the undesirable visual concepts from Diffusion Models.

Concepts can be abstractive concept, artistic style, object, or personality.
e Method:

Diffusion Model Fine-tuning.

Erasing Nudity Erasing Artistic Style Erasing Objects
Original Model Edited Model Ori 1nal Model Edited Model Original Model Edited Model

FAS ™ ~

PRl /dded by authors  Erased from model: Erased from model

Erased from model:
Sfor publication “Nudity” “Van Gogh” “Car”
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What We (Try to) Cover Today...

* Learning-based Computer Vision
e From Linear to Non-Linear Classifiers

Start of Deep Learning for Computer Vision
e Convolutional Neural Networks
e SSL, Segmentation & Detection

Generative Models
* AE, VAE, GAN, & Diffusion Models

Sequence-to-Sequence Learning
e Attention is All You Need: Transformer

Vision & Language Foundation Models
* Image-to-Text vs. Text-to-Image
e Parameter-Efficient Fine-tuning

Lots of research topics we haven’t covered...
e 3D vision
* Video-based synthesis & analysis, etc.
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Feel free to reach me at ycwang@ntu.edu.tw
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