Deep Learning for Computer Vision: A Crash Course

Yu-Chiang Frank Wang

Professor, Dept. Electrical Engineering, National Taiwan University

Research Director for Deep Learning & Computer Vision, NVIDIA

2024/03/15

About Myself

٠	Edu			
South Callon Cong	- ARTY ass	Ph.D./M.S. in Electrical & Computer Engineering Carnegie Mellon University, Pittsburgh, USA	2002 – 2009	
	•	B.S. in Electrical Engineering National Taiwan University, Taipei, Taiwan	1997 – 2001	
٠	Ехр			
וסועח <mark>४</mark>	•	Research Director, NVIDIA	2022/08 ~	
	•	Professor, Dept. EE, National Taiwan University		Real AVI /
Invente	•	Principal AI Consultant, Inventec	2021 – 2022	
	٠	AI Advisory Consultant, ASUS Intel. Cloud Services (AICS)	2019 – 2022	
	•	Associate Professor, National Taiwan University	2017 – 2019	
	•	Deputy Director, CITI, Academia Sinica	2015 – 2017	
WIRMIN SIST	٠	Associate/Assistant Research Fellow	2009 - 2017	
		Research Center for IT Innovation (CITI), Academia Sini	са	

What'd Be Covered in This Crash Course...

Learning-based Computer Vision

• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision

- Convolutional Neural Networks
- Self-Supervised Learning
- Segmentation & Detection

• Generative Models

• Autoencoder, Variational Autoencoder, Generative Adversarial Networks & Diffusion Models

Sequence-to-Sequence Learning

- Attention is All You Need: Transformer
- Vision & Language Foundation Models
 - Image-to-Text vs. Text-to-Image
 - Parameter-Efficient Fine-tuning

Linear Classification

- Linear Classifier
 - Can be viewed as a parametric or algebraic approach.
 - Consider that we have 10 object categories of interest
 - E.g., CIFAR10 with 50K training & 10K test images of 10 categories. Each image is of size 32 x 32 x 3 pixels.

Linear Classification (cont'd)

- Linear Classifier
 - Can be viewed as a parametric or algebraic approach. Why?
 - Consider that we have 10 object categories of interest
 - Let's take the input image as x, and the linear classifier as W.
 We need y = Wx + b as a 10-dimensional output vector, indicating the score for each class.

airplane	×	-	1	r	7	-	×	-	The second	*
automobile		5		-	2	2		5	17	-
bird	4		H.	1	42	*	1	2	3.	
cat	6	-	-		S.P.		X	1	-	-
deer	No.	-		×	m.	-		4	1	
dog	3	1	-	3.		1	E.	1	A	494
frog	3	R	33	2	Ser	2	3	7	No.	P
horse	-	-	Wh	P	5	A	A.	2	1	(A)
ship	-	-	世	3	-	-10		145	-	-
truck	-	C		3	25	and a	No.	(er	P.	I'mel

Linear Classification (cont'd)

• Linear Classifier

- Can be viewed as a parametric or algebraic approach. Why?
- Consider that we have 10 object categories of interest
- Let's take the input image as x, and the linear classifier as W.
 We need y = Wx + b as a 10-dimensional output vector, indicating the score for each class.
- For example, an image with 2 x 2 pixels & 3 classes of interest we need to learn a linear classifier W (plus a bias b), so that desirable outputs y = Wx + b can be expected.

Remarks

- Interpreting W in y = Wx + b
 - Weights **W** are learned by observing (training) data **X** and their ground truth labels **Y**.
 - Each row in **W** can be viewed as an exemplar of the corresponding class.
 - Equivalently, we perform inner product between **x** and each row of **W** -> class similarity
 - How to determine a proper objective/loss function for deriving W?

Loss Function

• Cross-Entropy Loss (Multinomial Logistic Regression)

- Interpret classifier scores as probabilities
- Softmax function:

 $P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \text{ with } s = f(x_i; W) \text{ as the classifier output for input } \mathbf{x}_i$

• See example below

- Cross-Entropy Loss (cont'd)
 - Softmax function:

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \text{ with } s = f(x_i; W) \text{ as the classifier output for input } \mathbf{x}$$
$$\Rightarrow L_i = -\log P(Y = y_i \mid X = x_i) \text{ or } L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

• (Binary) Cross Entropy Loss (or L_{BCE}; see example below):

Computing gradients: Following the slope to reach the (hopefully global) minimum for **W**.

Searching for W from L_{BCE}

- **Gradient Descent** via numeric or analytic gradients:
 - Iteratively step in the direction of the negative gradient & search for W
 - Hyperparameters: weight initialization, # of steps, learning rate, etc.

Vanilla gradient descent w = initialize_weights() for t in range(num steps):

w -= learning_rate * dw

- **Stochastic Gradient Descent**
 - Full sum in L is expensive when large N
 - *Approximate* sum using a minibatch of instances (e.g., 32, 64, 128, etc.)

dw = compute_gradient(loss_fn, data, w)

Additional hyperparameters of batch size and data sampling

```
# Stochastic gradient descent
w = initialize_weights()
for t in range(num steps):
  minibatch = sample_data(data, batch_size)
  dw = compute gradient(loss fn, minibatch, w)
 w -= learning rate * dw
```


Hierarchical Representation Learning

• Successive model layers learn deeper intermediate representations.

