
Online Convex Optimization and Its Surprising Applications

Francesco Orabona

KAUST

Machine Learning Summer School, OIST, 2024

1 / 82

Aims of the Lecture

Provide an introduction to Online Convex Optimization

Almost rigorous: details are missing, but theorems are correct

Connections: not written anywhere, but known to people in the field

(1-slide) Proofs! Because it is the only way to design online learning
algorithms

Ideally, when in 1 week all this material will disappear from your memory,
you can still use the slides as a “cheat sheet”

Most of the material is based on my online learning notes
(https://arxiv.org/abs/1912.13213), my blog posts
(https://parameterfree.com), and some recent papers

2 / 82

https://arxiv.org/abs/1912.13213
https://parameterfree.com

Outline of the Lecture

1 Online Convex Optimization and Regret

2 Online Mirror Descent

3 Follow-the-Regularized-Leader

4 Parameter-free Online Algorithms

5 From Online Learning to Non-smooth Non-convex Optimization

6 From Online Betting to Concentration Inequalities

7 From Online Betting to PAC-Bayes

3 / 82

Online Convex Optimization

Online Learning

1 In each round, output x t ∈ V Choose x t before observing ℓt

2 Pay ℓt(x t) No assumptions on how ℓt is generated!

3 Update x t+1 based on received information on ℓt

Regret minimization

min
x1,...,xT ∈V

T∑
t=1

ℓt(x t) equivalently min
x1,...,xT ∈V

T∑
t=1

ℓt(x t)−
T∑

t=1

ℓt(u)︸ ︷︷ ︸
RegretT (u)

The algorithm is no-regret if 1
T RegretT (u) → 0 for all u ∈ V and any

sequence of losses in a certain family

4 / 82

Why Online Convex Optimization?

It is a strict generalization of the learning with expert setting

It generalizes the setting of batch and stochastic convex optimization, in
99% of the cases without losing anything

It provides a different mindset for designing optimization algorithms

It is connected to a number of topics: Generalization, PAC-Bayes,
Compression, Betting, etc.

5 / 82

Some Famous Online Learning Algorithms

Online Gradient Descent [Zinkevich, ICML’03]

AdaGrad [Duchi et al., COLT’10, JMRL’11; McMahan&Streeter, COLT’10]

AMSGrad [Reddi et al., ICLR’18]

These algorithms are designed to work in the adversarial setting and have a
O(

√
T) regret bound

We will see that they can also be used as stochastic optimization algorithms
with a O(1√

T
) convergence rate

6 / 82

Assumptions and Definitions

Losses: ℓt : Rd → R, convex, 1-Lipschitz

Feasible set: V ⊆ Rd , closed, convex, non-empty

Iterates: All technical conditions for iterates x t to exists hold

7 / 82

Mainly Two Main Meta-Algorithms

Online Mirror Descent (OMD)

Follow-the-Regularized-Leader (FTRL)

These two meta-algorithms cover 90% of the (online) optimization
algorithms
Examples

Online Gradient Descent = special case of OMD
Dual Averaging = Special case of FTRL with linearized losses
Regularized Dual Averaging = Special case of FTRL with linearized losses
“Lazy version” of online gradient descent = FTRL
Newton algorithm = OMD with distance induced by the Hessian
Accelerated algorithm = two OCO algorithms playing against each other
Frank-Wolfe algorithm = two OCO algorithms playing against each other
etc.

8 / 82

Online Subgradient Descent

9 / 82

Projected Online Gradient Descent

Require: Feasible set V ⊆ Rd , x1 ∈ V , η1, · · · , ηT > 0
1: for t = 1 to T do
2: Output x t ∈ V
3: Pay ℓt(x t)
4: Set gt = ∇ℓt(x t)
5: x t+1 = ΠV (x t − ηtgt) = argminy∈V ∥x t − ηtgt − y∥2

6: end for

[Zinkevich, ICML’03]
10 / 82

Guarantee for OGD (1)

Lemma

Let ℓt : V → R differentiable in an open set that contains V . Then, ∀u ∈ V, OGD
satisfies

ηt(ℓt(x t)− ℓt(u)) ≤ ηt⟨gt , x t − u⟩ ≤ 1
2
∥x t − u∥2

2 −
1
2
∥x t+1 − u∥2

2 +
η2

t

2
∥gt∥

2
2 .

Proof.

∥x t+1 − u∥2
2 − ∥x t − u∥2

2

Π is non expansive
≤ ∥x t − ηtgt − u∥2

2 − ∥x t − u∥2
2

= −2ηt⟨gt , x t − u⟩+ η2
t ∥gt∥

2
2

Convexity
≤ −2ηt(ℓt(x t)− ℓt(u)) + η2

t ∥gt∥
2
2 .

11 / 82

Guarantee for OGD (2)

Theorem

Let ℓ1, · · · , ℓT differentiable in open sets containing V . Pick any x1 ∈ V and
assume ηt = η, t = 1, . . . ,T . Then, ∀u ∈ V, OGD satisfies

T∑
t=1

(ℓt(x t)− ℓt(u)) ≤
∥u − x1∥2

2

2η
+
η

2

T∑
t=1

∥gt∥
2
2−

1
2η

∥xT+1 − u∥2
2 .

Proof.

Dividing the inequality in the previous Lemma by η and summing over
t = 1, · · · ,T , we have

T∑
t=1

(ℓt(x t)− ℓt(u)) ≤
T∑

t=1

(
1
2η

∥x t − u∥2
2 −

1
2η

∥x t+1 − u∥2
2

)
+
η

2

T∑
t=1

∥gt∥
2
2

=
1
2η

∥x1 − u∥2
2 −

1
2η

∥xT+1 − u∥2
2 +

η

2

T∑
t=1

∥gt∥
2
2 .

