Online Convex Optimization and Its Surprising Applications

Francesco Orabona

KAUST

Machine Learning Summer School, OIST, 2024

Aims of the Lecture

- Provide an introduction to Online Convex Optimization
- Almost rigorous: details are missing, but theorems are correct

■ Connections: not written anywhere, but known to people in the field

- (1-slide) Proofs! Because it is the only way to design online learning algorithms
- Ideally, when in 1 week all this material will disappear from your memory, you can still use the slides as a "cheat sheet"
- Most of the material is based on my online learning notes (https://arxiv.org/abs/1912.13213), my blog posts (https://parameterfree.com), and some recent papers

Outline of the Lecture

1 Online Convex Optimization and Regret
2 Online Mirror Descent
3 Follow-the-Regularized-Leader
4 Parameter-free Online Algorithms
5 From Online Learning to Non-smooth Non-convex Optimization
6 From Online Betting to Concentration Inequalities
7 From Online Betting to PAC-Bayes

Online Convex Optimization

Online Learning
1 In each round, output $\boldsymbol{x}_{t} \in V$
[2 Pay $\ell_{t}\left(\boldsymbol{x}_{t}\right)$

Choose \boldsymbol{x}_{t} before observing ℓ_{t}

 No assumptions on how ℓ_{t} is generated!3 Update \boldsymbol{x}_{t+1} based on received information on ℓ_{t}
Regret minimization

$$
\min _{\mathbf{x}_{1}, \ldots, \boldsymbol{x}_{T} \in V} \sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t}\right) \quad \text { equivalently } \min _{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T} \in V} \underbrace{\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t}\right)-\sum_{t=1}^{T} \ell_{t}(\boldsymbol{u})}_{\text {Regret }_{T}(\boldsymbol{u})}
$$

- The algorithm is no-regret if $\frac{1}{T} \operatorname{Regret}_{T}(\boldsymbol{u}) \rightarrow 0$ for all $\boldsymbol{u} \in V$ and any sequence of losses in a certain family

Why Online Convex Optimization?

■ It is a strict generalization of the learning with expert setting
■ It generalizes the setting of batch and stochastic convex optimization, in 99% of the cases without losing anything
■ It provides a different mindset for designing optimization algorithms

■ It is connected to a number of topics: Generalization, PAC-Bayes, Compression, Betting, etc.

Some Famous Online Learning Algorithms

■ Online Gradient Descent [Zinkevich, ICML'03]
■ AdaGrad [Duchi et al., COLT'10, JMRL'11; McMahan\&Streeter, COLT'10]

- AMSGrad [Reddi et al., ICLR'18]

These algorithms are designed to work in the adversarial setting and have a $O(\sqrt{T})$ regret bound

We will see that they can also be used as stochastic optimization algorithms with a $O\left(\frac{1}{\sqrt{T}}\right)$ convergence rate

Assumptions and Definitions

■ Losses: $\ell_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, convex, 1-Lipschitz
■ Feasible set: $V \subseteq \mathbb{R}^{d}$, closed, convex, non-empty
■ Iterates: All technical conditions for iterates \boldsymbol{x}_{t} to exists hold

Mainly Two Main Meta-Algorithms

■ Online Mirror Descent (OMD)
■ Follow-the-Regularized-Leader (FTRL)

■ These two meta-algorithms cover 90% of the (online) optimization algorithms

- Examples
- Online Gradient Descent = special case of OMD
- Dual Averaging = Special case of FTRL with linearized losses

■ Regularized Dual Averaging = Special case of FTRL with linearized losses
■ "Lazy version" of online gradient descent = FTRL
■ Newton algorithm = OMD with distance induced by the Hessian

- Accelerated algorithm = two OCO algorithms playing against each other
- Frank-Wolfe algorithm = two OCO algorithms playing against each other
- etc.

Online Subgradient Descent

Projected Online Gradient Descent

Require: Feasible set $V \subseteq \mathbb{R}^{d}, \boldsymbol{x}_{1} \in V, \eta_{1}, \cdots, \eta_{T}>0$
1: for $t=1$ to T do
2: \quad Output $\boldsymbol{x}_{t} \in V$
3: \quad Pay $\ell_{t}\left(\boldsymbol{x}_{t}\right)$
4: \quad Set $\boldsymbol{g}_{t}=\nabla \ell_{t}\left(\boldsymbol{x}_{t}\right)$
5: $\quad \boldsymbol{x}_{t+1}=\Pi_{v}\left(\boldsymbol{x}_{t}-\eta_{t} \boldsymbol{g}_{t}\right)=\operatorname{argmin}_{\boldsymbol{y} \in V}\left\|\boldsymbol{x}_{t}-\eta_{t} \boldsymbol{g}_{t}-\boldsymbol{y}\right\|_{2}$
6: end for

Guarantee for OGD (1)

Lemma

Let $\ell_{t}: V \rightarrow \mathbb{R}$ differentiable in an open set that contains V. Then, $\forall \boldsymbol{u} \in V$, OGD satisfies

$$
\eta_{t}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \eta_{t}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle \leq \frac{1}{2}\left\|\boldsymbol{x}_{t}-\boldsymbol{u}\right\|_{2}^{2}-\frac{1}{2}\left\|\boldsymbol{x}_{t+1}-\boldsymbol{u}\right\|_{2}^{2}+\frac{\eta_{t}^{2}}{2}\left\|\boldsymbol{g}_{t}\right\|_{2}^{2} .
$$

Proof.

$$
\begin{aligned}
\left\|\boldsymbol{x}_{t+1}-\boldsymbol{u}\right\|_{2}^{2}-\left\|\boldsymbol{x}_{t}-\boldsymbol{u}\right\|_{2}^{2} & \stackrel{\Pi \text { is non expansive }}{\leq}\left\|\boldsymbol{x}_{t}-\eta_{t} \boldsymbol{g}_{t}-\boldsymbol{u}\right\|_{2}^{2}-\left\|\boldsymbol{x}_{t}-\boldsymbol{u}\right\|_{2}^{2} \\
& =-2 \eta_{t}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle+\eta_{t}^{2}\left\|\boldsymbol{g}_{t}\right\|_{2}^{2} \\
& \stackrel{\text { Convexity }}{\leq}-2 \eta_{t}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right)+\eta_{t}^{2}\left\|\boldsymbol{g}_{t}\right\|_{2}^{2}
\end{aligned}
$$

Guarantee for OGD (2)

Theorem

Let $\ell_{1}, \cdots, \ell_{T}$ differentiable in open sets containing V. Pick any $\boldsymbol{x}_{1} \in V$ and assume $\eta_{t}=\eta, t=1, \ldots, T$. Then, $\forall \boldsymbol{u} \in V, O G D$ satisfies

$$
\sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \frac{\left\|\boldsymbol{u}-\boldsymbol{x}_{1}\right\|_{2}^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\boldsymbol{g}_{t}\right\|_{2}^{2}-\frac{1}{2 \eta}\left\|\boldsymbol{x}_{T+1}-\boldsymbol{u}\right\|_{2}^{2}
$$

Proof.

Dividing the inequality in the previous Lemma by η and summing over $t=1, \cdots, T$, we have

$$
\begin{aligned}
& \sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \sum_{t=1}^{T}\left(\frac{1}{2 \eta}\left\|\boldsymbol{x}_{t}-\boldsymbol{u}\right\|_{2}^{2}-\frac{1}{2 \eta}\left\|\boldsymbol{x}_{t+1}-\boldsymbol{u}\right\|_{2}^{2}\right)+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\boldsymbol{g}_{t}\right\|_{2}^{2} \\
& \quad=\frac{1}{2 \eta}\left\|\boldsymbol{x}_{1}-\boldsymbol{u}\right\|_{2}^{2}-\frac{1}{2 \eta}\left\|\boldsymbol{x}_{T+1}-\boldsymbol{u}\right\|_{2}^{2}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\boldsymbol{g}_{t}\right\|_{2}^{2} .
\end{aligned}
$$

Non-Differentiable Convex Functions

- If the losses are convex, but not differentiable, we cannot calculate the gradients
- We only need gradients because they satisfy

$$
\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell(\boldsymbol{u}) \leq\left\langle\nabla \ell_{t}\left(\boldsymbol{x}_{t}\right), \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle
$$

■ Solution: use any vector \boldsymbol{g}_{t} that satisfies $\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell(\boldsymbol{u}) \leq\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle$ for all $u \in V$

- \boldsymbol{g}_{t} is called a subgradient of ℓ_{t} in \boldsymbol{x}_{t}
- The set of all subgradients ℓ in \boldsymbol{x} is called subdifferential and it is denoted by $\partial \ell_{t}\left(\boldsymbol{x}_{t}\right)$

Projected Online Subgradient Descent

Require: Feasible set $V \subseteq \mathbb{R}^{d}, \boldsymbol{x}_{1} \in V, \eta_{1}, \ldots, \eta_{T}>0$
1: for $t=1$ to T do
2: Output $\boldsymbol{x}_{t} \in V$
3: $\operatorname{Pay} \ell_{t}\left(\boldsymbol{x}_{t}\right)$
4: \quad Set $g_{t} \in \partial \ell_{t}\left(\boldsymbol{x}_{t}\right)$
5: $\quad \boldsymbol{x}_{t+1}=\Pi_{V}\left(\boldsymbol{x}_{t}-\eta_{t} \boldsymbol{g}_{t}\right)=\operatorname{argmin}_{\boldsymbol{y} \in V}\left\|\boldsymbol{x}_{t}-\eta_{t} \boldsymbol{g}_{t}-\boldsymbol{y}\right\|_{2}$
6: end for

Same guarantee of OGD:

$$
\sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \frac{\left\|\boldsymbol{u}-\boldsymbol{x}_{1}\right\|_{2}^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\boldsymbol{g}_{t}\right\|_{2}^{2}-\frac{1}{2 \eta}\left\|\boldsymbol{x}_{T+1}-\boldsymbol{u}\right\|_{2}^{2}
$$

Learning rate in OSD

■ The regret is $\sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \frac{\left\|\boldsymbol{u}-\boldsymbol{x}_{1}\right\|_{2}^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\boldsymbol{g}_{t}\right\|_{2}^{2}$

- Assume the function 1-Lipschitz w.r.t. the L_{2} norm $\left(\left\|\ell_{t}(\boldsymbol{x})-\ell_{t}(\boldsymbol{u})\right\|_{2} \leq\|\boldsymbol{x}-\boldsymbol{y}\|_{2}\right)$
- Then, $\sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \frac{\left\|\boldsymbol{u}-\boldsymbol{x}_{1}\right\|_{2}^{2}}{2 \eta}+\frac{T \eta}{2}$

■ Optimal learning rate: $\eta=\frac{\left\|\boldsymbol{u}-\boldsymbol{x}_{1}\right\|_{2}}{\sqrt{T}}$
■ Any problem with this choice?