Let's Take a Closer Look...

Input-Output Function of a Single Neuron

Input-Output Function of a Single Neuron

Input-Output Function of a Single Neuron

Input-Output Function of a Single Neuron (cont'd)

16

Weight Space of a Single Neuron

training data

$$\{\pmb{z}^{(n)}\}_{n=1}^N \ \{t^{(n)}\}_{n=1}^N$$

class labels

inputs

objective function:

$$G(\boldsymbol{w}) = -\sum_{n} \left[t^{(n)} \log \mathbf{x}(\boldsymbol{z}^{(n)}; \boldsymbol{w}) + (1 - t^{n}) \log \left(1 - \mathbf{x}(\boldsymbol{z}^{(n)}; \boldsymbol{w}) \right) \right]$$

 $E(\boldsymbol{w}) = \frac{1}{2} \sum_{i} w_{i}^{2}$ regulariser discourages the network using extreme weights

$$\begin{split} \boldsymbol{w}^* &= \mathop{\arg\min}_{\boldsymbol{w}} M(\boldsymbol{w}) = \mathop{\arg\min}_{\boldsymbol{w}} \left[G(\boldsymbol{w}) + \alpha E(\boldsymbol{w}) \right] \\ &\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{w}} M(\boldsymbol{w}) = -\sum_{n} (t^{(n)} - x^{(n)}) \boldsymbol{z}^{(n)} + \alpha \boldsymbol{w} \quad \text{weight decay - shrinks weights towards zero} \end{split}$$

Overfitting and Weight Decay

training data

$$\{\boldsymbol{z}^{(n)}\}_{n=1}^{N} \ \{t^{(n)}\}_{n=1}^{N}$$

inputs class labels

objective function:

$$\begin{split} G(\boldsymbol{w}) &= -\sum_{n} \left[t^{(n)} \log \mathbf{x}(\boldsymbol{z}^{(n)}; \boldsymbol{w}) + (1 - t^{n}) \log \left(1 - \mathbf{x}(\boldsymbol{z}^{(n)}; \boldsymbol{w}) \right) \right] \\ E(\boldsymbol{w}) &= \frac{1}{2} \sum_{i} w_{i}^{2} \end{split} \quad \text{regulariser discourages the network using extreme weights} \\ \boldsymbol{w}^{*} &= \arg\min_{\boldsymbol{w}} M(\boldsymbol{w}) = \arg\min_{\boldsymbol{w}} \left[G(\boldsymbol{w}) + \alpha E(\boldsymbol{w}) \right] \\ \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{w}} M(\boldsymbol{w}) &= -\sum_{n} (t^{(n)} - \boldsymbol{x}^{(n)}) \boldsymbol{z}^{(n)} + \alpha \boldsymbol{w} \qquad \text{weight decay - shrinks weights} \\ \text{towards zero} \end{split}$$

Training a Single Neuron (cont'd)

Training a Neural Network with Two Hidden Layers

Networks with hidden layers can be fit using gradient descent using an algorithm called back-propagation.

$$x(a) = \frac{1}{1 + \exp(-a)}$$
$$a = \sum_{k=1}^{K} w_k x_k$$
$$x(a_k) = \frac{1}{1 + \exp(-a_k)}$$
$$a_k = \sum_{d=1}^{D} W_{k,d} z_d$$

objective function:

$$\begin{split} G(W, \boldsymbol{w}) &= -\sum_{n} \left[t^{(n)} \log x^{(n)} + (1 - t^{n}) \log \left(1 - x^{(n)} \right) \right] \text{ likelihood same as before } \\ E(W, \boldsymbol{w}) &= \frac{1}{2} \sum_{i} w_{i}^{2} + \frac{1}{2} \sum_{ij} W_{ij}^{2} & \text{regulariser discourages extreme weights } \\ \{W, \boldsymbol{w}^{*}\} &= \operatorname*{arg\,\min}_{W, \boldsymbol{w}} M(W, \boldsymbol{w}) = \operatorname*{arg\,\min}_{W, \boldsymbol{w}} \left[G(W, \boldsymbol{w}) + \alpha E(W, \boldsymbol{w}) \right] \\ \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}W_{ij}} &= \sum_{n} \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}x^{(n)}}{\mathrm{d}W_{ij}} = \sum_{n} \frac{\mathrm{d}G(W, \boldsymbol{w})}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}x^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{(n)}}{\mathrm{d}x^{(n)}} \frac{\mathrm{d}a^{($$

Training a Neural Network with a Single Hidden Layer

Hierarchical Models with Many Layers

What'd Be Covered in This Crash Course...