12 / 82

Non-Differentiable Convex Functions

If the losses are convex, but not differentiable, we cannot calculate the
gradients
We only need gradients because they satisfy
ℓt(x t)− ℓ(u) ≤ ⟨∇ℓt(x t), x t − u⟩

Solution: use any vector gt that satisfies ℓt(x t)− ℓ(u) ≤ ⟨gt , x t − u⟩ for all
u ∈ V
gt is called a subgradient of ℓt in x t

The set of all subgradients ℓ in x is called subdifferential and it is denoted
by ∂ℓt(x t)

x

ℓt(x) ℓt(x) = |x − 1|

Linear lower bound

13 / 82

Projected Online Subgradient Descent

Require: Feasible set V ⊆ Rd , x1 ∈ V , η1, . . . , ηT > 0
1: for t = 1 to T do
2: Output x t ∈ V
3: Pay ℓt(x t)
4: Set gt ∈ ∂ℓt(x t)
5: x t+1 = ΠV (x t − ηtgt) = argminy∈V ∥x t − ηtgt − y∥2

6: end for

Same guarantee of OGD:

T∑
t=1

(ℓt(x t)− ℓt(u)) ≤
∥u − x1∥2

2

2η
+
η

2

T∑
t=1

∥gt∥
2
2−

1
2η

∥xT+1 − u∥2
2 .

[Zhang, ICML’04]
14 / 82

Learning rate in OSD

The regret is
∑T

t=1(ℓt(x t)− ℓt(u)) ≤ ∥u−x1∥2
2

2η + η
2

∑T
t=1 ∥gt∥

2
2

Assume the function 1-Lipschitz w.r.t. the L2 norm
(∥ℓt(x)− ℓt(u)∥2 ≤ ∥x − y∥2)

Then,
∑T

t=1(ℓt(x t)− ℓt(u)) ≤ ∥u−x1∥2
2

2η + Tη
2

Optimal learning rate: η = ∥u−x1∥2√
T

Any problem with this choice?

Practical choice η = α√
T

that gives RegretT (u) ≤ 1
2

(
∥x1−u∥2

2
α

+ α
)√

T

Easy case: V has bounded diameter D, then η = D√
T

gives regret D
√

T

15 / 82

Applications: From Online to Stochastic (or Batch) Optimization (1)

1: for t = 1 to T do
2: Get x t from an Online Convex Optimization algorithm
3: Receive stochastic gradient gt such that Et [gt] ∈ ∂F (x t)
4: Pass loss ℓt(x) = ⟨gt , x⟩ to Online Learning Algorithm
5: end for
6: return x̄T = 1

T

∑T
t=1 x t

Theorem

E[F (x̄T)]− F (u) ≤ E[RegretT (u)]
T

, ∀u ∈ V

Corollary: any result on regret translates to a result on convergence for
stochastic optimization of convex functions

[Cesa-Bianchi et al., IEEE Trans. Inf. Theory 2004]
16 / 82

Applications: From Online to Stochastic (or Batch) Optimization (1)

Proof.

E[F (x̄T)]− F (u)
Jensen
≤ 1

T

T∑
t=1

(E[F (x t)]− F (u))

convexity
≤ 1

T

T∑
t=1

E[⟨Et [gt], x t − u⟩]

=
1
T

T∑
t=1

E[Et [⟨gt , x t − u⟩]]

total expectation
=

1
T

T∑
t=1

E[⟨gt , x t − u⟩]

=
E[RegretT (u)]

T

17 / 82

Example: Stochastic Subgradient Descent

Require: Feasible set V ⊆ Rd , x1 ∈ V , η = α√
T

1: for t = 1 to T do
2: Output x t ∈ V
3: Receive stochastic gradient gt such that Et [gt] ∈ ∂F (x t)
4: x t+1 = ΠV (x t − ηgt)
5: end for
6: return x̄T = 1

T

∑T
t=1 x t

From the previous slides, we have

E[F (x̄T)]− F (x⋆) ≤ 1
2
√

T

(
∥x1 − x⋆∥2

2

α
+ α

)

18 / 82

Beyond Online Subgradient Descent

19 / 82

Does Online Subgradient Descent Minimize the Functions? (1)

-2 -1 0 1 2

x
1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x
2

3D plot (left) and level sets (right) of f (x) = max[−x1, x1 − x2, x1 + x2]. A
negative subgradient is indicated by the black arrow

[Orabona, arXiv’19]
20 / 82

Does Online Subgradient Descent Minimize the Functions? (2)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x
1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x
2

3D plot (left) and level sets (right) of f (x) = max[x2
1 + (x2 + 1)2, x2

1 + (x2 − 1)2].
A negative subgradient is indicated by the black arrow

[Orabona, arXiv’19]
21 / 82

Intuition on OGD Update (1)

ΠV (x t − ηtgt) = argmin
x∈V

∥x − x t + ηtgt∥
2
2

= argmin
x∈V

∥ηtgt∥
2
2 + 2ηt⟨gt , x − x t⟩+ ∥x t − x∥2

2

= argmin
x∈V

ℓt(x t) + ⟨gt , x − x t⟩︸ ︷︷ ︸
Linear approximation of ℓt

+
1

2ηt
∥x t − x∥2

2︸ ︷︷ ︸
Stay close to x t

where ΠV is the Euclidean projection onto V , i.e., ΠV (x) = argminy∈V ∥x − y∥2

22 / 82

Intuition on OGD Update (2)

2 4 6 8 10 12 14

5

10

15

f̃ (x)

f̂ (x)

x0

23 / 82

General Notion of Distances using Bregman Divergences

argmin
x∈V

ℓt(x t) + ⟨gt , x − x t⟩+
1

2ηt
∥x t − x∥2

2

Why the square Euclidean norm?

I can use general notion of distances, in particular Bregman divergences

Definition (Bregman Divergence [Bregman, 1967])

Let ψ : X → R be strictly convex and differentiable on int X ̸= {}. The Bregman
Divergence w.r.t. ψ is denoted by Bψ : X × int X → R defined as

Bψ(x ; y) = ψ(x)− ψ(y)− ⟨∇ψ(y), x − y⟩ .

