
Natural Language Processing

Diyi Yang
The Machine Learning Summer School in Okinawa 2024

Relevant Courses and Resources

2

• Courses:
• CS224N: Natural Language Processing with Deep Learning

• https://web.stanford.edu/class/cs224n
• CS7650/4650: Natural Language Processing
• https://www.cc.gatech.edu/classes/AY2021/cs7650_fall/

• CS329X: Human Centered NLP
• http://web.stanford.edu/class/cs329x/

• Tutorials:
• Learning with Limited Data, ACL 2022
• https://github.com/diyiy/ACL2022_Limited_Data_Learning_Tutorial

• Summarizing Conversations at Scale, EACL 2023
• https://github.com/zcgzcgzcg1/EACL2023_Tutorial_Dialogue_Summarization

• Designing, Evaluating, and Learning from Humans Interacting with NLP Models
• https://nlp-hci.github.io/tutorial/

Slides content credit to CS224N

https://web.stanford.edu/class/cs224n
https://www.cc.gatech.edu/classes/AY2021/cs7650_fall/
http://web.stanford.edu/class/cs329x/
https://github.com/diyiy/ACL2022_Limited_Data_Learning_Tutorial
https://github.com/zcgzcgzcg1/EACL2023_Tutorial_Dialogue_Summarization
https://nlp-hci.github.io/tutorial/
https://web.stanford.edu/class/cs224n/

Overview

• Part 1: Basics in NLP
• Introduction to NLP (10 mins)
• Different NLP tasks (10 mins)
• Word2vec (25 mins)
• Pretrained LLMs (15 mins)
• In-context learning (15 mins)

• Part 2: Advanced topics in NLP
• Parameter efficient fine-tuning for NLP models (40 mins)
• Learning from human feedback (40 mins)

3

What is Natural Language Processing?

• Applications
• Machine Translation
• Information Retrieval
• Question Answering
• Dialogue Systems
• Information Extraction
• Summarization
• Sentiment Analysis
• ...

• Core Technologies
• Language modeling
• Part-of-speech tagging
• Syntactic parsing
• Named-entity recognition
• Word sense disambiguation
• Semantic role labeling
• ...

4

NLP in the age of LLMs

5

Different levels of linguistic knowledge

6

• Speech, text
• Phonetics, phonology
• Morphology
• Lexemes
• Syntax
• Semantics
• Pragmatics
• Discourse

What are some NLP tasks?

7

• Classifying whole sentences: Getting the sentiment of a review, detecting if an email is
spam, determining if a sentence is grammatically correct or whether two sentences are
logically related or not

• Classifying each word in a sentence: Identifying the grammatical components of a
sentence (noun, verb, adjective), or the named entities (person, location, organization)

• Extracting an answer from a text: Given a question and a context, extracting the
answer to the question based on the information provided in the context

• Generating a new sentence from an input: Translating a text into another language,
summarizing a text

Text Classification

8

• NLU task, a label / a class is assigned to the entire text (sentence, paragraph, etc.)

 Huggingface: Text Classification

Text Classification: Natural Language Inference

9

• Determine the relation between two sentences — whether a "hypothesis" is true
(entailment), false (contradiction), or undetermined (neutral) given a "premise".

Input X: Raw text
P: A man playing an electric guitar on stage.
H: A man playing banjo on the floor.

Output Y: Entailment label
Contradiction

Input X: Raw text
P: A man playing an electric guitar on stage.
H: A man playing guitar on stage

Output Y: Entailment label
Entailment

Token Classification

10

• Understanding task in which a label is assigned to some tokens in a text.

Huggingface: Token Classification

Token Classification: Part of Speech (POS) tagging

11

• Mark each word as corresponding to a particular part of speech (noun, verb, etc.)

https://huggingface.co/AdapterHub/bert-base-uncased-pf-conll2003

Token Classification: Named Entity Recognition

12

• Identify specific entities in a text, such as dates, individuals and places.

• The BIO encoding (Ramshaw & Marcus 1995):
• B_X = “beginning” (first word of an X)
• I_X = “inside” (non-first word of an X)
• O = “outside” (not in any phrase)

My name is John Smith and I live in Berlin
O. O O B-PER I-PER O O O O B-LOC

Token Relation: Dependency Parsing

• Analyze the relation between tokens

I give a on neuraltalk tomorrowROOT ’ll networks

13

Token Relation: Coreference Resolution

• Finding all expressions that refer to the same entity in a text.