- Learning-based Computer Vision
 - From Linear to Non-Linear Classifiers

Start of Deep Learning for Computer Vision

- Convolutional Neural Networks
- Self-Supervised Learning
- Segmentation & Detection
- Generative Models
 - Autoencoder, Variational Autoencoder, Generative Adversarial Networks & Diffusion Models
- Sequence-to-Sequence Learning
 - Attention is All You Need: Transformer
- Vision & Language Foundation Models
 - Image-to-Text vs. Text-to-Image
 - Parameter-Efficient Fine-tuning

Recap: Linear Classification to Neural Nets

Linear Classifier

Neural Network (Multilayer Perceptron)

Convolutional Neural Networks

• How many weights for MLPs for images?

Convolutional Neural Networks

- Property I of CNN: Local Connectivity
 - Each neuron takes info only from a neighborhood of pixels.

Convolutional Neural Networks

- Property II of CNN: Weight Sharing
 - Neurons connecting all neighborhoods have identical weights.

Putting them together \rightarrow CNN

- Local connectivity
- Weight sharing
- Handling multiple input channels
- Handling multiple output maps

Convolution Layer in CNN

What is a Convolution?

Convolution is a local linear operator

What is a Convolution?

• Weighted moving sum

slide credit: S. Lazebnik

Input
Putting them together

• The brain/neuron view of CONV layer

It's just a neuron with local connectivity...

the result of taking a dot product between the filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product)

Putting them together (cont'd)

• The brain/neuron view of CONV layer

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

Putting them together (cont'd)

• The brain/neuron view of CONV layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Putting them together (cont'd)

• Image input with 32 x 32 pixels convolved repeatedly with 5 x 5 x 3 filters shrinks volumes spatially (32 -> 28 -> 24 -> ...).

Nonlinearity Layer in CNN

Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

Pooling Layer in CNN

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently
- E.g., Max Pooling

Pooling Layer

• Reduces the spatial size and provides spatial invariance

- Example
 - Nonlinearity by ReLU

- Example
 - Max pooling

Fully Connected (FC) Layer in CNN

FC Layer

• Contains neurons that connect to the entire input volume, as in ordinary neural networks

FC Layer

• Contains neurons that connect to the entire input volume, as in ordinary neural networks

CNN

Training Technique #1: Dropout

(a) Standard Neural Net

(b) After applying dropout.

Intuition: successful conspiracies

Example: 50 people planning a conspiracy

- <u>Strategy A</u>: plan a big conspiracy involving 50 people
 - Likely to fail. 50 people need to play their parts correctly.
- <u>Strategy B</u>: plan 10 conspiracies each involving 5 people
 - Likely to succeed!

Training Technique #2: Data Augmentation

- Create *virtual* training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Geometric distortion

Training Technique #3: Batch Normalization

Batch Normalization (cont'd)

Remarks

• Differentiable function; back propagation OK

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

Procedure

What'd Be Covered in This Crash Course...

- Learning-based Computer Vision
 - From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision

- Convolutional Neural Networks
- Self-Supervised Learning
- Segmentation & Detection
- Generative Models
 - Autoencoder, Variational Autoencoder, Generative Adversarial Networks & Diffusion Models
- Sequence-to-Sequence Learning
 - Attention is All You Need: Transformer
- Vision & Language Foundation Models
 - Image-to-Text vs. Text-to-Image
 - Parameter-Efficient Fine-tuning

Supervised Learning

• Deep learning plus supervised learning are rocking the world ...

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with a teddy bear.

A dog is standing on a hardwood floor.

A group of people sitting on a boat in the water.

- In real world scenarios, data-annotation is quite time-consuming
- Could one exploit supervised signals from **unlabeled** data?

Self-Supervised Learning (SSL)

- Learning discriminative representations from **unlabeled** data
- Create self-supervised tasks via data augmentation

Colorization

Jigsaw Puzzle

Self-Supervised Learning (SSL)

- Self-Supervised Pretraining
- Supervised Fine-tuning

Self-Supervised Learning (SSL)

- Pretext Tasks
 - Jigsaw (ECCV'16)
 - RotNet (ICLR'18)
- Contrastive Learning
 - CPC (ICML'20)
 - SimCLR (ICML'20)
- Learning w/o negative samples
 - BYOL (NeurIPS'20)
 - Barlow Twins (ICML'21)

RotNet

• Learning to predict the **rotation** angle

Jigsaw Puzzle

- Assign the **permutation index** and perform augmentation
- Solve jigsaw puzzle by predicting the permutation index

SimCLR

- Attract augmented images and repel negative samples
- Improve the representation quality with **projection heads** (g)...why?

What'd Be Covered in This Crash Course...

- Learning-based Computer Vision
 - From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision

- Convolutional Neural Networks
- Self-Supervised Learning
- Segmentation & Detection
- Generative Models
 - Autoencoder, Variational Autoencoder, Generative Adversarial Networks & Diffusion Models
- Sequence-to-Sequence Learning
 - Attention is All You Need: Transformer
- Vision & Language Foundation Models
 - Image-to-Text vs. Text-to-Image
 - Parameter-Efficient Fine-tuning

Image Segmentation

• Goal:

Group pixels into meaningful or perceptually similar regions

A Practical Segmentation Task

- Semantic Segmentation
 - Supervised learning
 - Assign a class label to each pixel in the input image (i.e., pixel-level classification)
 - Not like instance segmentation, do not differentiate instances; only care about pixel labels