24 / 82

Online Mirror Descent

We start from the equivalent formulation of the OSD update

x t+1 = argmin
x∈V

ℓt(x t) + ⟨gt , x − x t⟩+
1

2ηt
∥x t − x∥2

2

and we can change the last term with a Bregman Divergence

x t+1 = argmin
x∈V

ℓt(x t) + ⟨gt , x − x t⟩+
1
ηt

Bψ(x ; x t)

Require: ψ : X → R strictly convex and differentiable on int X , feasible set
V ⊆ X ⊆ Rd , x1 ∈ int X ∩ V

1: for t = 1 to T do
2: Output x t ∈ V
3: Pay ℓt(x t)
4: Set gt ∈ ∂ℓt(x t)
5: Set x t+1 ∈ argminx∈V ⟨gt , x⟩+

1
ηt

Bψ(x ; x t)

6: end for

[Nemirovskij&Yudin, 1983][Warmuth&Jagota, 1997][Beck&Teboulle, 2003]
25 / 82

Strongly Convex Functions

Definition

f : Rd → (−∞,+∞] is λ-strongly convex w.r.t. ∥ · ∥ if

f (x)− f (y) ≤ ⟨g, x − y⟩ − λ

2
∥x − y∥2, ∀g ∈ ∂f (x) .

Lemma (For OMD proof)

If ψ is λ-strongly convex w.r.t. ∥ · ∥ then Bψ(x ; y) ≥ λ
2 ∥x − y∥2

Lemma (For FTRL proof)

Let f : Rd → (−∞,+∞] closed, proper, subdifferentiable, and µ-strongly convex
with respect to a norm ∥ · ∥ over its domain. Let x⋆ = argminx f (x). Then, for all
x ∈ dom ∂f , and g ∈ ∂f (x), we have

f (x)− f (x⋆) ≤ 1
2µ

∥g∥2
⋆ .

26 / 82

Regret Guarantee of OMD

Theorem

Let ψ be λ-strongly convex w.r.t. ∥ · ∥. Pick any x1 ∈ int X ∩ V and assume
ηt = η, t = 1, . . . ,T . Then, ∀u ∈ V, OMD satisfies

T∑
t=1

(ℓt(x t)− ℓt(u)) ≤
Bψ(u; x1)

η
+

η

2λ

T∑
t=1

∥gt∥
2
⋆−

1
η

Bψ(u; xT+1) .

Proof.

One can show

ηt(ℓt(x t)− ℓt(u)) ≤ η⟨gt , x t − u⟩
≤ Bψ(u; x t)− Bψ(u; x t+1)− Bψ(x t+1; x t) + ⟨ηtgt , x t − x t+1⟩

The last term can be bounded as

⟨ηtgt , x t − x t+1⟩ ≤ ∥gt∥⋆∥x t − x t+1∥ ≤
∥gt∥

2
⋆

2λ
+
λ

2
∥x t − x t+1∥2

From strong convexity of ψ, we get −Bψ(x t+1; x t) ≤ −λ
2 ∥x t − x t+1∥2. Putting all

together and summing over time, we get the stated bound.
27 / 82

Example: Online Subgradient Descent

Set ψ(x) = 1
2∥x∥2

2

ψ is 1-strongly convex w.r.t. the L2 norm

Dual norm of L2 is L2

B(x ; y) =
1
2
∥x∥2

2 −
1
2
∥y∥2

2 − ⟨y , x − y⟩ = 1
2
∥x − y∥2

2

Regret for any u:
T∑

t=1

(ℓt(x t)− ℓ(u)) ≤ Bψ(u; x1)

η
+
η

2

T∑
t=1

∥g∥2
∗

=
∥x1 − u∥2

2

2η
+
η

2

T∑
t=1

∥g∥2
2

28 / 82

Example: Exponentiated Gradient (a.k.a. Hedge, EWA, etc.)

Set V = ∆d−1 := {x ∈ Rd : xi ≥ 0, ∥x∥1 = 1}
Set ψ(x) =

∑d
i=1 xi ln xi

ψ is 1-strongly convex w.r.t. the L1 norm
Dual norm of L1 is L∞

Require: η > 0
1: Set x1 = [1/d , . . . , 1/d]
2: for t = 1 to T do
3: Output x t ∈ ∆d−1

4: Pay ℓt(x t)
5: Set gt ∈ ∂ℓt(x t)

6: xt+1,j =
xt,j exp(−ηgt,j)∑d

i=1 xt,i exp(−ηgt,i)
, j = 1, . . . , d

7: end for

Regret for any u:
T∑

t=1

(ℓt(x t)− ℓ(u)) ≤
Bψ(u; x1)

η
+
η

2

T∑
t=1

∥g∥2
∗ ≤ ln d

η
+
ηT
2

Set η =
√

2 ln d
T to obtain the upper bound of

√
2T ln d

[Kivinen&Warmuth, 1997]
29 / 82

Follow-The-Regularized-Leader Algorithm

30 / 82

Follow-the-Regularized-Leader

Require: Feasible set V ⊆ X ⊆ Rd , a sequence of regularizers
ψ1, . . . , ψT : X → R

1: for t = 1 to T do
2: Output x t ∈ argminx∈V ψt(x) +

∑t−1
i=1 ℓi(x)

3: Receive ℓt : V → R and pay ℓt(x t)
4: end for

[Gordon, COLT’99][Shalev-Shwartz&Singer, COLT’06, NeurIPS’06][Shalev-Shwartz,
PhD’07][Abernethy et al., COLT’08][Hazan&Kale, COLT’08]

31 / 82

Guarantee for FTRL

Lemma

Let ψ1, . . . , ψT : X → R be a sequence of regularization functions and
V ⊆ X ⊆ Rd . Denote by Ft(x) = ψt(x) +

∑t−1
i=1 ℓi(x). Set x t ∈ argminx∈V Ft(x).

Then, for any u ∈ Rd , we have

T∑
t=1

(ℓt(x t)− ℓt(u)) = ψT+1(u)−min
x∈V

ψ1(x) +
T∑

t=1

[Ft(x t)− Ft+1(x t+1) + ℓt(x t)]

+ FT+1(xT+1)− FT+1(u) .

Proof.

Just sum simplify the sums and use the fact that F1(x1) = minx∈V ψ1(x).

[McMahan, JMLR’17][Orabona, arXiv’19]
32 / 82

An Explicit Regret with Strongly Convex Functions (1)

Lemma

Let ψt : X → R and denote by Ft(x) = ψt(x) +
∑t−1

i=1 ℓi(x). Assume V ⊆ X be
convex. Assume ∂ℓt(x t) to be non-empty and Ft + ℓt to be closed,
subdifferentiable, and λt -strongly convex w.r.t. ∥ · ∥ in V . Then, we have

Ft(x t)− Ft+1(x t+1) + ℓt(x t) ≤ ∥gt∥
2
⋆/(2λt) + ψt(x t+1)− ψt+1(x t+1), ∀gt ∈ ∂ℓt(x t) .