■ Practical choice $\eta=\frac{\alpha}{\sqrt{T}}$ that gives $\operatorname{Regret}_{T}(\boldsymbol{u}) \leq \frac{1}{2}\left(\frac{\left\|\boldsymbol{x}_{1}-\boldsymbol{u}\right\|_{2}^{2}}{\alpha}+\alpha\right) \sqrt{T}$

■ Easy case: V has bounded diameter D, then $\eta=\frac{D}{\sqrt{T}}$ gives regret $D \sqrt{T}$

Applications: From Online to Stochastic (or Batch) Optimization (1)

1: for $t=1$ to T do
2: Get \boldsymbol{x}_{t} from an Online Convex Optimization algorithm
3: \quad Receive stochastic gradient \boldsymbol{g}_{t} such that $\mathbb{E}_{t}\left[\boldsymbol{g}_{t}\right] \in \partial F\left(\boldsymbol{x}_{t}\right)$
4: Pass loss $\ell_{t}(\boldsymbol{x})=\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}\right\rangle$ to Online Learning Algorithm
5: end for
6: return $\overline{\boldsymbol{x}}_{T}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{x}_{t}$

Theorem

$$
\mathbb{E}\left[F\left(\overline{\boldsymbol{x}}_{T}\right)\right]-F(\boldsymbol{u}) \leq \frac{\mathbb{E}\left[\operatorname{Regret}_{T}(\boldsymbol{u})\right]}{T}, \forall \boldsymbol{u} \in V
$$

Corollary: any result on regret translates to a result on convergence for stochastic optimization of convex functions
[Cesa-Bianchi et al., IEEE Trans. Inf. Theory 2004]

Applications: From Online to Stochastic (or Batch) Optimization (1)

Proof.

$$
\begin{aligned}
& \mathbb{E}\left[F\left(\overline{\boldsymbol{x}}_{T}\right)\right]-F(\boldsymbol{u}) \stackrel{\text { Jensen }}{\leq} \frac{1}{T} \sum_{t=1}^{T}\left(\mathbb{E}\left[F\left(\boldsymbol{x}_{t}\right)\right]-F(\boldsymbol{u})\right) \\
& \stackrel{\text { convexity }}{\leq} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\langle\mathbb{E}_{t}\left[\boldsymbol{g}_{t}\right], \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle\right] \\
&=\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\mathbb{E}_{t}\left[\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle\right]\right] \\
& \text { total expectation } \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle\right] \\
&=\frac{\mathbb{E}\left[\operatorname{Regret}_{T}(\boldsymbol{u})\right]}{T}
\end{aligned}
$$

Example: Stochastic Subgradient Descent

Require: Feasible set $V \subseteq \mathbb{R}^{d}, \boldsymbol{x}_{1} \in V, \eta=\frac{\alpha}{\sqrt{T}}$
1: for $t=1$ to T do
2: Output $\boldsymbol{x}_{t} \in V$
3: \quad Receive stochastic gradient \boldsymbol{g}_{t} such that $\mathbb{E}_{t}\left[\boldsymbol{g}_{t}\right] \in \partial F\left(\boldsymbol{x}_{t}\right)$
4: $\quad \boldsymbol{x}_{t+1}=\Pi_{V}\left(\boldsymbol{x}_{t}-\eta \boldsymbol{g}_{t}\right)$
5: end for
6: return $\overline{\boldsymbol{x}}_{T}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{x}_{t}$

From the previous slides, we have

$$
\mathbb{E}\left[F\left(\overline{\boldsymbol{x}}_{T}\right)\right]-F\left(\boldsymbol{x}^{\star}\right) \leq \frac{1}{2 \sqrt{T}}\left(\frac{\left\|\boldsymbol{x}_{1}-\boldsymbol{x}^{\star}\right\|_{2}^{2}}{\alpha}+\alpha\right)
$$

Beyond Online Subgradient Descent

Does Online Subgradient Descent Minimize the Functions? (1)

3D plot (left) and level sets (right) of $f(\boldsymbol{x})=\max \left[-x_{1}, x_{1}-x_{2}, x_{1}+x_{2}\right]$. A negative subgradient is indicated by the black arrow

Does Online Subgradient Descent Minimize the Functions? (2)

3D plot (left) and level sets (right) of $f(\boldsymbol{x})=\max \left[x_{1}^{2}+\left(x_{2}+1\right)^{2}, x_{1}^{2}+\left(x_{2}-1\right)^{2}\right]$. A negative subgradient is indicated by the black arrow

Intuition on OGD Update (1)

$$
\begin{aligned}
\Pi_{V}\left(\boldsymbol{x}_{t}-\eta_{t} \boldsymbol{g}_{t}\right) & =\underset{\boldsymbol{x} \in V}{\operatorname{argmin}}\left\|\boldsymbol{x}-\boldsymbol{x}_{t}+\eta_{t} \boldsymbol{g}_{t}\right\|_{2}^{2} \\
& =\underset{\boldsymbol{x} \in V}{\operatorname{argmin}}\left\|\eta_{t} \boldsymbol{g}_{t}\right\|_{2}^{2}+2 \eta_{t}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}-\boldsymbol{x}_{t}\right\rangle+\left\|\boldsymbol{x}_{t}-\boldsymbol{x}\right\|_{2}^{2} \\
& =\underset{\boldsymbol{x} \in V}{\operatorname{argmin}} \underbrace{\ell_{t}\left(\boldsymbol{x}_{t}\right)+\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}-\boldsymbol{x}_{t}\right\rangle}_{\text {Linear approximation of } \ell_{t}}+\frac{1}{2 \eta_{t}} \underbrace{\left\|\boldsymbol{x}_{t}-\boldsymbol{x}\right\|_{2}^{2}}_{\text {Stay close to } \boldsymbol{x}_{t}}
\end{aligned}
$$

where Π_{V} is the Euclidean projection onto V, i.e., $\Pi_{V}(\boldsymbol{x})=\operatorname{argmin}_{\boldsymbol{y} \in V}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}$

Intuition on OGD Update (2)

General Notion of Distances using Bregman Divergences

$$
\underset{\boldsymbol{x} \in V}{\operatorname{argmin}} \ell_{t}\left(\boldsymbol{x}_{t}\right)+\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}-\boldsymbol{x}_{t}\right\rangle+\frac{1}{2 \eta_{t}}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}\right\|_{2}^{2}
$$

Why the square Euclidean norm?
I can use general notion of distances, in particular Bregman divergences
Definition (Bregman Divergence [Bregman, 1967])
Let $\psi: X \rightarrow \mathbb{R}$ be strictly convex and differentiable on int $X \neq\{ \}$. The Bregman Divergence w.r.t. ψ is denoted by $B_{\psi}: X \times \operatorname{int} X \rightarrow \mathbb{R}$ defined as

$$
B_{\psi}(\boldsymbol{x} ; \boldsymbol{y})=\psi(\boldsymbol{x})-\psi(\boldsymbol{y})-\langle\nabla \psi(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\rangle .
$$

Online Mirror Descent

We start from the equivalent formulation of the OSD update

$$
\boldsymbol{x}_{t+1}=\underset{\boldsymbol{x} \in V}{\operatorname{argmin}} \ell_{t}\left(\boldsymbol{x}_{t}\right)+\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}-\boldsymbol{x}_{t}\right\rangle+\frac{1}{2 \eta_{t}}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}\right\|_{2}^{2}
$$

and we can change the last term with a Bregman Divergence

$$
\boldsymbol{x}_{t+1}=\underset{\boldsymbol{x} \in V}{\operatorname{argmin}} \ell_{t}\left(\boldsymbol{x}_{t}\right)+\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}-\boldsymbol{x}_{t}\right\rangle+\frac{1}{\eta_{t}} B_{\psi}\left(\boldsymbol{x} ; \boldsymbol{x}_{t}\right)
$$

Require: $\psi: X \rightarrow \mathbb{R}$ strictly convex and differentiable on int X, feasible set
$V \subseteq X \subseteq \mathbb{R}^{d}, \boldsymbol{x}_{1} \in \operatorname{int} X \cap V$
1: for $t=1$ to T do
2: Output $\boldsymbol{x}_{t} \in V$
3: $\operatorname{Pay} \ell_{t}\left(\boldsymbol{x}_{t}\right)$
4: \quad Set $\boldsymbol{g}_{t} \in \partial \ell_{t}\left(\boldsymbol{x}_{t}\right)$
5: \quad Set $\boldsymbol{x}_{t+1} \in \operatorname{argmin}_{\boldsymbol{x} \in V}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}\right\rangle+\frac{1}{\eta_{t}} B_{\psi}\left(\boldsymbol{x} ; \boldsymbol{x}_{t}\right)$
6: end for
[Nemirovskij\&Yudin, 1983][Warmuth\&Jagota, 1997][Beck\&Teboulle, 2003]