Semantic Segmentation

• Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation

• Fully Convolutional Nets

Fully Convolutional Networks (FCN)

Med-res:

D₂ x H/4 x W/4

• Remarks

Downsampling:

Input:

3 x H x W

Pooling, strided

convolution

• All layers are convolutional

High-res:

D₁ x H/2 x W/2

• End-to-end training

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

> ໌ Low-res: [∟] D₃ x H/4 x W/4

Med-res:

D₂ x H/4 x W/4

High-res:

D₁ x H/2 x W/2

Upsampling: Unpooling or strided transpose convolution

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

SegNet

- Efficient architecture (memory + computation time)
- Upsampling reusing max-unpooling indices
- Reasonable results without performance boosting addition
- Comparable to FCN

"SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation" [link]

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation [link]

Roadmap

Object Detection

- Focus on object search: "Where is it?"
- Build templates that quickly differentiate object patch from background patch

Dog Model

Object or Non-Object?

Type of Approaches

- Sliding Windows
 - "Slide" a box around the input image or even across image scales (i.e., image pyramid)
 - Classify each cropped image region inside the box and determine if it's an object of interest or not
 - E.g., HOG (person) detector by Dalal and Triggs (2005) Deformable part-based model by Felzenswalb et al. (2010) Real-time (face) detector by Viola and Jones (2001)
- Region (Object) Proposals
 - Generate region (object) proposals
 - Classify each image region and determine it's an object or not

Type of Approaches (cont'd)

• CNN-based Methods

Two-Stage vs. One-Stage Object Detection

Methods

Region Proposal

- Solution
 - Use pre-processing algorithms to filter out some regions first, and feed the regions of interest (i.e., region proposals) into CNN
 - E.g., selective search

R-CNN, Fast R-CNN, & Faster R-CNN

One-Stage Object Detection: Detection without Proposals

Go from input image to tensor of scores with one big convolutional network!

Input image 3 x H x W

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016 Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016

Divide image into grid 7 x 7

Image a set of **base boxes** centered at each grid cell Here B = 3 Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers:
 - (dx, dy, dh, dw, confidence)
- Predict scores for each of C classes (including background as a class)

Output: $7 \times 7 \times (5 * B + C)$

You Only Look Once (YOLO)

Divide the image into an $S \times S$ grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities.

These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

What'd Be Covered in This Crash Course...

- Learning-based Computer Vision
 - From Linear to Non-Linear Classifiers
- Start of Deep Learning for Computer Vision
 - Convolutional Neural Networks
 - Self-Supervised Learning
 - Segmentation & Detection
- Generative Models
 - Autoencoder, Variational Autoencoder, Generative Adversarial Networks & Diffusion Models
- Sequence-to-Sequence Learning
 - Attention is All You Need: Transformer
- Vision & Language Foundation Models
 - Image-to-Text vs. Text-to-Image
 - Parameter-Efficient Fine-tuning

Conditional Generative Model: Learn p(x|y)

Discriminative model: the possible labels for each input "compete" for probability mass. But no competition between **images**

Conditional Generative Model: Learn p(x|y)

Discriminative model: No way for the model to handle <u>unreasonable inputs</u>; it must give label distributions for all images

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Generative model: All possible images compete with each other for probability mass

Model can "reject" unreasonable inputs by assigning them small values

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Conditional Generative Model: Each possible label induces a competition among all images

GenAI? Let's Start from Autoencoder

- Autoencoder
 - Autoencoding = encoding itself with recovery purposes
 - In other words, encode/decode data with reconstruction guarantees
 - Latent variables/features as deep representations
 - Example objective/loss function at output:
 - L2 norm between input and output, i.e.,

Take a Deep Look to Discover Latent Variables/Representations (cont'd)

• What's the Limitation of Autoencoder?

From Autoencoder to Variational Autoencoder

Now is a "distribution", we can assume it to be a distribution easy to sample from, e.g. Gaussian

From Autoencoder to Variational Autoencoder (cont'd)

• Example Results

(a) Learned Frey Face manifold

(b) Learned MNIST manifold

From Autoencoder to Variational Autoencoder (cont'd)

- Example Results
 - A' A + B = B'

Woman with Glasses

Limitation of VAE?

- Remarks
 - Why Gaussian distribution is sufficient?
 - What if we only need the decoder/generator in practice?
 - How do we know if the output images are sufficiently good?

Generative Adversarial Network

- Idea
 - **Generator** to convert a vector z (sampled from P_z) into fake data x (from P_G), while we need $P_G = P_{data}$
 - Discriminator classifies data as real or fake (1/0)
 - How? Impose an **adversarial loss** on the observed data distribution!

Generative Adversarial Network (cont'd)

- Key idea:
 - Impose *adversarial loss* on data distribution
 - Let's see a practical example...

Training Objective of GAN

Jointly train generator G and discriminator D with a min-max game training image

generato

generated image

latent

code

• Train G & D with alternating gradient updates

 $\min_{G} \max_{D} V(G, D)$ For t in 1, ... T: 1. (Update D) $D = D + \alpha_D \frac{\partial V}{\partial D}$ 2. (Update G) $G = G - \alpha_G \frac{\partial V}{\partial G}$ real? fake?