Proof.

Define x⋆t := argminx∈V Ft(x) + ℓt(x), and g′
t ∈ ∂(Ft + ℓt + iV)(x t). Then

Ft(x t)− Ft+1(x t+1) + ℓt(x t)

= (Ft(x t) + ℓt(x t))− (Ft(x t+1) + ℓt(x t+1)) + ψt(x t+1)− ψt+1(x t+1)

≤ (Ft(x t) + ℓt(x t))− (Ft(x⋆t) + ℓt(x⋆t)) + ψt(x t+1)− ψt+1(x t+1)

≤ ∥g′
t∥

2
⋆/(2λt) + ψt(x t+1)− ψt+1(x t+1),

where in the second inequality we used the lemma in the previous slide.
Observing that x t = argminx∈V Ft(x), we have 0 ∈ ∂(Ft + iV)(x t). Hence, we
have ∂ℓt(x t) ⊆ ∂(Ft + ℓt + iV)(x t).

[McMahan, JMLR’17][Orabona, arXiv’19] 33 / 82

An Explicit Regret with Strongly Convex Functions (2)

Under the assumption of the previous slide and ψt+1(x) ≥ ψt(x), we have

T∑
t=1

(ℓt(x t)− ℓt(u))

= ψT+1(u)−min
x∈V

ψ1(x) +
T∑

t=1

[Ft(x t)− Ft+1(x t+1) + ℓt(x t)] + FT+1(xT+1)− FT+1(u)

≤ ψT+1(u)−min
x∈V

ψ1(x) +
T∑

t=1

∥gt∥
2
⋆

2λt

34 / 82

Example: Guessing Game

In each round we have to guess a number yt between 0 and 1

Call your guess xt

Then, the yt is revealed and you pay ℓt(x) = (x − yt)
2

Use FTRL, no regularizer: x t = argminx∈V
∑t−1

i=1 ℓi(x) = 1
t−1

∑t−1
i=1 yi

ℓt(x) +
∑t−1

i=1 ℓi(x) is 2t strongly convex w.r.t. | · |
Gradient is 2(xt − yt), hence |gt | ≤ 2

Regret of FTRL:
∑T

t=1(xt − yt)
2 −

∑T
t=1(yt − u)2 ≤ 1

2

∑T
t=1

2
t ≤ lnT + 1

35 / 82

FTRL with Linearized Losses

FTRL needs to solve a convex optimization problem at each step

I can run FTRL with any sequence of losses
I can also construct some losses
For example, I might want to run FTRL on ℓ̂t(x) = ℓt(x t) + ⟨gt , x − x t⟩
where gt ∈ ∂ℓt(x t)

Require: A sequence of regularizers ψ1, . . . , ψT : X → R
1: for t = 1 to T do
2: Output x t ∈ argminx∈V ψt(x) +

∑t−1
i=1 ⟨g i , x⟩

3: Pay ℓt(x t)
4: Get gt ∈ ∂ℓt(x t)
5: end for

Same regret because

T∑
t=1

(ℓt(x t)− ℓt(u)) ≤
T∑

t=1

⟨gt , x t − u⟩

36 / 82

FTRL with Linearized Losses vs OSD

V = Rd

ψt+1(x) = 1
ηt+1

∥x∥2
2 ⇒ ψt+1 is 1

ηt+1
-strongly convex w.r.t. ∥ · ∥2

x t+1 = argminx
1

2ηt+1
∥x∥2

2 +
∑t

i=1⟨g i , x⟩ = −ηt+1
∑t

i=1 g i

Compare it with OSD with x1 = 0: x t+1 = x t − ηtgt = −
∑t

i=1 ηig i

Important: In FTRL the gradients are used with the same weight

Important: In FTRL we don’t take “jumps” of size ηt

37 / 82

Example: FTRL with Linearized Loss and Euclidean Regularization

V = Rd

ψ(x) = γ
2 ∥x∥2

2

ψ is γ-strongly convex w.r.t. L2 norm

Dual norm of L2 norm is L2 norm

x t = argmin
x∈V

γ

2
∥x∥2

2 +
t−1∑
i=1

⟨g i , x⟩ =
−
∑t−1

i=1 g i

γ

T∑
t=1

(ℓt(x t)− ℓt(u)) ≤
T∑

t=1

⟨gt , x t − u⟩ ≤ ψT+1(u)−min
x∈V

ψ1(x) +
T∑

t=1

∥gt∥
2
⋆

2λt

=
γ

2
∥u∥2

2 +
T∑

t=1

∥gt∥
2
2

2γ

What is the optimal tuning of γ?

38 / 82

Parameter-free Online Algorithms

39 / 82

What is a Parameter-free Algorithm?

Definition

We define a parameter-free online convex optimization algorithm as one that
achieves optimal regret uniformly for any competitor vector u, up to logarithmic
factors

Examples

Exponentiated Gradient: RegretT (u) ≤ KL(u;π)
η

+ Tη
2 ⇒

NormalHedge: RegretT (u) = O(
√

T (KL(u;π)+1)) [Chaudhuri et al.,
NeurIPS’09][Chernov&Vovk, UAI’10][Orabona&Pál, NeurIPS’16]

OSD: RegretT (u) ≤
∥x1−u∥2

2
2η + ηT

2 ⇒
KT (next slides): RegretT (u) = O(∥x1 − u∥2

√
T ln(1 + T∥x1 − u∥2/ϵ) + ϵ)

40 / 82

Simple Parameter-free FTRL

Theorem

Consider the 1-d OCO problem, gt ∈ [−1, 1], V = R≥0. Set
ψt(x) = x

√
T (ln x − 1) + (t−1)x√

T
. Assume T ≥ 4. Then, FTRL has regret

T∑
t=1

(ℓt(x t)− ℓt(u)) ≤
√

T (1 + u ln u)− u√
T

Moreover, xt = exp(−
∑t−1

i=1 gi − t−1
T)

Compare it with OSD: RegretT (u) ≤ 1
2

√
T (u2/α+ α)

“Impossible” tuning of learning rate of OSD would give RegretT (u) ≤ |u|
√

T

Important: We get almost the optimal regret, uniformly for all u

Important: The algorithm goes exponential fast if the subgradients are all
in the same direction

[New, proved just for these slides :)]
41 / 82

Simple Parameter-free FTRL (2)

The regularizer is not strongly convex! But it still works:

Proof.