Strongly Convex Functions

Definition

$f: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ is λ-strongly convex w.r.t. $\|\cdot\|$ if

$$
f(\boldsymbol{x})-f(\boldsymbol{y}) \leq\langle\boldsymbol{g}, \boldsymbol{x}-\boldsymbol{y}\rangle-\frac{\lambda}{2}\|x-y\|^{2}, \forall \boldsymbol{g} \in \partial f(\boldsymbol{x}) .
$$

Lemma (For OMD proof)

If ψ is λ-strongly convex w.r.t. \| $\cdot \|$ then $B_{\psi}(\boldsymbol{x} ; \boldsymbol{y}) \geq \frac{\lambda}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}$

Lemma (For FTRL proof)

Let $f: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ closed, proper, subdifferentiable, and μ-strongly convex with respect to a norm $\|\cdot\|$ over its domain. Let $\boldsymbol{x}^{\star}=\operatorname{argmin}_{\boldsymbol{x}} f(\boldsymbol{x})$. Then, for all $\boldsymbol{x} \in \operatorname{dom} \partial f$, and $\boldsymbol{g} \in \partial f(\boldsymbol{x})$, we have

$$
f(\boldsymbol{x})-f\left(\boldsymbol{x}^{\star}\right) \leq \frac{1}{2 \mu}\|\boldsymbol{g}\|_{\star}^{2} .
$$

Regret Guarantee of OMD

Theorem

Let ψ be λ-strongly convex w.r.t. $\|\cdot\|$. Pick any $\boldsymbol{x}_{1} \in \operatorname{int} X \cap V$ and assume $\eta_{t}=\eta, t=1, \ldots, T$. Then, $\forall \boldsymbol{u} \in V, O M D$ satisfies

$$
\sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \frac{B_{\psi}\left(\boldsymbol{u} ; \boldsymbol{x}_{1}\right)}{\eta}+\frac{\eta}{2 \lambda} \sum_{t=1}^{T}\left\|\boldsymbol{g}_{t}\right\|_{\star}^{2}-\frac{1}{\eta} B_{\psi}\left(\boldsymbol{u} ; \boldsymbol{x}_{T+1}\right) .
$$

Proof.

One can show

$$
\begin{aligned}
\eta_{t}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) & \leq \eta\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle \\
& \leq B_{\psi}\left(\boldsymbol{u} ; \boldsymbol{x}_{t}\right)-B_{\psi}\left(\boldsymbol{u} ; \boldsymbol{x}_{t+1}\right)-B_{\psi}\left(\boldsymbol{x}_{t+1} ; \boldsymbol{x}_{t}\right)+\left\langle\eta_{t} \boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle
\end{aligned}
$$

The last term can be bounded as

$$
\left\langle\eta_{t} \boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle \leq\left\|\boldsymbol{g}_{t}\right\|_{\star}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\| \leq \frac{\left\|\boldsymbol{g}_{t}\right\|_{\star}^{2}}{2 \lambda}+\frac{\lambda}{2}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\|^{2}
$$

From strong convexity of ψ, we get $-B_{\psi}\left(\boldsymbol{x}_{t+1} ; \boldsymbol{x}_{t}\right) \leq-\frac{\lambda}{2}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\|^{2}$. Putting all together and summing over time, we get the stated bound.

Example: Online Subgradient Descent

- Set $\psi(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}\|_{2}^{2}$
- ψ is 1 -strongly convex w.r.t. the L_{2} norm
- Dual norm of L_{2} is L_{2}

$$
B(\boldsymbol{x} ; \boldsymbol{y})=\frac{1}{2}\|\boldsymbol{x}\|_{2}^{2}-\frac{1}{2}\|\boldsymbol{y}\|_{2}^{2}-\langle\boldsymbol{y}, \boldsymbol{x}-\boldsymbol{y}\rangle=\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}
$$

Regret for any $\boldsymbol{u}: \quad \sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell(\boldsymbol{u})\right) \leq \frac{B_{\psi}\left(\boldsymbol{u}_{;} \boldsymbol{x}_{1}\right)}{\eta}+\frac{\eta}{2} \sum_{t=1}^{T}\|\boldsymbol{g}\|_{*}^{2}$

$$
=\frac{\left\|\boldsymbol{x}_{1}-\boldsymbol{u}\right\|_{2}^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{\top}\|\boldsymbol{g}\|_{2}^{2}
$$

Example: Exponentiated Gradient (a.k.a. Hedge, EWA, etc.)

\square Set $V=\Delta^{d-1}:=\left\{\boldsymbol{x} \in \mathbb{R}^{d}: x_{i} \geq 0,\|\boldsymbol{x}\|_{1}=1\right\}$
\square Set $\psi(\boldsymbol{x})=\sum_{i=1}^{d} x_{i} \ln x_{i}$
■ ψ is 1 -strongly convex w.r.t. the L_{1} norm

- Dual norm of L_{1} is L_{∞}

Require: $\eta>0$
1: Set $\boldsymbol{x}_{1}=[1 / d, \ldots, 1 / d]$
2: for $t=1$ to T do
3: Output $\boldsymbol{x}_{t} \in \Delta^{d-1}$
4: $\operatorname{Pay} \ell_{t}\left(\boldsymbol{x}_{t}\right)$
5: \quad Set $\boldsymbol{g}_{t} \in \partial \ell_{t}\left(\boldsymbol{x}_{t}\right)$
6: $\quad x_{t+1, j}=\frac{x_{t, j} \exp \left(-\eta g_{t, j}\right)}{\sum_{i=1}^{d} x_{t, i} \exp \left(-\eta g_{t, i}\right)}, j=1, \ldots, d$
7: end for

Regret for any $\boldsymbol{u}: \quad \sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell(\boldsymbol{u})\right) \leq \frac{B_{\psi}\left(\boldsymbol{u} ; \boldsymbol{x}_{1}\right)}{\eta}+\frac{\eta}{2} \sum_{t=1}^{T}\|\boldsymbol{g}\|_{*}^{2} \leq \frac{\ln d}{\eta}+\frac{\eta T}{2}$
Set $\eta=\sqrt{\frac{2 \ln d}{T}}$ to obtain the upper bound of $\sqrt{2 T \ln d}$ [Kivinen\&Warmuth, 1997]

Follow-The-Regularized-Leader Algorithm

Follow-the-Regularized-Leader

Require: Feasible set $V \subseteq X \subseteq \mathbb{R}^{d}$, a sequence of regularizers $\psi_{1}, \ldots, \psi_{T}: X \rightarrow \mathbb{R}$
1: for $t=1$ to T do
2: \quad Output $\boldsymbol{x}_{t} \in \operatorname{argmin}_{\boldsymbol{x} \in V} \psi_{t}(\boldsymbol{x})+\sum_{i=1}^{t-1} \ell_{i}(\boldsymbol{x})$
3: Receive $\ell_{t}: V \rightarrow \mathbb{R}$ and pay $\ell_{t}\left(\boldsymbol{x}_{t}\right)$
4: end for
[Gordon, COLT'99][Shalev-Shwartz\&Singer, COLT'06, NeurIPS'06][Shalev-Shwartz, PhD'07][Abernethy et al., COLT'08][Hazan\&Kale, COLT'08]

Guarantee for FTRL

Lemma

Let $\psi_{1}, \ldots, \psi_{T}: X \rightarrow \mathbb{R}$ be a sequence of regularization functions and $V \subseteq X \subseteq \mathbb{R}^{d}$. Denote by $F_{t}(\boldsymbol{x})=\psi_{t}(\boldsymbol{x})+\sum_{i=1}^{t-1} \ell_{i}(\boldsymbol{x})$. Set $\boldsymbol{x}_{t} \in \operatorname{argmin}_{\boldsymbol{x} \in V} F_{t}(\boldsymbol{x})$. Then, for any $\boldsymbol{u} \in \mathbb{R}^{d}$, we have

$$
\begin{aligned}
\sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right)= & \psi_{T+1}(\boldsymbol{u})-\min _{\boldsymbol{x} \in V} \psi_{1}(\boldsymbol{x})+\sum_{t=1}^{T}\left[F_{t}\left(\boldsymbol{x}_{t}\right)-F_{t+1}\left(\boldsymbol{x}_{t+1}\right)+\ell_{t}\left(\boldsymbol{x}_{t}\right)\right] \\
& +F_{T+1}\left(\boldsymbol{x}_{T+1}\right)-F_{T+1}(\boldsymbol{u})
\end{aligned}
$$

Proof.

Just sum simplify the sums and use the fact that $F_{1}\left(\boldsymbol{x}_{1}\right)=\min _{\boldsymbol{x} \in V} \psi_{1}(\boldsymbol{x})$.
[McMahan, JMLR'17][Orabona, arXiv'19]

An Explicit Regret with Strongly Convex Functions (1)

Lemma

Let $\psi_{t}: X \rightarrow \mathbb{R}$ and denote by $F_{t}(\boldsymbol{x})=\psi_{t}(\boldsymbol{x})+\sum_{i=1}^{t-1} \ell_{i}(\boldsymbol{x})$. Assume $V \subseteq X$ be convex. Assume $\partial \ell_{t}\left(\boldsymbol{x}_{t}\right)$ to be non-empty and $F_{t}+\ell_{t}$ to be closed, subdifferentiable, and λ_{t}-strongly convex w.r.t. $\|\cdot\|$ in V. Then, we have

$$
F_{t}\left(\boldsymbol{x}_{t}\right)-F_{t+1}\left(\boldsymbol{x}_{t+1}\right)+\ell_{t}\left(\boldsymbol{x}_{t}\right) \leq\left\|\boldsymbol{g}_{t}\right\|_{\star}^{2} /\left(2 \lambda_{t}\right)+\psi_{t}\left(\boldsymbol{x}_{t+1}\right)-\psi_{t+1}\left(\boldsymbol{x}_{t+1}\right), \forall \boldsymbol{g}_{t} \in \partial \ell_{t}\left(\boldsymbol{x}_{t}\right) .
$$

Proof.