(**R/F**)

discriminator

Denoising Diffusion Models

- Recently emerging as powerful **visual** generative models
 - Unconditional image synthesis
 - Conditional image synthesis
 - Outperforms GANs

DALL·E 2

"a teddy bear on a skateboard in times square"

Diffusion Models Beat GANs on Image Synthesis, Dhariwai & Nochol, OpenAI, 2021

Imagen

A group of teddy bears in suit in a corporate office celebrating the birthday of their friend. There is a pizza cake on the desk.

Cascaded Diffusion Models for High Fidelity Image Generation, Ho et al., Google, 2021

Denoising Diffusion Probabilistic Models (DDPM)

Learning to generate by denoising

- 2 processes required for training:
 - Forward diffusion process gradually add noise to input ٠
 - **Reverse diffusion process**
 - learns to generate/restore data by denoising ٠
 - typically implemented via a conditional U-net)
 - Comments about noise scheduling (see next slide)

Forward diffusion process (fixed)

Reverse denoising process (generative)

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020 Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021 Noise

Data

DDPM:

Learning to generate by denoising (cont'd)

- Forward diffusion process
 - Gradually add noise to the input in T steps (e.g., via linear scheduling)
 - Recall that x_0 denotes clean input image, and x_T is the final noisy one.
 - Comments on q(x_t | x_{t-1})

Learning of Diffusion Models

- Summary
 - Training and sample generation

 \mathbf{X}_2

X₃

 \mathbf{X}_4

Data

 \mathbf{x}_0

 \mathbf{X}_1

Noise

XT

. . .

Learning of Diffusion Models

- Summary
 - Training and sample generation

More steps

Slide credit: Kreis, Gao, & Vahdat

https://medium.com/ai-blog-tw/%E9%82%8A%E5%AF%A6%E4%BD%9C%E9%82%8A%E5%AD%B8%E7%BF%92diffusion-model-%E5%BE%9Eddpm%E7%9A%84%E7%B0%A1%E5%8C%96%E6%A6%82%E5%BF%B5%E7%90%86%E8%A7%A3-4c565a1c09c

What'd Be Covered in This Crash Course...

- Learning-based Computer Vision
 - From Linear to Non-Linear Classifiers
- Start of Deep Learning for Computer Vision
 - Convolutional Neural Networks
 - Self-Supervised Learning
 - Segmentation & Detection
- Generative Models
 - Autoencoder, Variational Autoencoder, Generative Adversarial Networks & Diffusion Models

Sequence-to-Sequence Learning

- Attention is All You Need: Transformer
- Vision & Language Foundation Models
 - Image-to-Text vs. Text-to-Image
 - Parameter-Efficient Fine-tuning

What Are The Limitations of CNN?

- Deal with image data
 - Both input and output are images/vectors
- Simply feed-forward processing

More Applications in Vision

Image Captioning

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Sequence-to-Sequence Modeling

e.g., image caption e.g., action recognition

esg., video prediction

e.g., video indexing

Vanilla RNN, LSTM, & GRU

What's the Potential Problem in RNN?

- Each hidden state vector extracts/carries information across time steps (some might be diluted downstream).
- Information of the entire input sequence is embedded into a single hidden state vector.

What's the Potential Problem? (cont'd)

- Outputs at different time steps have particular meanings.
- However, synchrony between input and output seqs is not required.

What's the Potential Problem? (cont'd)

• Connecting every hidden state between encoder and decoder?

- Infeasible!
 - Both inputs and outputs are with varying sizes.
 - Overparameterized
 - Possible solution: attention

RNN with Attention is Good, But..

- Attention in a pre-defined sequential order
- Information loss due to long sequences...
- Connecting every hidden state between encoder and decoder?

- Infeasible!
 - Both inputs and outputs are with varying sizes.
 - Overparameterized

Transformer

- "Attention is all you need", NIPS/NeurIPS 2017
- Self-attention for text translation
- Say goodbye to CNN & RNN
- More details available at: <u>http://jalammar.github.io/illustrated-transformer/</u>

Self-Attention (1/5)

- Query q, key k, value v vectors are learned from each input x
 - $q_i = W^Q x_i$ $k_i = W^K x_i$ $v_i = W^V x_i$

Self-Attention (2/5)

 Relation between each input is modeled by inner-product of query *q* and key *k*.

$$a_{1,i} = \frac{q_1 \cdot k_i}{\sqrt{d}}$$
, where $a \in R, q, k \in R^d$

Self-Attention (3/5)

• SoftMax is applied:

 $\widehat{a}_{1,1}$

*a*_{1,1}

 k_1

 x_1

 q_1

 v_1

$$0 \leq \hat{a}_i = e^{a_i} / \sum_j^{\mathsf{N}} e^{a_j} \leq 1$$
 , for I =1, ..., N

Self-Attention (4/5)

 y_1

• Value vectors \mathbf{v} are aggregated with attention weight \hat{a} , i.e., $y_1 = \sum_i^N \hat{a}_i \cdot v_i$

Self-Attention (5/5)

- All y_i can be computed **in parallel**
- Each y_i considers $x_1 \sim x_N$, modeling their **long-distance dependencies**.
- Global feature can be obtained by **average-pooling** over $y_1 \sim y_N$

Multi-Head Self-Attention (1/4)

X

 Perform self-attention at different subspaces, implying performing attention over different input feature types (e.g., representations, modalities, positions, etc.)