The formula for xt comes from the definition of the FTRL update.
Let θt = −

∑t−1
i=1 gi . Then, in the FTRL regret bound we have

F (xt)− Ft+1(xt+1) + gtxt

=
√

T exp

(
θt − gt√

T
− t

T

)
−

√
T exp

(
θt√
T

− t − 1
T

)
+ gt exp

(
θt√
T

− t − 1
T

)
=

√
T exp

(
θt − gt√

T
− t

T

)
−

√
T exp

(
θt√
T

− t − 1
T

)(
1 − gt

1√
T

)
≤

√
T exp

(
θt − gt√

T
− t

T

)
−

√
T exp

(
θt√
T

− t − 1
T

)
exp

(
−gt

1√
T

− g2
t

1
T

)
≤ 0

where we use the elementary inequality 1 + y ≥ exp(y − y2) for |y | ≤ 1/2

42 / 82

Did We Only Gain a Constant in the Rate?

√
T (1 + u ln u) vs 1

2

√
T (u2/α+ α)

The rate did not change, and it might seem like we only improved a constant

Not so fast!

43 / 82

Example: Logistic Regression

Consider logistic regression on a dataset of T samples:
minx F (x) := 1

T

∑T
t=1 ln(1 + exp(−yt⟨x , z t))

Assume that the dataset is linearly separable with margin at least 1 by a
hyperplane u⋆

Does the minimum exist? Does the minimizer exist?
Rate of Averaged OSD with x1 = 0:
E[F (x̄T)]− F (x⋆) ≤ 1

2
√

T

(
∥x⋆∥2

2/α+ α
)
, is it vacuous?

Rewrite it as E[F (x̄T)] ≤ minu F (u) + 1
2
√

T

(
∥u∥2

2/α+ α
)

The r.h.s. can be upper bounded by u = u⋆ ln 2α
√

T
∥u⋆∥2

that gives

F (u) ≤ 1
T

T∑
t=1

ln

(
1 + exp

(
− ln

2α
√

T
∥u⋆∥2

))
≤ 1

T

T∑
t=1

exp

(
− ln

2α
√

T
∥u⋆∥2

)

=
∥u⋆∥2

2α
√

T

Overall, rate is O(ln T√
T
) and ∥u∥2 = O(lnT), so not a constant!

[Ji&Telgarsky, COLT’19][Blogpost Feb’24]
44 / 82

Example: Regression with Kernels

Consider a “universal kernel” k(·, ·), e.g., Gaussian kernel

Universal kernels can approximate any continuous target function uniformly
on any compact subset of the input space

Consider linear regression with kernels

Same thing will happen: the solution might be at infinity

minu∈Hk F (u) +
∥u∥2

Hk√
T

= O(T−a) where ‘a’ measures how “smooth” is the
optimal solution [tons of refs! See, e.g., Ying&Pontil, 2008] (see also Taiji’s
slides)

Again ∥u∥2 is not a constant!

A parameter-free algorithm will achieve optimal convergence in the
parameter ‘a’ without, knowing it [Orabona, NeurIPS’14]

45 / 82

Brief History of Parameter-free Algorithms

Streeter&McMahan [NeurIPS’12]: Only in 1 dimension, suboptimal bound,
not a complete understanding

McMahan&Abernethy [NeurIPS’13]: 1 dimension, minimax strategy but
suboptimal formulation

Orabona [NeurIPS’13]: Still suboptimal, but extended to any number of
dimensions, even infinite

Nemirovski [Personal Communication 2013]: Run GD with a grid of learning
rates, select best solution: suboptimal bound, only deterministic

McMahan&Orabona [COLT’14] and Orabona [NeurIPS’14]: Optimal bound,
any number of dimensions, unintuitive proofs

Orabona&Pál [NeurIPS’16]: Coin-betting view

Carmon&Hider [COLT’22]: from ln(∥u∥2) to ln ln(∥x⋆∥2) in the stochastic
setting

See also Tutorial at ICML’20 on “Parameter-free Online Optimization”
https://parameterfree.com/icml-tutorial/

46 / 82

https://parameterfree.com/icml-tutorial/

Better Parameter-Free through Duality on Guarantee

Online-to-batch conversion (deterministic case for simplicity):

F (x̄T)− F (u) ≤ 1
T

T∑
t=1

(F (x t)− F (u)) ≤ 1
T

T∑
t=1

⟨gt , x t − u⟩

Theorem (McMahan&Orabona, COLT’14)

An algorithm that produces x t based on g1, . . . ,gt−1 guarantees

T∑
t=1

⟨gt , x t − u⟩ ≤ ψT (u), ∀u~�
−

T∑
t=1

⟨gt , x t⟩ ≥ ψ⋆T

(
−

T∑
t=1

gt

)
, ∀g1, . . . ,gT

where ψ⋆T is the Fenchel conjugate of ψT defined as ψ⋆T (θ) = supx ⟨θ, x⟩−ψT (x)

47 / 82

The Main Tool

Assume ∥gt∥2 ≤ 1

Set x t =
−

∑t−1
i=1 gi
t

(
1 −

∑t
i=1⟨g i , x i⟩

)
Claim: x t guarantees

−
T∑

t=1

⟨gt , x t⟩ ≥ ψ⋆T

(
−

T∑
t=1

gt

)

where ψ⋆T (θ) ≈ 1√
T
exp

(
∥θ∥2

2
2T

)
− 1

This implies
∑T

t=1⟨gt , x t − u⟩ ≤ ∥x⋆∥2
√

T ln(∥u∥2T + 1) + 1

Where does the inequality in orange come from?