Define $\boldsymbol{x}_{t}^{\star}:=\operatorname{argmin}_{\boldsymbol{x} \in V} F_{t}(\boldsymbol{x})+\ell_{t}(\boldsymbol{x})$, and $\boldsymbol{g}_{t}^{\prime} \in \partial\left(F_{t}+\ell_{t}+i_{V}\right)\left(\boldsymbol{x}_{t}\right)$. Then

$$
\begin{aligned}
& F_{t}\left(\boldsymbol{x}_{t}\right)-F_{t+1}\left(\boldsymbol{x}_{t+1}\right)+\ell_{t}\left(\boldsymbol{x}_{t}\right) \\
& =\left(F_{t}\left(\boldsymbol{x}_{t}\right)+\ell_{t}\left(\boldsymbol{x}_{t}\right)\right)-\left(F_{t}\left(\boldsymbol{x}_{t+1}\right)+\ell_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+\psi_{t}\left(\boldsymbol{x}_{t+1}\right)-\psi_{t+1}\left(\boldsymbol{x}_{t+1}\right) \\
& \leq\left(F_{t}\left(\boldsymbol{x}_{t}\right)+\ell_{t}\left(\boldsymbol{x}_{t}\right)\right)-\left(F_{t}\left(\boldsymbol{x}_{t}^{\star}\right)+\ell_{t}\left(\boldsymbol{x}_{t}^{\star}\right)\right)+\psi_{t}\left(\boldsymbol{x}_{t+1}\right)-\psi_{t+1}\left(\boldsymbol{x}_{t+1}\right) \\
& \leq\left\|\boldsymbol{g}_{t}^{\prime}\right\|_{\star}^{2} /\left(2 \lambda_{t}\right)+\psi_{t}\left(\boldsymbol{x}_{t+1}\right)-\psi_{t+1}\left(\boldsymbol{x}_{t+1}\right),
\end{aligned}
$$

where in the second inequality we used the lemma in the previous slide. Observing that $\boldsymbol{x}_{t}=\operatorname{argmin}_{\boldsymbol{x} \in V} F_{t}(\boldsymbol{x})$, we have $\mathbf{0} \in \partial\left(F_{t}+i_{V}\right)\left(\boldsymbol{x}_{t}\right)$. Hence, we have $\partial \ell_{t}\left(\boldsymbol{x}_{t}\right) \subseteq \partial\left(F_{t}+\ell_{t}+i_{V}\right)\left(\boldsymbol{x}_{t}\right)$.

An Explicit Regret with Strongly Convex Functions (2)

Under the assumption of the previous slide and $\psi_{t+1}(\boldsymbol{x}) \geq \psi_{t}(\boldsymbol{x})$, we have

$$
\begin{aligned}
& \sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \\
& =\psi_{T+1}(\boldsymbol{u})-\min _{\boldsymbol{x} \in V} \psi_{1}(\boldsymbol{x})+\sum_{t=1}^{T}\left[F_{t}\left(\boldsymbol{x}_{t}\right)-F_{t+1}\left(\boldsymbol{x}_{t+1}\right)+\ell_{t}\left(\boldsymbol{x}_{t}\right)\right]+F_{T+1}\left(\boldsymbol{x}_{T+1}\right)-F_{T+1}(\boldsymbol{u}) \\
& \leq \psi_{T+1}(\boldsymbol{u})-\min _{\boldsymbol{x} \in V} \psi_{1}(\boldsymbol{x})+\sum_{t=1}^{T} \frac{\left\|\boldsymbol{g}_{t}\right\|_{\star}^{2}}{2 \lambda_{t}}
\end{aligned}
$$

Example: Guessing Game

- In each round we have to guess a number y_{t} between 0 and 1
- Call your guess x_{t}
- Then, the y_{t} is revealed and you pay $\ell_{t}(x)=\left(x-y_{t}\right)^{2}$
- Use FTRL, no regularizer: $\boldsymbol{x}_{t}=\operatorname{argmin}_{x \in v} \sum_{i=1}^{t-1} \ell_{i}(x)=\frac{1}{t-1} \sum_{i=1}^{t-1} y_{i}$

■ $\ell_{t}(x)+\sum_{i=1}^{t-1} \ell_{i}(x)$ is $2 t$ strongly convex w.r.t. $|\cdot|$
\square Gradient is $2\left(x_{t}-y_{t}\right)$, hence $\left|g_{t}\right| \leq 2$
■ Regret of FTRL: $\sum_{t=1}^{T}\left(x_{t}-y_{t}\right)^{2}-\sum_{t=1}^{T}\left(y_{t}-u\right)^{2} \leq \frac{1}{2} \sum_{t=1}^{T} \frac{2}{t} \leq \ln T+1$

FTRL with Linearized Losses

■ FTRL needs to solve a convex optimization problem at each step
■ I can run FTRL with any sequence of losses
■ I can also construct some losses
$■$ For example, I might want to run FTRL on $\hat{\ell}_{t}(\boldsymbol{x})=\ell_{t}\left(\boldsymbol{x}_{t}\right)+\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}-\boldsymbol{x}_{t}\right\rangle$ where $\boldsymbol{g}_{t} \in \partial \ell_{t}\left(\boldsymbol{x}_{t}\right)$

Require: A sequence of regularizers $\psi_{1}, \ldots, \psi_{T}: X \rightarrow \mathbb{R}$
1: for $t=1$ to T do
2: Output $\boldsymbol{x}_{t} \in \operatorname{argmin}_{\boldsymbol{x} \in V} \psi_{t}(\boldsymbol{x})+\sum_{i=1}^{t-1}\left\langle\boldsymbol{g}_{i}, \boldsymbol{x}\right\rangle$
3: $\operatorname{Pay} \ell_{t}\left(\boldsymbol{x}_{t}\right)$
4: \quad Get $g_{t} \in \partial \ell_{t}\left(\boldsymbol{x}_{t}\right)$
5: end for
Same regret because

$$
\sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \sum_{t=1}^{T}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle
$$

FTRL with Linearized Losses vs OSD

$\square V=\mathbb{R}^{d}$

- $\psi_{t+1}(\boldsymbol{x})=\frac{1}{\eta_{t+1}}\|\boldsymbol{x}\|_{2}^{2} \Rightarrow \psi_{t+1}$ is $\frac{1}{\eta_{t+1}}$-strongly convex w.r.t. $\|\cdot\|_{2}$
$\square \boldsymbol{x}_{t+1}=\operatorname{argmin}_{\boldsymbol{x}} \frac{1}{2 \eta_{t+1}}\|\boldsymbol{x}\|_{2}^{2}+\sum_{i=1}^{t}\left\langle\boldsymbol{g}_{i}, \boldsymbol{x}\right\rangle=-\eta_{t+1} \sum_{i=1}^{t} \boldsymbol{g}_{i}$
$■$ Compare it with OSD with $\boldsymbol{x}_{1}=\mathbf{0}: \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\eta_{t} \boldsymbol{g}_{t}=-\sum_{i=1}^{t} \eta_{i} \boldsymbol{g}_{i}$
■ Important: In FTRL the gradients are used with the same weight
■ Important: In FTRL we don't take "jumps" of size η_{t}

Example: FTRL with Linearized Loss and Euclidean Regularization

$\square V=\mathbb{R}^{d}$
■ $\psi(\boldsymbol{x})=\frac{\gamma}{2}\|\boldsymbol{X}\|_{2}^{2}$
■ ψ is γ-strongly convex w.r.t. L_{2} norm
■ Dual norm of L_{2} norm is L_{2} norm

$$
\begin{gathered}
\boldsymbol{x}_{t}=\underset{\boldsymbol{x} \in V}{\operatorname{argmin}} \frac{\gamma}{2}\|\boldsymbol{x}\|_{2}^{2}+\sum_{i=1}^{t-1}\left\langle\boldsymbol{g}_{i}, \boldsymbol{x}\right\rangle=\frac{-\sum_{i=1}^{t-1} \boldsymbol{g}_{i}}{\gamma} \\
\sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \sum_{t=1}^{T}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle \leq \psi_{T+1}(\boldsymbol{u})-\min _{\boldsymbol{x} \in V} \psi_{1}(\boldsymbol{x})+\sum_{t=1}^{T} \frac{\left\|\boldsymbol{g}_{t}\right\|_{\star}^{2}}{2 \lambda_{t}} \\
=\frac{\gamma}{2}\|\boldsymbol{u}\|_{2}^{2}+\sum_{t=1}^{T} \frac{\left\|\boldsymbol{g}_{t}\right\|_{2}^{2}}{2 \gamma}
\end{gathered}
$$

What is the optimal tuning of γ ?

Parameter-free Online Algorithms

What is a Parameter-free Algorithm?