Multi-Head Self-Attention (2/4)

- Perform self-attention at different subspaces, implying performing attention over different input feature types
- See example below

Multi-Head Self-Attention (3/4)

• A 2-head example, output of two heads are concatenated.

Multi-Head Self-Attention (4/4)

• A 2-head example, output of two heads are concatenated.

Batch Norm Layer Norm Instance Norm Group Norm

The Residuals

• A residual connection followed by layer normalization

The Decoder in Transformer

- Encoder-decoder attention
 - Q from self-attn in decoder, K & V from encoder outputs
- Masked multi-head attention
 - Design similar to that of encoder, except for decoder #1 which takes additional inputs (of GT/predicted word embeddings).
 - Mask unpredicted tokens during softmax: why?

The Decoder in Transformer (cont'd)

- Encoder-decoder attention
 - Q from self-attn in decoder, K & V from encoder outputs
- Masked multi-head attention
 - Design similar to that of encoder, except for decoder #1 which takes additional inputs (of GT/predicted word embeddings).
 - Mask unpredicted tokens during softmax: why?

Overview of Decoding in Transformer

• Encoder/Decoder Cross-Attention + Decoder self-attention

Vision Transformer

- "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR, 2021. (Google Research)
- Partition the input image into a **patch sequence**
- An additional **token** (*) is appended to perform attention on patches
- Both the "*" token and positional embeddings (denoted by 0, 1, 2 ...) are trainable vectors.

Vision Transformer (ViT)

Query-Key-Value Attention in ViT

- E.g., An input image is partitioned into 4 patches, with feature dimension = 3 (i.e., P=4 and D=3).
- Note that there are (P+1) rows since we have an additional token of *.

Query-Key-Value Attention in ViT (cont'd)

- By performing attention, the input sequence X (of length P+1) is "transformed" into another sequence Y with the same length
- Again, that's why it is called "Transformer" and as a seq2seq model.

Query-Key-Value Attention in ViT (cont'd)

- In standard vision transformer, we only take the **first output token** of the output sequence (the **first row** of Y) for classification purposes
- This corresponds to the output when **token "0"** serves as query

Visualization of ViT

- To visualize the attention maps, we take the attention scores from the **first row** of A (when token "0" serves as query)
- Note the first element is excluded, and thus there are **P scores** corresponding to the P image patches

Example Visualization for Image Classification

What'd Be Covered in This Crash Course...

- Learning-based Computer Vision
 - From Linear to Non-Linear Classifiers
- Start of Deep Learning for Computer Vision
 - Convolutional Neural Networks
 - Self-Supervised Learning
 - Segmentation & Detection
- Generative Models
 - Autoencoder, Variational Autoencoder, Generative Adversarial Networks & Diffusion Models
- Sequence-to-Sequence Learning
 - Attention is All You Need: Transformer
- Vision & Language Foundation Models
 - Image-to-Text vs. Text-to-Image
 - Parameter-Efficient Fine-tuning

Image Captioning

- **Cap**tion **T**ransformer (CPTR) -CPTR: Full Transformer Network for Image Captioning, arxiv 2021
- Motivation: patch translation for image captioning

Beyond Image Captioning: Unified Vision & Language Model

- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Training data: triplets of caption-tag-region
 - Objectives:
 - 1. Masked token loss for words & tags
 - 2. Contrastive loss tags and others
 - Fine-tuning:

5 vision & language tasks (VQA, image-text retrieval, image captioning, NOC, etc.)

Image-Text Pairs: 6.5M	Understanding
(1) Masked Token Loss (2) Contrastive Loss	• VQA • GQA • NLVR2
Image-Text Representation	• Image-Text Retrieval • Text-Image Retrieval
(A dog is sitting Dog on a couch ' Couch ,) ()	Generation
Word-Tag-Region Triplet	• Image Captioning • Novel Object Captioning
Pre-training —	Fine-tuning

Semantics-Aligned Pre-training for V+L Tasks

- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Training:
 - Inputs: triplets of caption-tag-region
 - Objectives: Masked token loss for words & tags + Contrastive loss tags and others
 - Fine-tuning:
 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

Semantics-Aligned Pre-training for V+L Tasks (cont'd)

- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Training:
 - Inputs: triplets of word-tag-region
 - Objectives: Masked token loss for words & tags + Contrastive loss tags and others
 - Fine-tuning:
 - 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

- Oscar (cont'd)
 - Fine-tuning:

5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

• Take image-text retrieval as an example

- Training: aligned/mis-aligned image-text pairs as positive/negative input pairs, with [CLS] for binary classification (1/0)
- Inference: for either image or text retrieval, calculate classification score of **[CLS]** for the input query