48 / 82

Optimization through Optimal Gambling

Krichevsky&Trofimov (KT) betting strategy:

Observe sequence of coins outcomes ct ∈ [−1, 1], start with $1, bet on xt

money, win/lose xtct

On round t bet a signed fraction of your money equal to
∑t−1

i=1 ci
t

Exponential amount of money

Winnings of KT = 1 +
T∑

t=1

xtct ≥
exp

(
(
∑T

t=1 ct)
2

2T

)
2
√

T

No assumptions on the coin!

We need to prove that −
∑T

t=1 gtxt ≥ ψ⋆T

(
−
∑T

t=1 gt

)
In 1d, set ct = −gt and assume |gt | ≤ 1 then we have it!

It works in the vector case too

[Krichevsky&Trofimov, 1981][Orabona&Pal, NeurIPS’16]
49 / 82

Extensions and Consequences

x t = x0 +
−
∑t−1

i=1 g i

t

(
1 −

t−1∑
i=1

⟨g i , x i⟩

)

No need to know the Lipschitz constant [Cutkosky, COLT’19]

It works in any number of dimensions, even Hilbert spaces

It works with stochastic subgradients

It can work with constrained sets [Cutkosky&Orabona, COLT’18]

It can adapt to the strong convexity in the stochastic setting (bounded
stochastic subgradients and domain) [Cutkosky&Orabona, COLT’18]

50 / 82

Surprising Applications of Online Learning

51 / 82

Online Learning is Much More than Online Learning

Online Convex Optimization might seem only concerned with losses®ret

In reality, it is about proving inequalities on arbitrary sequences of data

In my opinion, the inequalities are more important than the algorithms

Here, I’ll try to convince you of this view

52 / 82

From Online Convex Optimization to Non-Convex
Non-Smooth Optimization

53 / 82

Non-convex Optimization

For convex optimization, we study F (xT)− F (u)
For non-convex smooth optimization, we study Ei [∥∇F (x i)∥2

2]

What can we do for non-smooth non-convex? Example: ConvNets with
ReLUs

Definition (Zhang et al. ICML’20)

A point x is an (δ, ϵ)-stationary point of an almost-everywhere differentiable
function F if there is a finite subset S of the ball of radius δ centered at x such
that for y selected uniformly at random from S, E[y] = x and ∥E[∇F (y)]∥ ≤ ϵ

x

f (x)

x1 x2xδ δ

If δ is small enough, it codifies our intuition on points close to a minimum
54 / 82

Well-Behaved Functions

We will assume that the functions are well-behaved in the sense that

F (y)− F (x) =
∫ 1

0
⟨∇F (x + t(y − x)), y − x⟩dt

Up to perturbing the function with some noise, this holds for locally Lipschitz
functions

55 / 82

Using OCO for Non-convex Optimization

Require: An OCO algorithm, duration of cycle K , initial point x0

1: j = 0
2: for t = 1 to T do
3: if mod(t ,K) == 1 then
4: Reset OCO algorithm
5: j = j + 1
6: x̄ j = 0
7: end if
8: Receive mt from OCO algorithm
9: x t = x t−1 − mt

10: Sample st uniformly in [0, 1]
11: x ′

t = x t−1 − stmt

12: Pass ℓt(x) = −⟨∇F (x ′
t), x⟩ to OCO algorithm

13: x̄ j = x̄ j + x ′
t/K

14: end for
15: return x̄J uniformly at random between 1 and T/K

Important: The OCO algorithm decides the updates not the iterates

[Cutkosky et al., ICML’23]
56 / 82

Main Result

Theorem

Let the OCO algorithm be OGD over the L2 ball of radius D. Then, we have

E

 1
T/K

T/K∑
i=1

∥∥∥∥∥ 1
K

K∑
t=1

∇F (x ′
(i−1)K+t)

∥∥∥∥∥
2

 ≤ F (x0)− infx F (x)
DT

+
1√
K

Moreover, set D = δ/K , K =
(

Tδ
F (x0)−infx F (x)

) 2
3 , and return x̄J where J is

uniformly at random, then in expectation x̄ j is (δ,O((T δ)−
1
3))-stationary point.

The choice of D: x̄ j is the average of K points at distance at most δ
With the chosen D, we have

F (x0)− infx F (x)
DT

+
1√
K

=
K (F (x0)− infx F (x))

T δ
+

1√
K

E
[

1
T/K

∑T/K
i=1

∥∥∥ 1
K

∑K
t=1 ∇F (x ′

(i−1)K+t)
∥∥∥

2

]
=

E
[∥∥∥ 1

K

∑K
t=1 ∇F (x ′

(J−1)K+t)
∥∥∥

2

]
= O

(
(T δ)−

1
3

)
[Cutkosky et al., ICML’23]

57 / 82

From Function Value to Gradients

In all optimization analyses we need to link function values to gradients:

Convex functions: f (y) ≥ f (x) + ⟨∇f (x), y − x⟩
Non-convex M-smooth: f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ M

2 ∥x − y∥2

What can we use for non-convex non-smooth?

58 / 82

Key Observation

We evaluate the gradient in x ′
t = x t−1 − stmt = x t−1 + st(x t − x t−1)

Hence, we have

Est∇F (x ′
t) =

∫ 1

0
∇F (x t−1 + t(x t − x t−1))dt

This allows us to say that

F (x t)− F (x t−1) =

∫ 1

0
⟨∇F (x t−1 + t(x t − x t−1)), x t − x t−1⟩dt

= ⟨Est [∇F (x ′
t)], x t − x t−1⟩

This holds without assuming convexity nor smoothness!

[Zhang et al. ICML’20][Cutkosky et al., ICML’23]
59 / 82

Proof

Proof.

Using the key observation, for the first cycle we have

F (x t)− F (x t−1) = ⟨Est [∇F (x ′
t)], x t − x t−1⟩ = −⟨Est [∇F (x ′

t)],mt⟩
= ⟨−Est [∇F (x ′

t)],mt − u⟩ − ⟨Est [∇F (x ′
t)],u⟩

Taking full expectation, summing over t = 1, . . . ,K , for any ∥u∥2 ≤ D, we have

E[F (xK)]− F (x0) = E

[
K∑

t=1

⟨−∇F (x ′
t),mt − u⟩

]
︸ ︷︷ ︸

RegretK (u)

−E

[
K∑

t=1

⟨∇F (x ′
t),u⟩

]

≤ D
√

K − E

[
K∑

t=1

⟨∇F (x ′
t),u⟩

]

Choose u = D
∑K

t=1 ∇F (x′
t)

∥∑K
t=1 ∇F (x′

t)∥2

to have
∑K

t=1⟨∇F (x ′
t),u⟩ = −D

∥∥∥∑K
t=1 ∇F (x ′

t)
∥∥∥

2
.