Definition

We define a parameter-free online convex optimization algorithm as one that achieves optimal regret uniformly for any competitor vector \boldsymbol{u}, up to logarithmic factors

Examples

■ Exponentiated Gradient: $\operatorname{Regret}_{T}(\boldsymbol{u}) \leq \frac{K L(\boldsymbol{u} ; \boldsymbol{\pi})}{\eta}+\frac{T \eta}{2} \Rightarrow$ NormalHedge: $\operatorname{Regret}_{T}(\boldsymbol{u})=O(\sqrt{T(K L(\boldsymbol{u} ; \boldsymbol{\pi})+1)})$ [Chaudhuri et al., NeurIPS'09][Chernov\&Vovk, UAI'10][Orabona\&Pál, NeurIPS'16]

■ OSD: $\operatorname{Regret}_{T}(\boldsymbol{u}) \leq \frac{\left\|\boldsymbol{x}_{1}-\boldsymbol{u}\right\|_{2}^{2}}{2 \eta}+\frac{\eta T}{2} \Rightarrow$ KT (next slides): $\operatorname{Regret}_{T}(\boldsymbol{u})=\boldsymbol{O}\left(\left\|\boldsymbol{x}_{1}-\boldsymbol{u}\right\|_{2} \sqrt{T \ln \left(1+T\left\|\boldsymbol{x}_{1}-\boldsymbol{u}\right\|_{2} / \epsilon\right)}+\epsilon\right)$

Simple Parameter-free FTRL

Theorem

Consider the 1-d OCO problem, $g_{t} \in[-1,1], V=\mathbb{R} \geq 0$. Set $\psi_{t}(x)=x \sqrt{T}(\ln x-1)+\frac{(t-1) x}{\sqrt{T}}$. Assume $T \geq 4$. Then, FTRL has regret

$$
\sum_{t=1}^{T}\left(\ell_{t}\left(\boldsymbol{x}_{t}\right)-\ell_{t}(\boldsymbol{u})\right) \leq \sqrt{T}(1+u \ln u)-\frac{u}{\sqrt{T}}
$$

Moreover, $x_{t}=\exp \left(-\sum_{i=1}^{t-1} g_{i}-\frac{t-1}{T}\right)$

- Compare it with OSD: $\operatorname{Regret}_{T}(u) \leq \frac{1}{2} \sqrt{T}\left(u^{2} / \alpha+\alpha\right)$
- "Impossible" tuning of learning rate of OSD would give $\operatorname{Regret}_{T}(u) \leq|u| \sqrt{T}$

■ Important: We get almost the optimal regret, uniformly for all u

- Important: The algorithm goes exponential fast if the subgradients are all in the same direction

Simple Parameter-free FTRL (2)

The regularizer is not strongly convex! But it still works:

Proof.

The formula for x_{t} comes from the definition of the FTRL update.
Let $\theta_{t}=-\sum_{i=1}^{t-1} g_{i}$. Then, in the FTRL regret bound we have

$$
\begin{aligned}
& F\left(x_{t}\right)-F_{t+1}\left(x_{t+1}\right)+g_{t} x_{t} \\
& =\sqrt{T} \exp \left(\frac{\theta_{t}-g_{t}}{\sqrt{T}}-\frac{t}{T}\right)-\sqrt{T} \exp \left(\frac{\theta_{t}}{\sqrt{T}}-\frac{t-1}{T}\right)+g_{t} \exp \left(\frac{\theta_{t}}{\sqrt{T}}-\frac{t-1}{T}\right) \\
& =\sqrt{T} \exp \left(\frac{\theta_{t}-g_{t}}{\sqrt{T}}-\frac{t}{T}\right)-\sqrt{T} \exp \left(\frac{\theta_{t}}{\sqrt{T}}-\frac{t-1}{T}\right)\left(1-g_{t} \frac{1}{\sqrt{T}}\right) \\
& \leq \sqrt{T} \exp \left(\frac{\theta_{t}-g_{t}}{\sqrt{T}}-\frac{t}{T}\right)-\sqrt{T} \exp \left(\frac{\theta_{t}}{\sqrt{T}}-\frac{t-1}{T}\right) \exp \left(-g_{t} \frac{1}{\sqrt{T}}-g_{t}^{2} \frac{1}{T}\right) \leq 0
\end{aligned}
$$

where we use the elementary inequality $1+y \geq \exp \left(y-y^{2}\right)$ for $|y| \leq 1 / 2$

Did We Only Gain a Constant in the Rate?

- $\sqrt{\boldsymbol{T}}(1+u \ln u)$ vs $\frac{1}{2} \sqrt{\boldsymbol{T}}\left(u^{2} / \alpha+\alpha\right)$

■ The rate did not change, and it might seem like we only improved a constant

- Not so fast!

Example: Logistic Regression

■ Consider logistic regression on a dataset of T samples:

$$
\min _{\boldsymbol{x}} F(\boldsymbol{x}):=\frac{1}{T} \sum_{t=1}^{T} \ln \left(1+\exp \left(-y_{t}\left\langle\boldsymbol{x}, \boldsymbol{z}_{t}\right)\right)\right.
$$

- Assume that the dataset is linearly separable with margin at least 1 by a hyperplane \boldsymbol{u}^{\star}
- Does the minimum exist? Does the minimizer exist?
- Rate of Averaged OSD with $\boldsymbol{x}_{1}=\mathbf{0}$: $\mathbb{E}\left[F\left(\overline{\boldsymbol{x}}_{T}\right)\right]-F\left(\boldsymbol{x}^{\star}\right) \leq \frac{1}{2 \sqrt{T}}\left(\left\|\boldsymbol{X}^{\star}\right\|_{2}^{2} / \alpha+\alpha\right)$, is it vacuous?
- Rewrite it as $\mathbb{E}\left[F\left(\overline{\boldsymbol{x}}_{T}\right)\right] \leq \min _{u} F(\boldsymbol{u})+\frac{1}{2 \sqrt{T}}\left(\|\boldsymbol{u}\|_{2}^{2} / \alpha+\alpha\right)$
- The r.h.s. can be upper bounded by $\boldsymbol{u}=\boldsymbol{u}^{\star} \ln \frac{2 \alpha \sqrt{T}}{\left\|\boldsymbol{u}^{\star}\right\|_{2}}$ that gives

$$
\begin{aligned}
F(\boldsymbol{u}) & \leq \frac{1}{T} \sum_{t=1}^{T} \ln \left(1+\exp \left(-\ln \frac{2 \alpha \sqrt{T}}{\left\|\boldsymbol{u}^{\star}\right\|_{2}}\right)\right) \leq \frac{1}{T} \sum_{t=1}^{T} \exp \left(-\ln \frac{2 \alpha \sqrt{T}}{\left\|\boldsymbol{u}^{\star}\right\|_{2}}\right) \\
& =\frac{\left\|\boldsymbol{u}^{\star}\right\|_{2}}{2 \alpha \sqrt{T}}
\end{aligned}
$$

- Overall, rate is $O\left(\frac{\ln T}{\sqrt{T}}\right)$ and $\|\boldsymbol{u}\|_{2}=O(\ln T)$, so not a constant! [Ji\&Telgarsky, COLT'19][Blogpost Feb'24]

Example: Regression with Kernels

■ Consider a "universal kernel" $k(\cdot, \cdot)$, e.g., Gaussian kernel
■ Universal kernels can approximate any continuous target function uniformly on any compact subset of the input space

- Consider linear regression with kernels
- Same thing will happen: the solution might be at infinity
- $\min _{\boldsymbol{u} \in \mathcal{H}_{k}} F(\boldsymbol{u})+\frac{\|\boldsymbol{u}\|_{\mathcal{H}_{k}}^{2}}{\sqrt{T}}=O\left(T^{-a}\right)$ where 'a' measures how "smooth" is the optimal solution [tons of refs! See, e.g., Ying\&Pontil, 2008] (see also Taiji's slides)
- Again $\|\boldsymbol{u}\|^{2}$ is not a constant!
- A parameter-free algorithm will achieve optimal convergence in the parameter ' a ' without, knowing it [Orabona, NeurIPS'14]

Brief History of Parameter-free Algorithms

■ Streeter\&McMahan [NeurIPS'12]: Only in 1 dimension, suboptimal bound, not a complete understanding

- McMahan\&Abernethy [NeurIPS'13]: 1 dimension, minimax strategy but suboptimal formulation
- Orabona [NeurIPS'13]: Still suboptimal, but extended to any number of dimensions, even infinite
- Nemirovski [Personal Communication 2013]: Run GD with a grid of learning rates, select best solution: suboptimal bound, only deterministic
■ McMahan\&Orabona [COLT'14] and Orabona [NeurIPS'14]: Optimal bound, any number of dimensions, unintuitive proofs
- Orabona\&Pál [NeurIPS'16]: Coin-betting view

■ Carmon\&Hider [COLT'22]: from $\ln \left(\|\boldsymbol{u}\|_{2}\right)$ to $\ln \ln \left(\left\|\boldsymbol{X}^{\star}\right\|_{2}\right)$ in the stochastic setting

See also Tutorial at ICML'20 on "Parameter-free Online Optimization" https://parameterfree.com/icml-tutorial/

Better Parameter-Free through Duality on Guarantee

■ Online-to-batch conversion (deterministic case for simplicity):

$$
F\left(\overline{\boldsymbol{x}}_{T}\right)-F(\boldsymbol{u}) \leq \frac{1}{T} \sum_{t=1}^{T}\left(F\left(\boldsymbol{x}_{t}\right)-F(\boldsymbol{u})\right) \leq \frac{1}{T} \sum_{t=1}^{T}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle
$$

Theorem (McMahan\&Orabona, COLT'14)