	Contrastive Loss			Masked Token Loss										
Features														
Network	Multi-Layer Transformers													
Embeddings	\bigcirc								\bigcirc					
Data	[CLS]	A	dog	is] on	a	couch	[SEP]	dog	couch	[SEP]		
Duiu	Word Tokens							Object Tags			Region Features			
Modality								Lan	guage		Image			
Dictionary	<									-	Languag	е		

IMAGENET RESNET101

CLIP: Contrastive Language-Image Pretraining

- Why DL/CNN not good enough?
 - Require annotated data for training image classification
 - Domain gap between closed-world and openworld domain data
 - Lack of ability for zero-shot classification

geNet Sketch

↓ t Adversarial

2.7%

CLIP (cont'd)

- Why DL/CNN not good enough?
 - Require annotated data for training image classification
 - Domain gap between closed-world and open-world domain data
 - Lack of ability for zero-shot classification
- Motivation/Objectives
 - Cross-domain contrastive learning from large-scale image-language data

CLIP (cont'd)

• (Zero-shot) Inference:

• Potential concerns/disadvantages?

BLIP-2 (ICML'23)

• BLIP:

Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation, NeurIPS 2021

• Goal:

Bridge the modality gap between off-the-shelf frozen pre-trained image encoders and frozen large language models with a lightweight Querying Transformer (Q-Former).

- Result:
 - 1. SOTA performance on various downstream vision-language tasks.
 - 2. Zero-shot image-to-text generation that can follow <u>natural language instructions</u>.

Pre-training

- Two-stage Pre-training
 - Stage 1:

VL representation learning which enforces the **Q-Former** to learn **visual representation** that is most relevant to the text.

• Stage 2:

VL generative learning makes the output representation of **Q-Former** to be understood by **LLMs**.

Pre-training Stage 1 - VL Representation Learning

• Goal:

enforce the **Q-Former** to extract visual representation relevant to the text.

- Method: three pre-training tasks
 - Image-Text Matching (ITM):
 for each learnable query -> linear classifier for binary decision
 - Image-grounded Text Generation (ITG): self-attn in Q for encoder training; T->Q for image-to-text generation
 - Image-Text Contrastive Learning (ITC): self-attn in Q/T, followed by max (sim(Q, T))

Pre-training Stage 2 - VL Generative Learning

• Goal:

Learning with LLM guidance

i.e., make the output representation of **Q-Former** to be understood by **LLMs**.

• Method:

pre-training with Image-grounded Text Generation (ITG)

Parameter-Efficient Fine-Tuning

- Adapter
 - VL-ADAPTER: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks (CVPR, 2022)

• Visual Prompt Tuning

- Visual Prompt Tuning (ECCV, 2022)
- LoRA
 - LoRA: Low-Rank Adaptation of Large Language Models (ICLR, 2022)

Parameter Efficient Fine Tuning

VL-ADAPTER: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks

https://arxiv.org/abs/2112.06825

Visual Prompt Tuning

• Shallow:
$$\begin{array}{l} [\mathbf{x}_1, \mathbf{Z}_1, \mathbf{E}_1] = L_1([\mathbf{x}_0, \mathbf{P}, \mathbf{E}_0]) \\ [\mathbf{x}_i, \mathbf{Z}_i, \mathbf{E}_i] = L_i([\mathbf{x}_{i-1}, \mathbf{Z}_{i-1}, \mathbf{E}_{i-1}]) \end{array}$$
(4)

$$\mathbf{y} = \operatorname{Head}(\mathbf{x}_N) \quad , \tag{6}$$

• Deep:
$$\begin{bmatrix} \mathbf{x}_i, _, \mathbf{E}_i \end{bmatrix} = \frac{L_i([\mathbf{x}_{i-1}, \mathbf{P}_{i-1}, \mathbf{E}_{i-1}])}{\mathbf{y} = \operatorname{Head}(\mathbf{x}_N)} \quad i = 1, 2, \dots, N$$
(7) (8)

https://arxiv.org/abs/2203.12119

LoRA: Low-Rank Adaptation of Large Language Models

• Previous problems

- Adapter Layers Introduce Inference Latency
- Directly Optimizing the Prompt is Hard

• LoRA

 $W_0 \in \mathbb{R}^{d \times \bar{k}}$ $W_0 + \Delta W = W_0 + BA$ $B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k}$ rank $r \ll \min(d, k)$

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

Figure 1: Our reparametrization. We only train A and B.

LoRA: Low-Rank Adaptation of LLMs (cont'd)