Summing over the cycles and dividing by DT ends the proof.

60 / 82

More Results

Using the same reduction, but possibly changing the online learning algorithm,
we also show

(δ,O((T δ)−
1
3) for the stochastic setting too

For smooth stochastic functions, it implies that best rate of SGD

For smooth deterministic, it matches the optimal rates

Recently, Ahn et al. [arXiv’24] used this framework to show that Adam can
be casted as an FTRL algorithm constructing the updates

[Cutkosky et al., ICML’23]
61 / 82

Only a Hack or Something Fundamental?

One might wonder if the above reduction is only a hack or it discovers
something more fundamental.

One way to convince you is to take a look at the resulting procedure

x t = x t−1 − mt

gt = ∇F (x t + (st − 1)mt)

mt+1 = ClipD(mt + ηgt)

We recovered a version of SGD with momentum and clipping! The only really
different part is that we perturb the iterate a bit before calculating the gradient

62 / 82

From Online Learning to Concentration
Inequalities

63 / 82

Estimating the Mean of Random Variables

A classic problem in statistic

Suppose to have a stream of random variables in [0, 1], X1,X2, . . .

Assume that their expectation conditioned on the past is µ
We want to estimate µ and give confidence intervals that holds with high
probability uniformly over time

Given that it is uniform over time, we can decide to stop based on the data

In formulas, find [at , bt] such that Pr{µ ∈ [at , bt], ∀t ≥ 1} ≥ 1 − δ

Moreover, the width of the confidence intervals should go to zero as ∼ σ√
t

64 / 82

Usual Approach: Concentration Inequalities

Estimate the true mean by the empirical mean µ̂t =
1
t

∑t
i=1 Xi

Use a concentration inequality that holds uniformly over time to construct
confidence intervals for µ̂t

We obtain µ ∈
[
µ̂t ± K σ

√
ln t

δ√
t

]
with probability at least 1 − δ

Examples of this approach: Maurer&Pontil [COLT’09] + union bound

65 / 82

Unfortunately, We Often Get Vacuous Estimates

But, the above estimates are vacuous when the number of samples is small

For example, µ ∈ [0.3 ± 3.7]

In other words, our confidence intervals could be useless in the small
sample regime

Ideally, we want non-vacuous confidence intervals even with one sample!

Our approach: derive concentration inequalities from online gambling
algorithms!

66 / 82

Key Idea: Confidence Intervals from Betting

Fact 1 A concentration inequality says that the empirical average cannot be too far
from the true expectation

Fact 2 Starting from $1, you cannot gain money betting on a fair coin
Ville’s inequality (1939): Pr{maxt Wealtht ≥ 1

δ
} ≤ δ

Start with $1
“Imagine” using a betting algorithm to bet on the outcome of Xi − µ

Using KT we have Wealtht ≥ 1
2
√

t
exp

(
(
∑t

i=1(Xi−µ))2

2t

)
Fact 1 + Fact 2 + KT:

Pr

{
max

t

1
2
√

t
exp

(
(
∑t

i=1(Xi − µ))2

2t

)
≥ 1
δ

}
≤ Pr

{
max

t
Wealtht ≥

1
δ

}
≤ δ

Solve inequality: Pr

{
maxt

∣∣∣µ− 1
t

∑t
i=1 Xi

∣∣∣ ≥√ 2 ln 2
√

t
δ

t

}
≤ δ

Equivalently, with probability at least 1 − δ and for any t we have∣∣∣µ− 1
t

∑t
i=1 Xi

∣∣∣ ≤√ 2 ln 2
√

t
δ

t

[Jun&Orabona, COLT’19]
67 / 82

Game-Theoretic Probabilities and Concentrations

Very general testing framework in Shafer&Vovk’05,’19 books, but no
specific application to derive new concentrations

Hendriks (arXiv’18) first to numerically evaluate a specific betting strategy
to derive confidence intervals

Waudby-Smith&Ramdas [arXiv’21] proposed to use heuristic betting
algorithms

Jun&Orabona [COLT’19] were the first ones to use regret guarantees of
online betting algorithms to derive new concentrations inequalities

Rakhlin&Sridharan (COLT’17) showed equivalent between martingale tail
bounds and regret guarantees, but does not derive time-uniform
concentrations because it does not use non-negative martingales

Cover (Tech Report’74) recasted a statistical test as a betting game

Next step is obvious: What we get using the optimal betting scheme?

68 / 82

PRECiSE: Portfolio REgret for Confidence SEquences

Which betting algorithm should we use?

We show that Universal Portfolio [Cover&Ordentlich, 1996] with 2 stocks is
optimal for this setting

We obtain a new time-uniform concentration: With probability at least 1 − δ,
for any t we have

ψ⋆t ≤ ln
1
δ
+ Regrett

where

ψ⋆t := max
λ∈[− 1

1−µ
, 1
µ
]

t∑
i=1

ln[1 + λ(Xi − µ)] .

is the optimal log wealth with constant betting and Regrett ≤ ln
√

t is the
regret of Universal Portfolio

We prove that the set of µ that satisfy the inequality is an interval, so we
can invert the concentration numerically using binary search

Never vacuous: interval width less than 1 − δ
2

[Orabona&Jun, IEEE Trans. IT’23]
69 / 82

Experiments: Bernoulli(0.5)

Code: https://github.com/bremen79/precise

70 / 82

https://github.com/bremen79/precise

Experiments: Beta(10,30)

Code: https://github.com/bremen79/precise

71 / 82

https://github.com/bremen79/precise

From Online Betting to PAC-Bayes Bounds

72 / 82

PAC-Bayes Bounds

(Trying to follow Pierre’s notation here!)
Definitions:

R(θ) = E(x,y)∼P [ℓ(y , fθ(x))]

Rn(θ) =
1
n

n∑
i=1

ℓ(y , fθ(Xi))

Assumption:
0 ≤ ℓ ≤ 1

Theorem (McAllester, COLT’98)

Fix a prior distribution π ∈ M(Θ). With probability at least 1 − δ on the data S,
for any probability distribution ρ learnt on the data,

Eθ∼ρ[R(θ)] ≤ Eθ∼ρ[Rn(θ)] +

√
KL(ρ||π)+ln 2

√
n
δ

2n

73 / 82

Our Theorem

Theorem

Define optimal ‘log-wealth’ function:

ψ⋆n (θ) := max
λ∈[− 1

1−R(θ)
, 1

R(θ)
]

n∑
i=1

ln[1 + λ(ℓ(Yi , fθ(Xi))− R(θ))] .