An algorithm that produces \boldsymbol{x}_{t} based on $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{t-1}$ guarantees

$$
\begin{aligned}
\sum_{t=1}^{T}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle & \leq \psi_{T}(\boldsymbol{u}), \forall \boldsymbol{u} \\
& \mathbb{\Downarrow} \\
-\sum_{t=1}^{T}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}\right\rangle & \geq \psi_{T}^{\star}\left(-\sum_{t=1}^{T} \boldsymbol{g}_{t}\right), \forall \boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{T}
\end{aligned}
$$

where ψ_{T}^{\star} is the Fenchel conjugate of ψ_{T} defined as $\psi_{T}^{\star}(\boldsymbol{\theta})=\sup _{\boldsymbol{x}}\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle-\psi_{T}(\boldsymbol{x})$

The Main Tool

- Assume $\left\|\boldsymbol{g}_{t}\right\|_{2} \leq 1$

■ Set $\boldsymbol{x}_{t}=\frac{-\sum_{i=1}^{t-1} \boldsymbol{g}_{i}}{t}\left(1-\sum_{i=1}^{t}\left\langle\boldsymbol{g}_{i}, \boldsymbol{x}_{i}\right\rangle\right)$
■ Claim: \boldsymbol{x}_{t} guarantees

$$
-\sum_{t=1}^{T}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}\right\rangle \geq \psi_{T}^{\star}\left(-\sum_{t=1}^{T} \boldsymbol{g}_{t}\right)
$$

where $\psi_{T}^{\star}(\boldsymbol{\theta}) \approx \frac{1}{\sqrt{T}} \exp \left(\frac{\|\boldsymbol{\theta}\|_{2}^{2}}{2 T}\right)-1$

- This implies $\sum_{t=1}^{T}\left\langle\boldsymbol{g}_{t}, \boldsymbol{x}_{t}-\boldsymbol{u}\right\rangle \leq\left\|\boldsymbol{x}^{\star}\right\|_{2} \sqrt{T \ln \left(\|\boldsymbol{u}\|_{2} T+1\right)}+1$

■ Where does the inequality in orange come from?

Optimization through Optimal Gambling

Krichevsky\&Trofimov (KT) betting strategy:
■ Observe sequence of coins outcomes $c_{t} \in[-1,1]$, start with $\$ 1$, bet on x_{t} money, win/lose $x_{t} c_{t}$
■ On round t bet a signed fraction of your money equal to $\frac{\sum_{i=1}^{t-1} c_{i}}{t}$

- Exponential amount of money

$$
\text { Winnings of } \mathrm{KT}=1+\sum_{t=1}^{T} x_{t} c_{t} \geq \frac{\exp \left(\frac{\left(\sum_{t=1}^{T} c_{t}\right)^{2}}{2 T}\right)}{2 \sqrt{T}}
$$

■ No assumptions on the coin!
\square We need to prove that $-\sum_{t=1}^{T} g_{t} x_{t} \geq \psi_{T}^{\star}\left(-\sum_{t=1}^{T} g_{t}\right)$
\square In 1d, set $c_{t}=-g_{t}$ and assume $\left|g_{t}\right| \leq 1$ then we have it!
■ It works in the vector case too

Extensions and Consequences

$$
\boldsymbol{x}_{t}=\boldsymbol{x}_{0}+\frac{-\sum_{i=1}^{t-1} \boldsymbol{g}_{i}}{t}\left(1-\sum_{i=1}^{t-1}\left\langle\boldsymbol{g}_{i}, \boldsymbol{x}_{i}\right\rangle\right)
$$

■ No need to know the Lipschitz constant [Cutkosky, COLT'19]
■ It works in any number of dimensions, even Hilbert spaces
■ It works with stochastic subgradients
■ It can work with constrained sets [Cutkosky\&Orabona, COLT'18]

■ It can adapt to the strong convexity in the stochastic setting (bounded stochastic subgradients and domain) [Cutkosky\&Orabona, COLT'18]

Surprising Applications of Online Learning

Online Learning is Much More than Online Learning

■ Online Convex Optimization might seem only concerned with losses\®ret
$■$ In reality, it is about proving inequalities on arbitrary sequences of data
■ In my opinion, the inequalities are more important than the algorithms

■ Here, l'll try to convince you of this view

From Online Convex Optimization to Non-Convex Non-Smooth Optimization

Non-convex Optimization

$■$ For convex optimization, we study $F\left(\boldsymbol{x}_{T}\right)-F(\boldsymbol{u})$
■ For non-convex smooth optimization, we study $\mathbb{E}_{i}\left[\left\|\nabla F\left(\boldsymbol{x}_{i}\right)\right\|_{2}^{2}\right]$
$■$ What can we do for non-smooth non-convex? Example: ConvNets with ReLUs

Definition (Zhang et al. ICML'20)

A point \boldsymbol{x} is an (δ, ϵ)-stationary point of an almost-everywhere differentiable function F if there is a finite subset S of the ball of radius δ centered at \boldsymbol{x} such that for \boldsymbol{y} selected uniformly at random from $S, \mathbb{E}[\boldsymbol{y}]=\boldsymbol{x}$ and $\|\mathbb{E}[\nabla F(\boldsymbol{y})]\| \leq \epsilon$

If δ is small enough, it codifies our intuition on points close to a minimum

Well-Behaved Functions

We will assume that the functions are well-behaved in the sense that

$$
F(\boldsymbol{y})-F(\boldsymbol{x})=\int_{0}^{1}\langle\nabla F(\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x})), \boldsymbol{y}-\boldsymbol{x}\rangle d t
$$

Up to perturbing the function with some noise, this holds for locally Lipschitz functions

Using OCO for Non-convex Optimization

Require: An OCO algorithm, duration of cycle K, initial point \boldsymbol{x}_{0}
1: $j=0$
2: for $t=1$ to T do
3: if $\bmod (t, K)==1$ then
4: Reset OCO algorithm
5: $\quad j=j+1$
6: $\quad \overline{\boldsymbol{x}}_{j}=\mathbf{0}$
7: end if
8: Receive \boldsymbol{m}_{t} from OCO algorithm
9: $\quad \boldsymbol{x}_{t}=\boldsymbol{x}_{t-1}-\boldsymbol{m}_{t}$
10: \quad Sample s_{t} uniformly in $[0,1]$
11: $\quad \boldsymbol{x}_{t}^{\prime}=\boldsymbol{x}_{t-1}-s_{t} \boldsymbol{m}_{t}$
12: Pass $\ell_{t}(\boldsymbol{x})=-\left\langle\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right), \boldsymbol{x}\right\rangle$ to OCO algorithm $\overline{\boldsymbol{x}}_{j}=\overline{\boldsymbol{x}}_{j}+\boldsymbol{x}_{t}^{\prime} / K$
14: end for
15: return $\overline{\boldsymbol{x}}_{J}$ uniformly at random between 1 and T / K

■ Important: The OCO algorithm decides the updates not the iterates
[Cutkosky et al., ICML'23]

Main Result

Theorem

Let the OCO algorithm be OGD over the L_{2} ball of radius D. Then, we have

$$
\mathbb{E}\left[\frac{1}{T / K} \sum_{i=1}^{T / K} \| \frac{1}{K} \sum_{t=1}^{K} \nabla F\left(\boldsymbol{x}_{(i-1) K+t)}^{\prime} \|_{2}\right] \leq \frac{F\left(\boldsymbol{x}_{0}\right)-\inf _{\boldsymbol{x}} F(\boldsymbol{x})}{D T}+\frac{1}{\sqrt{K}}\right.
$$

Moreover, set $D=\delta / K, K=\left(\frac{T \delta}{F\left(\boldsymbol{x}_{0}\right)-\inf _{\boldsymbol{x}} F(\boldsymbol{x})}\right)^{\frac{2}{3}}$, and return $\overline{\boldsymbol{x}}_{J}$ where J is uniformly at random, then in expectation $\overline{\boldsymbol{x}}_{j}$ is $\left(\delta, O\left((T \delta)^{-\frac{1}{3}}\right)\right)$-stationary point.
\square The choice of $D: \overline{\boldsymbol{x}}_{j}$ is the average of K points at distance at most δ
■ With the chosen D, we have

$$
\frac{F\left(\boldsymbol{x}_{0}\right)-\inf _{\boldsymbol{x}} F(\boldsymbol{x})}{D T}+\frac{1}{\sqrt{K}}=\frac{K\left(F\left(\boldsymbol{x}_{0}\right)-\inf _{\boldsymbol{x}} F(\boldsymbol{x})\right)}{T \delta}+\frac{1}{\sqrt{K}}
$$

■ $\mathbb{E}\left[\frac{1}{T / K} \sum_{i=1}^{T / K}\left\|^{\frac{1}{K}} \sum_{t=1}^{K} \nabla F\left(\boldsymbol{x}_{(i-1) K+t}^{\prime}\right)\right\|_{2}\right]=$
$\mathbb{E}\left[\left\|\frac{1}{K} \sum_{t=1}^{K} \nabla F\left(\boldsymbol{x}_{(J-1) K+t}^{\prime}\right)\right\|_{2}\right]=O\left((T \delta)^{-\frac{1}{3}}\right)$
[Cutkosky et al., ICML'23]

From Function Value to Gradients

In all optimization analyses we need to link function values to gradients:
■ Convex functions: $f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle$
■ Non-convex M-smooth: $f(\boldsymbol{y}) \leq f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{M}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}$

■ What can we use for non-convex non-smooth?