Model & Method	# Trainable		0.075.0	MDDC	C L L		000	DTE	OTO D	
	Parameters	MNLI	\$\$1-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB_{base} (Adpt ^D)*	0.3M	$87.1_{\pm .0}$	$94.2 {\scriptstyle \pm.1}$	$88.5_{\pm1.1}$	$60.8_{\pm.4}$	$93.1_{\pm.1}$	$90.2 \scriptstyle \pm .0$	$71.5_{\pm 2.7}$	$89.7_{\pm.3}$	84.4
RoB_{base} (Adpt ^D)*	0.9M	$87.3_{\pm.1}$	$94.7_{\pm.3}$	$88.4_{\pm.1}$	$62.6_{\pm.9}$	$93.0_{\pm.2}$	$90.6_{\pm.0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$ 87.5_{\pm.3} $	95.1 _{±.2}	$89.7_{\pm.7}$	$63.4_{\pm 1.2}$	93.3 _{±.3}	$90.8_{\pm.1}$	86.6 _{±.7}	91.5 $_{\pm.2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	90.6 ±.2	$96.2_{\pm.5}$	90.9 ±1.2	68.2 _{±1.9}	94.9 ±.3	$91.6_{\pm.1}$	87.4 _{±2.5}	92.6 ±.2	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2±.3	96.1 _{±.3}	$90.2_{\pm.7}$	$\textbf{68.3}_{\pm 1.0}$	$\textbf{94.8}_{\pm.2}$	$\textbf{91.9}_{\pm.1}$	$83.8_{\pm 2.9}$	$92.1 \scriptstyle \pm .7$	88.4
$RoB_{large} (Adpt^{P})^{\dagger}$	0.8M	90.5 _{±.3}	96.6 _{±.2}	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	94.8 ±.3	$91.7_{\pm.2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
$RoB_{large} (Adpt^{H})^{\dagger}$	6.0M	89.9 _{±.5}	$96.2_{\pm.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm .2}$	$92.1_{\pm.1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
$RoB_{large} (Adpt^{H})^{\dagger}$	0.8M	$90.3_{\pm.3}$	$96.3_{\pm.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm .2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm.5}$	86.4
RoB _{large} (LoRA)†	0.8M	90.6 _{±.2}	$96.2_{\pm.5}$	90.2 ±1.0	$68.2_{\pm 1.9}$	94.8 ±.3	91.6 _{±.2}	85.2 ±1.1	92.3 ±.5	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	91.9 _{±.2}	$96.9_{\pm.2}$	$92.6_{\pm.6}$	72.4 ±1.1	96.0 ±.1	92.9 ±.1	94.9 ±.4	93.0 ±.2	91.3
Model & Method		† Trainal	ole	E2E NLG Challenge						
		Paramete	ers B	BLEU	NIST	IST MET		OUGE-I	L CII	DEr
GPT-2 M (FT)*		354.92	354.92M		8.62	46.	.2	71.0	2.47	
GPT-2 M (Adapter ^L)*		0.37M		66.3	8.41	45.	.0	69.8	2.40	
GPT-2 M (Adapter ^L)*		11.09M		68.9	8.71	46.	.1	71.3	2.4	47
GPT-2 M (Adapter ^H)		11.09M		$7.3_{\pm.6}$	$8.50_{\pm.07}$	46.0	$\pm .2$	$70.7_{\pm .2}$	2.44	±.01
GPT-2 M (FT ^{Top2})*		25.19M		68.1	8.59	46.	.0	70.8	2.4	41
GPT-2 M (PreLayer)*		0.35M		69.7	8.81	46.	.1	71.4	2.4	49
GPT-2 M (LoRA)		0.35M		$0.4_{\pm .1}$	$8.85_{\pm.02}$ 46.8		$\pm .2$ 71.8 $\pm .1$		$2.53_{\pm.02}$	
GPT-2 L (FT)*		774.03	M	68.5	8.78	46.	.0	69.9	2.4	45
GPT-2 L (Adapter ^L)		0.88	SM 69	$9.1_{\pm.1}$	$8.68_{\pm .03}$	46.3	$\pm .0$	$71.4_{\pm .2}$	2.49	9 _{±.0}
GPT-2 L (Adapter ^L)		23.00	M 6	$8.9_{\pm .3}$	$8.70_{\pm .04}$	46.1	±.1	$71.3_{\pm .2}$	2.45	±.02
GPT-2 L (PreLayer)*		0.77	'M '	70.3	8.85	46.	.2	71.7	2.4	47
GPT-2 L (LoRA)		0.77	'M 7	0.4 _{±.1}	8.89 _{±.02}	46.8	±.2	72.0 _{±.2}	2.47	±.02

Adv. Topic: Knowledge Editing

• Motivation:

Knowledge updates everyday while retraining LLMs is expensive.

• Goal:

Propose more efficient & effective solutions to update knowledge in LLM

Adv. Topic: Unlearning

• Goal:

A photo of Elon Mush

Erase the <u>undesirable visual concepts</u> from Diffusion Models. Concepts can be abstractive concept, artistic style, object, or personality.

• Method:

Diffusion Model Fine-tuning.

154

What We (Try to) Cover Today...

• Learning-based Computer Vision

• From Linear to Non-Linear Classifiers

• Start of Deep Learning for Computer Vision

- Convolutional Neural Networks
- SSL, Segmentation & Detection
- Generative Models
 - AE, VAE, GAN, & Diffusion Models
- Sequence-to-Sequence Learning
 - Attention is All You Need: Transformer
- Vision & Language Foundation Models
 - Image-to-Text vs. Text-to-Image
 - Parameter-Efficient Fine-tuning
- Lots of research topics we haven't covered...
 - 3D vision
 - Video-based synthesis & analysis, etc.

Feel free to reach me at ycwang@ntu.edu.tw