AllenNLP: Coreference Resolution

14

https://demo.allennlp.org/coreference-resolution

Token Relation: Open Information Extraction

• Open information extraction (open IE) refers to the extraction of relation tuples, typically
binary relations, from plain text, such as (Mark Zuckerberg; founded; Facebook).

Stanford Open Information Extraction
15

https://nlp.stanford.edu/software/openie.html

Token Relation: Semantic Parsing and Text to Code

• Semantic parsing converts a natural language utterance to a logical form.
• Text-to-code is a typical task for this, as the code has more syntax structure.

16

Sentence Similarity

• Natural language understanding task which determines how similar two texts are.

Huggingface: Sentence Similarity

17

Sentence Similarity

• Two steps: (1) convert input texts
into vectors (embeddings) that
capture semantic information, (2)
calculate how close (similar) they are
between them, e.g. cosine similarity

• Sentence similarity in use:
• Passage ranking: rank documents

based on their relevance to a given
query in search engines.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

18

Overview

• Part 1: Basics in NLP
üIntroduction to NLP (10 mins)
üDifferent NLP tasks (10 mins)
qWord2vec (25 mins)
qPretrained LLMs (15 mins)
qIn-context learning (15 mins)

19

How do we represent the meaning of a word?

20

Definition: meaning (Webster dictionary)
• the idea that is represented by a word, phrase, etc.
• the idea that a person wants to express by using words, signs, etc.
• the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) ⟺ signified (idea or thing)

= denotational semantics

tree ⟺ {🌳, 🌲, 🌴, …}
Slides from CS224n

How do we have usable meaning in a computer?

21

Previously commonest NLP solution: Use, e.g., WordNet, a thesaurus containing lists of
synonym sets and hypernyms (“is a” relationships)

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]

noun: good
noun: good, goodness
noun: good, goodness
noun: commodity, trade_good, good
adj: good
adj (sat): full, good
adj: good
adj (sat): estimable, good, honorable, respectable
adj (sat): beneficial, good
adj (sat): good
adj (sat): good, just, upright
…
adverb: well, good
adverb: thoroughly, soundly, good

e.g., synonym sets containing “good”: e.g., hypernyms of “panda”:
from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}
for synset in wn.synsets("good"):
 print("{}: {}".format(poses[synset.pos()],
 ", ".join([l.name() for l in synset.lemmas()])))

from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01")
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))

Slides from CS224n

Problems with resources like WordNet

22

• A useful resource but missing nuance:
• e.g., “proficient” is listed as a synonym for “good”

This is only correct in some contexts
• Also, WordNet list offensive synonyms in some synonym sets without any

coverage of the connotations or appropriateness of words
• Missing new meanings of words:
• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
• Impossible to keep up-to-date!

• Subjective
• Requires human labor to create and adapt
• Can’t be used to accurately compute word similarity (see following slides)

Slides from CS224n

Representing words as discrete symbols

23

In traditional NLP, we regard words as discrete symbols:
 hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Means one 1, the rest 0s

Slides from CS224n

Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match
documents containing “Seattle hotel”

But:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
 hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

These two vectors are orthogonal
There is no natural notion of similarity for one-hot vectors!

Solution:
• Could try to rely on WordNet’s list of synonyms to get similarity?
• But it is well-known to fail badly: incompleteness, etc.

• Instead: learn to encode similarity in the vectors themselves

Sec. 9.2.2

24
Slides from CS224n

Representing words by their context

25

• Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).

• We use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…
…saying that Europe needs unified banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

These context words will represent banking Slides from CS224n

Word vectors

26

We will build a dense vector for each word, chosen so that it is similar to vectors of words
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

banking =

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271

monetary =

0.413
0.582
−0.007
0.247
0.216
−0.718
0.147
0.051

Slides from CS224n

Word meaning as a neural word vector – visualization

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect =

27
Slides from CS224n

Word2vec: Overview

Word2vec is a framework for learning word vectors
(Mikolov et al. 2013)

Idea:
• We have a large corpus (“body”) of text: a long list of words
• Every word in a fixed vocabulary is represented by a vector
• Go through each position t in the text, which has a center

word c and context (“outside”) words o
• Use the similarity of the word vectors for c and o to calculate

the probability of o given c (or vice versa)
• Keep adjusting the word vectors to maximize this probability

28

Skip-gram model
(Mikolov et al. 2013)

Slides from CS224n

Word2Vec Overview

Example windows and process for computing	𝑃 𝑤!"#	|	𝑤!