Key Observation

■ We evaluate the gradient in $\boldsymbol{x}_{t}^{\prime}=\boldsymbol{x}_{t-1}-s_{t} \boldsymbol{m}_{t}=\boldsymbol{x}_{t-1}+s_{t}\left(\boldsymbol{x}_{t}-\boldsymbol{x}_{t-1}\right)$
■ Hence, we have

$$
\mathbb{E}_{s_{t}} \nabla F\left(\boldsymbol{x}_{t}^{\prime}\right)=\int_{0}^{1} \nabla F\left(\boldsymbol{x}_{t-1}+t\left(\boldsymbol{x}_{t}-\boldsymbol{x}_{t-1}\right)\right) d t
$$

- This allows us to say that

$$
\begin{aligned}
F\left(\boldsymbol{x}_{t}\right)-F\left(\boldsymbol{x}_{t-1}\right) & =\int_{0}^{1}\left\langle\nabla F\left(\boldsymbol{x}_{t-1}+t\left(\boldsymbol{x}_{t}-\boldsymbol{x}_{t-1}\right)\right), \boldsymbol{x}_{t}-\boldsymbol{x}_{t-1}\right\rangle d t \\
& =\left\langle\mathbb{E}_{s_{t}}\left[\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right)\right], \boldsymbol{x}_{t}-\boldsymbol{x}_{t-1}\right\rangle
\end{aligned}
$$

■ This holds without assuming convexity nor smoothness!

Proof

Proof.

Using the key observation, for the first cycle we have

$$
\begin{aligned}
F\left(\boldsymbol{x}_{t}\right)-F\left(\boldsymbol{x}_{t-1}\right) & =\left\langle\mathbb{E}_{s_{t}}\left[\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right)\right], \boldsymbol{x}_{t}-\boldsymbol{x}_{t-1}\right\rangle=-\left\langle\mathbb{E}_{s_{t}}\left[\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right)\right], \boldsymbol{m}_{t}\right\rangle \\
& =\left\langle-\mathbb{E}_{S_{t}}\left[\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right)\right], \boldsymbol{m}_{t}-\boldsymbol{u}\right\rangle-\left\langle\mathbb{E}_{S_{t}}\left[\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right)\right], \boldsymbol{u}\right\rangle
\end{aligned}
$$

Taking full expectation, summing over $t=1, \ldots, K$, for any $\|\boldsymbol{u}\|_{2} \leq D$, we have

$$
\begin{aligned}
\mathbb{E}\left[F\left(\boldsymbol{x}_{K}\right)\right]-F\left(\boldsymbol{x}_{0}\right) & =\mathbb{E} \underbrace{\left[\sum_{t=1}^{K}\left\langle-\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right), \boldsymbol{m}_{t}-\boldsymbol{u}\right\rangle\right]}_{\text {Regret }_{K}(\boldsymbol{u})}-\mathbb{E}\left[\sum_{t=1}^{K}\left\langle\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right), \boldsymbol{u}\right\rangle\right] \\
& \leq D \sqrt{K}-\mathbb{E}\left[\sum_{t=1}^{K}\left\langle\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right), \boldsymbol{u}\right\rangle\right]
\end{aligned}
$$

Choose $\boldsymbol{u}=D \frac{\sum_{t=1}^{K} \nabla F\left(\boldsymbol{x}_{t}^{\prime}\right)}{\left\|\sum_{t=1}^{K} \nabla F\left(\boldsymbol{x}_{t}^{\prime}\right)\right\|_{2}}$ to have $\sum_{t=1}^{K}\left\langle\nabla F\left(\boldsymbol{x}_{t}^{\prime}\right), \boldsymbol{u}\right\rangle=-D\left\|\sum_{t=1}^{K} \nabla F\left(\boldsymbol{x}_{t}^{\prime}\right)\right\|_{2}$.
Summing over the cycles and dividing by $D T$ ends the proof.

More Results

Using the same reduction, but possibly changing the online learning algorithm, we also show

■ $\left(\delta, O\left((T \delta)^{-\frac{1}{3}}\right)\right.$ for the stochastic setting too
■ For smooth stochastic functions, it implies that best rate of SGD
■ For smooth deterministic, it matches the optimal rates

■ Recently, Ahn et al. [arXiv'24] used this framework to show that Adam can be casted as an FTRL algorithm constructing the updates
[Cutkosky et al., ICML'23]

Only a Hack or Something Fundamental?

One might wonder if the above reduction is only a hack or it discovers something more fundamental.

One way to convince you is to take a look at the resulting procedure

$$
\begin{aligned}
\boldsymbol{x}_{t} & =\boldsymbol{x}_{t-1}-\boldsymbol{m}_{t} \\
\boldsymbol{g}_{t} & =\nabla F\left(\boldsymbol{x}_{t}+\left(s_{t}-1\right) \boldsymbol{m}_{t}\right) \\
\boldsymbol{m}_{t+1} & =\operatorname{Clip}\left(\boldsymbol{m}_{t}+\eta \boldsymbol{g}_{t}\right)
\end{aligned}
$$

We recovered a version of SGD with momentum and clipping! The only really different part is that we perturb the iterate a bit before calculating the gradient

From Online Learning to Concentration Inequalities

Estimating the Mean of Random Variables

A classic problem in statistic

- Suppose to have a stream of random variables in [0, 1], X_{1}, X_{2}, \ldots
- Assume that their expectation conditioned on the past is μ
- We want to estimate μ and give confidence intervals that holds with high probability uniformly over time

■ Given that it is uniform over time, we can decide to stop based on the data
■ In formulas, find $\left[a_{t}, b_{t}\right]$ such that $\operatorname{Pr}\left\{\mu \in\left[a_{t}, b_{t}\right], \forall t \geq 1\right\} \geq 1-\delta$

- Moreover, the width of the confidence intervals should go to zero as $\sim \frac{\sigma}{\sqrt{t}}$

Usual Approach: Concentration Inequalities

- Estimate the true mean by the empirical mean $\hat{\mu}_{t}=\frac{1}{t} \sum_{i=1}^{t} X_{i}$

■ Use a concentration inequality that holds uniformly over time to construct confidence intervals for $\hat{\mu}_{t}$

- We obtain $\mu \in\left[\hat{\mu}_{t} \pm K \frac{\sigma \sqrt{\ln \frac{t}{\delta}}}{\sqrt{t}}\right]$ with probability at least $1-\delta$
- Examples of this approach: Maurer\&Pontil [COLT'09] + union bound

Unfortunately, We Often Get Vacuous Estimates

■ But, the above estimates are vacuous when the number of samples is small
■ For example, $\mu \in[0.3 \pm 3.7]$
■ In other words, our confidence intervals could be useless in the small sample regime
■ Ideally, we want non-vacuous confidence intervals even with one sample!

■ Our approach: derive concentration inequalities from online gambling algorithms!

Key Idea: Confidence Intervals from Betting

Fact 1 A concentration inequality says that the empirical average cannot be too far from the true expectation
Fact 2 Starting from \$1, you cannot gain money betting on a fair coin Ville's inequality (1939): $\operatorname{Pr}\left\{\max _{t}\right.$ Wealth $\left._{t} \geq \frac{1}{\delta}\right\} \leq \delta$

■ Start with \$1
■ "Imagine" using a betting algorithm to bet on the outcome of $X_{i}-\mu$
$■$ Using KT we have Wealth ${ }_{t} \geq \frac{1}{2 \sqrt{t}} \exp \left(\frac{\left(\sum_{i=1}^{t}\left(X_{i}-\mu\right)\right)^{2}}{2 t}\right)$
$■$ Fact $1+$ Fact $2+\mathrm{KT}$:

$$
\operatorname{Pr}\left\{\max _{t} \frac{1}{2 \sqrt{t}} \exp \left(\frac{\left(\sum_{i=1}^{t}\left(X_{i}-\mu\right)\right)^{2}}{2 t}\right) \geq \frac{1}{\delta}\right\} \leq \operatorname{Pr}\left\{\max _{t} \text { Wealth }_{t} \geq \frac{1}{\delta}\right\} \leq \delta
$$

■ Solve inequality: $\operatorname{Pr}\left\{\max _{t}\left|\mu-\frac{1}{t} \sum_{i=1}^{t} X_{i}\right| \geq \sqrt{\frac{2 \ln \frac{2 \sqrt{t}}{\delta}}{t}}\right\} \leq \delta$
■ Equivalently, with probability at least $1-\delta$ and for any t we have

$$
\left|\mu-\frac{1}{t} \sum_{i=1}^{t} X_{i}\right| \leq \sqrt{\frac{2 \ln \frac{2 \sqrt{t}}{\delta}}{t}}
$$

[Jun\&Orabona, COLT'19]

Game-Theoretic Probabilities and Concentrations

■ Very general testing framework in Shafer\&Vovk'05,'19 books, but no specific application to derive new concentrations
■ Hendriks (arXiv'18) first to numerically evaluate a specific betting strategy to derive confidence intervals
■ Waudby-Smith\&Ramdas [arXiv'21] proposed to use heuristic betting algorithms

■ Jun\&Orabona [COLT'19] were the first ones to use regret guarantees of online betting algorithms to derive new concentrations inequalities
$■$ Rakhlin\&Sridharan (COLT'17) showed equivalent between martingale tail bounds and regret guarantees, but does not derive time-uniform concentrations because it does not use non-negative martingales
■ Cover (Tech Report'74) recasted a statistical test as a betting game

■ Next step is obvious: What we get using the optimal betting scheme?