Fix π ∈ M(Θ), then with probability at least 1 − δ, simultaneously for all n and
ρ,

Eθ∼ρ[ψ⋆n (θ)] ≤ KL(ρ∥π) + ln

√
n
δ

.

[Jang et al., COLT’23]
74 / 82

Consequences

I. By relaxing the ‘log-wealth’ term this inequality implies:

McAllester’s inequality [McAllester, COLT’98]

Empirical Bernstein’s PAC-Bayes inequality [Tolstikhin&Seldin, NeurIPS’13]

Maurer’s inequality of Bernoulli r.v.’s [Maurer, arXiv’04]

Unexpected Bernstein’s inequality [Mhammedi et al., NeurIPS’19]

II. With no relaxations, we can compute confidence sequences on µθ efficiently.

75 / 82

Examples of Relaxations

Our inequality:

ψ⋆n (θ) := max
λ∈[− 1

1−R(θ)
, 1

R(θ)
]

n∑
i=1

ln(1 + λ(ℓ(Yi , fθ(Xi))− R(θ))) ≤ KL(ρ∥π) + ln

√
n
δ

ln(1 + x) ≥ x − x2 for x ≥ −0.68 gives

|Eθ∼ρ[R(θ)]− Eθ∼ρ[Rn(θ)]| ≤ 2

√
KL(ρ∥π)+ln

√
n
δ

n
⇒ McAllester’s bound!

By convexity, maxλ
∑n

i=1 ln
(
1 + λ(Xi − µ)

)
≥ n kl(µ̂, µ), that gives

kl
(
Eθ∼ρ[Rn(θ)],Eθ∼ρ[R(θ)]

)
≤

KL(ρ∥π)+ln
√

n
δ

n
⇒ Maurer’s bound!

Similarly, you can get the other bounds too

76 / 82

Proof Sketch: Recall the Basic Bound

For any ρ≪ π and measurable F :

Eθ∼ρ[F (θ)] ≤ KL(ρ∥π) + lnEθ∼π[eF (θ)] (Change-of-measure)

For some fixed λ > 0 choose F (θ) = λ(R(θ)− Rn(θ)). Then,

λEθ∼ρ[R(θ)− Rn(θ)] ≤ KL(ρ∥π) + lnEθ∼π[eλ(R(θ)−Rn(θ))]

≤ KL(ρ∥π) + ln
1
δ
+ lnEθ∼π[Eeλ(R(θ)−Rn(θ))] (Markov)

Concentration!
E.g., Hoeffding’s lemma + tuning over λ gives McAllester’s inequality.

77 / 82

PAC-Bayes from a Betting Game

Standard approach: λ is fixed. Idea: tune λ based on data...

... using an online betting game:

A fictitious betting algorithm starts with wealth 1

At round i = 1, . . . , n it bets a signed fraction of its wealth Bi(θ)

Observes outcome ∆i(θ) := ℓ(Yi , fθ(Xi))− R(θ)

Then it’s log wealth is ψn(θ) :=
∑n

i=1 ln(1 + Bi(θ)∆i(θ))

The regret of the algorithm is controlled, as before:

ψ⋆n (θ)− ψn(θ) ≤ ln
√

n, ∀θ

Recall that the optimal log-wealth is

ψ⋆n (θ) = max
λ∈[− 1

1−R(θ)
, 1

R(θ)
]

n∑
i=1

ln[1 + λ(ℓ(Yi , fθ(Xi))− R(θ))]

78 / 82

New Proof

For any ρ≪ π and measurable F :

Eθ∼ρ[F (θ)] ≤ KL(ρ∥π) + lnEθ∼π[eF (θ)] (Change-of-measure)

Choose F (θ) = ψn(θ, µθ) (optimal log-wealth). Then,

Eθ∼ρ[ψn(θ, µθ)] ≤ KL(ρ∥π) + lnEθ∼π[eψn(θ,µθ)]

eψn(θ,µθ) = OptimalWealth ≤ WealthAnyOnlineAlgorithmA · exp(Regretn(A))

Concentration: WealthAnyOnlineAlgorithmA is a non-negative martingale

Pr

{
sup
n≥0

WealthAnyOnlineAlgorithmA ≥ 1
δ

}
≤ δ (Ville’s inequality)

Putting all together

Eθ∼ρ[ψn(θ, µθ)] ≤ KL(ρ∥π) + ln

(
1
δ
exp(ln

√
n)
)

= KL(ρ∥π) + ln
1
δ
+ ln

√
n

79 / 82

Even More Surprising Applications

Rademacher complexity bounds from Online Learning [Kakade et al.,
NeurIPS’08]

From online learning to PAC-Bayes (but without the better bounds I
showed) [Lugosi&Neu, arXiv’23]

Better-than-KL PAC-Bayes bounds [Kuzborskij et al., arXiv’24]

Parameter-free sampling [Sharrock&Nemeth, ICML’23][Sharrock et al.
NeurIPS’23]

80 / 82

Summary

Basic concepts and definitions of Online Learning

OMD&FTRL

Parameter-free algorithms

Connection between regret guarantees and betting, concentrations, and
generalization

81 / 82

Thank you!

Website: https://francesco.orabona.com

Blog: https://parameterfree.com

X/Twitter: @bremen79

82 / 82

https://francesco.orabona.com
https://parameterfree.com

	OSD
	OMD
	FTRL
	Parameter-freeness
	Non-Convex Non-Smooth
	Concentration
	PAC-Bayes