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤!"#	|	𝑤!

𝑃 𝑤!"$	|	𝑤!

𝑃 𝑤!%#	|	𝑤!

𝑃 𝑤!%$	|	𝑤!

29
Slides from CS224n

Word2Vec Overview

Example windows and process for computing	𝑃 𝑤!"#	|	𝑤!

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤!"#	|	𝑤!

𝑃 𝑤!"$	|	𝑤!

𝑃 𝑤!%#	|	𝑤!

𝑃 𝑤!%$	|	𝑤!

30
Slides from CS224n

Word2vec: objective function

31

For each position 𝑡 = 1,… , 𝑇, predict context words within a window of fixed size m,
given center word 𝑤!. Data likelihood:

𝐿 𝜃 =-
!$%

&

-
'()#)(
#*+

𝑃 𝑤!"#	|	𝑤!; 𝜃

The objective function 𝐽 𝜃 	is the (average) negative log likelihood:

𝐽 𝜃 = −
1
𝑇
log 𝐿(𝜃) = −

1
𝑇
6
!$%

&

6
'()#)(
#*+

log 𝑃 𝑤!"#	|	𝑤!; 𝜃

Minimizing objective function ⟺ Maximizing predictive accuracy

Likelihood =

𝜃 is all variables
to be optimized

sometimes called a cost or loss function

Slides from CS224n

Word2vec: objective function

32

• We want to minimize the objective function:

𝐽 𝜃 = −
1
𝑇
+
!&#

'

+
%()*)(
*+,

log 𝑃 𝑤!"*	|	𝑤!; 𝜃

• Question: How to calculate 𝑃 𝑤!"#	|	𝑤!; 𝜃 ?
• Answer: We will use two vectors per word w:

• 𝑣- when w is a center word
• 𝑢- when w is a context word

• Then for a center word c and a context word o:

𝑃 𝑜 𝑐 =
exp(𝑢-&𝑣.)

∑/∈1 exp(𝑢/& 𝑣.)
Slides from CS224n

To train the model: Optimize value of parameters to minimize loss

33

To train a model, we gradually adjust parameters to minimize a loss

• Recall: 𝜃	represents all the
model parameters, in one
long vector

• In our case, with
d-dimensional vectors and
V-many words, we have à

• Remember: every word has
two vectors

• We optimize these parameters by walking down the gradient (see right figure)
• We compute all vector gradients!

Slides from CS224n

Optimization: Gradient Descent

• We have a cost function 𝐽 𝜃 we want to minimize
• Gradient Descent is an algorithm to minimize 𝐽 𝜃
• Idea: for current value of 𝜃, calculate gradient of 𝐽 𝜃 , then take small step in direction

of negative gradient. Repeat.

Note: Our
objectives
may not
be convex
like this L

But life turns
out to be
okay J

34
Slides from CS224n

• Update equation (in matrix notation):

• Update equation (for single parameter):

• Algorithm:

Gradient Descent

𝛼 = step size or learning rate

35
Slides from CS224n

Stochastic Gradient Descent

• Problem: 𝐽 𝜃 is a function of all windows in the corpus (potentially billions!)
• So is very expensive to compute

• You would wait a very long time before making a single update!

• Very bad idea for pretty much all neural nets!
• Solution: Stochastic gradient descent (SGD)
• Repeatedly sample windows, and update after each one

• Algorithm:

36

Mini Batch
Gradient Descent

Slides from CS224n

Word2vec algorithm family (Mikolov et al. 2013): More details

Two model variants:
1. Skip-grams (SG)

 Predict context (“outside”) words (position independent) given center word

2. Continuous Bag of Words (CBOW)
 Predict center word from (bag of) context words

We presented: Skip-gram model

Loss functions for training:
1. Naïve softmax (simple but expensive loss function, when many output classes)
2. More optimized variants like hierarchical softmax
3. Negative sampling