PRECiSE: Portfolio REgret for Confidence SEquences

■ Which betting algorithm should we use?
■ We show that Universal Portfolio [Cover\&Ordentlich, 1996] with 2 stocks is optimal for this setting
■ We obtain a new time-uniform concentration: With probability at least $1-\delta$, for any t we have

$$
\psi_{t}^{\star} \leq \ln \frac{1}{\delta}+\text { Regret }_{t}
$$

where

$$
\psi_{t}^{\star}:=\max _{\lambda \in\left[-\frac{1}{1-\mu}, \frac{1}{\mu}\right]} \sum_{i=1}^{t} \ln \left[1+\lambda\left(X_{i}-\mu\right)\right]
$$

is the optimal log wealth with constant betting and Regret $_{t} \leq \ln \sqrt{t}$ is the regret of Universal Portfolio

■ We prove that the set of μ that satisfy the inequality is an interval, so we can invert the concentration numerically using binary search
■ Never vacuous: interval width less than $1-\frac{\delta}{2}$
[Orabona\&Jun, IEEE Trans. IT'23]

Experiments: Bernoulli(0.5)

Code: https://github.com/bremen79/precise

Experiments: Beta(10,30)

Code: https://github.com/bremen79/precise

From Online Betting to PAC-Bayes Bounds

PAC-Bayes Bounds

(Trying to follow Pierre's notation here!)
Definitions:

$$
\begin{aligned}
R(\theta) & =\mathbb{E}_{(x, y) \sim P}\left[\ell\left(y, f_{\theta}(x)\right)\right] \\
R_{n}(\theta) & =\frac{1}{n} \sum_{i=1}^{n} \ell\left(y, f_{\theta}\left(X_{i}\right)\right)
\end{aligned}
$$

Assumption:
$0 \leq \ell \leq 1$

Theorem (McAllester, COLT'98)

Fix a prior distribution $\pi \in \mathcal{M}(\Theta)$. With probability at least $1-\delta$ on the data S, for any probability distribution ρ learnt on the data,

$$
\mathbb{E}_{\theta \sim \rho}[R(\theta)] \leq \mathbb{E}_{\theta \sim \rho}\left[R_{n}(\theta)\right]+\sqrt{\frac{\mathrm{KL}(\rho \| \pi)+\ln \frac{2 \sqrt{n}}{\delta}}{2 n}}
$$

Our Theorem

Theorem

Define optimal 'log-wealth' function:

$$
\psi_{n}^{\star}(\theta):=\max _{\lambda \in\left[-\frac{1}{1-R(\theta)}, \frac{1}{R(\theta)}\right]} \sum_{i=1}^{n} \ln \left[1+\lambda\left(\ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right)-R(\theta)\right)\right]
$$

Fix $\pi \in \mathcal{M}(\Theta)$, then with probability at least $1-\delta$, simultaneously for all n and ρ,

$$
\mathbb{E}_{\theta \sim \rho}\left[\psi_{n}^{\star}(\theta)\right] \leq \mathrm{KL}(\rho \| \pi)+\ln \frac{\sqrt{n}}{\delta}
$$

[Jang et al., COLT'23]

Consequences

I. By relaxing the 'log-wealth' term this inequality implies:

■ McAllester's inequality
[McAllester, COLT'98]
■ Empirical Bernstein's PAC-Bayes inequality [Tolstikhin\&Seldin, NeurIPS'13]
■ Maurer's inequality of Bernoulli r.v.'s
[Maurer, arXiv'04]
■ Unexpected Bernstein's inequality [Mhammedi et al., NeurIPS'19]
II. With no relaxations, we can compute confidence sequences on μ_{θ} efficiently.

Examples of Relaxations

Our inequality:
$\psi_{n}^{\star}(\theta):=\max _{\lambda \in\left[-\frac{1}{1-R(\theta)}, \frac{1}{R(\theta)}\right]} \sum_{i=1}^{n} \ln \left(1+\lambda\left(\ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right)-R(\theta)\right)\right) \leq \mathrm{KL}(\rho \| \pi)+\ln \frac{\sqrt{n}}{\delta}$

- $\ln (1+x) \geq x-x^{2}$ for $x \geq-0.68$ gives

$$
\left|\mathbb{E}_{\theta \sim \rho}[R(\theta)]-\mathbb{E}_{\theta \sim \rho}\left[R_{n}(\theta)\right]\right| \leq 2 \sqrt{\frac{\mathrm{KL}(\rho \| \pi)+\ln \frac{\sqrt{n}}{\delta}}{n}} \Rightarrow \text { McAllester's bound! }
$$

- By convexity, $\max _{\lambda} \sum_{i=1}^{n} \ln \left(1+\lambda\left(X_{i}-\mu\right)\right) \geq n \mathrm{kl}(\hat{\mu}, \mu)$, that gives

$$
\mathrm{kl}\left(\mathbb{E}_{\theta \sim \rho}\left[R_{n}(\theta)\right], \mathbb{E}_{\theta \sim \rho}[R(\theta)]\right) \leq \frac{\mathrm{KL}(\rho \| \pi)+\ln \frac{\sqrt{n}}{\delta}}{n} \Rightarrow \text { Maurer's bound! }
$$

■ Similarly, you can get the other bounds too

Proof Sketch: Recall the Basic Bound

For any $\rho \ll \pi$ and measurable F :

$$
\mathbb{E}_{\theta \sim \rho}[F(\theta)] \leq \mathrm{KL}(\rho \| \pi)+\ln \mathbb{E}_{\theta \sim \pi}\left[e^{F(\theta)}\right]
$$

(Change-of-measure)
For some fixed $\lambda>0$ choose $F(\theta)=\lambda\left(R(\theta)-R_{n}(\theta)\right)$. Then,

$$
\begin{aligned}
\lambda \mathbb{E}_{\theta \sim \rho}\left[R(\theta)-R_{n}(\theta)\right] & \leq \mathrm{KL}(\rho \| \pi)+\ln \mathbb{E}_{\theta \sim \pi}\left[e^{\lambda\left(R(\theta)-R_{n}(\theta)\right)}\right] \\
& \leq \mathrm{KL}(\rho \| \pi)+\ln \frac{1}{\delta}+\ln \mathbb{E}_{\theta \sim \pi}\left[\mathbb{E} e^{\lambda\left(R(\theta)-R_{n}(\theta)\right)}\right] \quad \text { (Markov) }
\end{aligned}
$$

Concentration!

E.g., Hoeffding's lemma + tuning over λ gives McAllester's inequality.

PAC-Bayes from a Betting Game

Standard approach: λ is fixed. Idea: tune λ based on data...
... using an online betting game:

- A fictitious betting algorithm starts with wealth 1
- At round $i=1, \ldots, n$ it bets a signed fraction of its wealth $B_{i}(\theta)$

■ Observes outcome $\Delta_{i}(\theta):=\ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right)-R(\theta)$

- Then it's log wealth is $\psi_{n}(\theta):=\sum_{i=1}^{n} \ln \left(1+B_{i}(\theta) \Delta_{i}(\theta)\right)$
- The regret of the algorithm is controlled, as before:

$$
\psi_{n}^{\star}(\theta)-\psi_{n}(\theta) \leq \ln \sqrt{n}, \forall \theta
$$

Recall that the optimal log-wealth is

$$
\psi_{n}^{\star}(\theta)=\underset{\lambda \in\left[-\frac{1}{1-R(\theta)}, \frac{1}{1(\theta)}\right]}{\max } \sum_{i=1}^{n} \ln \left[1+\lambda\left(\ell\left(Y_{i}, f_{\theta}\left(X_{i}\right)\right)-R(\theta)\right)\right]
$$

New Proof

For any $\rho \ll \pi$ and measurable F :

$$
\mathbb{E}_{\theta \sim \rho}[F(\theta)] \leq \mathrm{KL}(\rho \| \pi)+\ln \mathbb{E}_{\theta \sim \pi}\left[e^{F(\theta)}\right]
$$

(Change-of-measure)
Choose $F(\theta)=\psi_{n}\left(\theta, \mu_{\theta}\right)$ (optimal log-wealth). Then,

$$
\mathbb{E}_{\theta \sim \rho}\left[\psi_{n}\left(\theta, \mu_{\theta}\right)\right] \leq \mathrm{KL}(\rho \| \pi)+\ln \mathbb{E}_{\theta \sim \pi}\left[e^{\psi_{n}\left(\theta, \mu_{\theta}\right)}\right]
$$

$e^{\psi_{n}\left(\theta, \mu_{\theta}\right)}=$ OptimalWealth \leq WealthAnyOnlineAlgorithmA $\cdot \exp \left(\operatorname{Regret}_{n}(A)\right)$

Concentration: WealthAnyOnlineAlgorithmA is a non-negative martingale

$$
\operatorname{Pr}\left\{\sup _{n \geq 0} \text { WealthAnyOnlineAlgorithmA } \geq \frac{1}{\delta}\right\} \leq \delta
$$

(Ville's inequality)

Putting all together

$$
\mathbb{E}_{\theta \sim \rho}\left[\psi_{n}\left(\theta, \mu_{\theta}\right)\right] \leq \mathrm{KL}(\rho \| \pi)+\ln \left(\frac{1}{\delta} \exp (\ln \sqrt{n})\right)=\mathrm{KL}(\rho \| \pi)+\ln \frac{1}{\delta}+\ln \sqrt{n}
$$

Even More Surprising Applications

■ Rademacher complexity bounds from Online Learning [Kakade et al., NeurIPS'08]
■ From online learning to PAC-Bayes (but without the better bounds I showed) [Lugosi\&Neu, arXiv'23]
■ Better-than-KL PAC-Bayes bounds [Kuzborskij et al., arXiv'24]
■ Parameter-free sampling [Sharrock\&Nemeth, ICML'23][Sharrock et al. NeurIPS'23]

Summary

- Basic concepts and definitions of Online Learning
- OMD\&FTRL
- Parameter-free algorithms
- Connection between regret guarantees and betting, concentrations, and generalization

Thank you!

Website: https://francesco.orabona.com
Blog: https://parameterfree.com
X/Twitter: @bremen79