So far, we explained naïve softmax

37
Slides from CS224n

The skip-gram model with negative sampling

• The normalization term is computationally expensive (when many output classes):

• 𝑃 𝑜 𝑐 = !"#(%!"&#)
∑$∈& !"#(%$

" &#)

• Main idea: train binary logistic regressions to differentiate a true pair (center word and
a word in its context window) versus several “noise” pairs (the center word paired with
a random word)

38

A big sum over words

Slides from CS224n

The skip-gram model with negative sampling

39

• Introduced in: “Distributed Representations of Words and Phrases and their
Compositionality” (Mikolov et al. 2013)

• Overall objective function (they maximize):

• The logistic/sigmoid function:

• We maximize the probability of two words
co-occurring in first log and minimize probability
of noise words in second part

sigmoid
rather than softmax

Slides from CS224n

The skip-gram model with negative sampling

• Using prior notation:

𝐽234'56(783 𝒖-, 𝒗., 𝑈 = − 	log 𝜎 𝒖-&𝒗. − 6
9∈ :	56(783<	=2<=.35

log 𝜎 −𝒖9&𝒗. 	

• We take k negative samples (using word probabilities)
• Maximize probability that real outside word appears;

minimize probability that random words appear around center word

• Sample with P(w)=U(w)3/4/Z, the unigram distribution U(w) raised to the 3/4 power
(We provide this function in the starter code).

• The power makes less frequent words be sampled more often
40

𝜎 𝑥 =
1

1 + 𝑒!"

Slides from CS224n

Issues of Static Word Embeddings

41

• Typically ignores that one word can have different senses.

• Solution: contextualized word embedding
• Give words different embeddings based on the context of the

sentence (e.g. ELMo, BERT).

Overview

• Part 1: Basics in NLP
üIntroduction to NLP (10 mins)
üDifferent NLP tasks (10 mins)
üWord2vec (25 mins)
qPretrained LLMs (15 mins)
qIn-context learning (15 mins)

42

Language Modeling

43

• Input: sequence of words
• Output: probability of the next word

Language Modeling via Recurrent Neural Network

44

Language Modeling Evaluation

45

• Accuracy doesn’t make sense
• Predicting the next word is generally impossible so accuracy would be very low

• Evaluate LMs on the likelihood of held-out data
• Perplexity: lower is better

ELMO

46

Limitations of RNN LMs

• They can’t remember earlier words and can’t go back and forth

• Need pointing mechanisms to repeat recent words

• Transformers can help!

47

Recurrent models and attention

48

• Use attention to allow flexible access to memory

• Attention treats each word’s representation as a query to access and incorporate
information from a set of values.

• Instead of attention from the decoder to the encoder, Transformer operationalizes
attention within a single sentence.

Transformer with Multi-headed Attention

Benefits of Transformers:
• Capture long- and short-term dependencies
• Efficient backpropagation
• Parallelizable
• Allow deeper architectures
• Allow multimodality (image, speech, text …)

49
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017

Pre-training and Fine-tuning Paradigm

50https://jalammar.github.io/illustrated-bert/

51

Pretraining:
Train transformer-alike models on a large
dataset (e.g. books, or the entire web).

This step learns general structure and
meaning of the text (e.g. “good” is an
adjective), similar to word embedding;
the knowledge is reflected by the model
parameter (hence really large models).

https://jalammar.github.io/illustrated-bert/

52

Finetuning paradigm:
Fine-tune the model (i.e., overwrite
some parameter in the model) on a
smaller, task-specific dataset for tasks
such as sentiment analysis, or
machine translation.

This step learns information specific
to a task (“good” is positive), on top
of pretraining.

https://jalammar.github.io/illustrated-bert/

3 Types of Pre-training

53https://jalammar.github.io/illustrated-bert/

Decoder-Only Examples

54
https://jalammar.github.io/illustrated-gpt2/

Encoder-Only Examples

55

Encoder-Decoder Examples

56

• “Corrupted text reconstruction”

• Examples: BART (recover sentences), T5
(recover spans)

• Best for: (Can do both NLG and NLU)

Encoder-decoder Examples: T5

57

• During pre-training, T5 learns to fill in dropped-out spans of text

Encoder-decoder Examples: T5

58

• During pre-training, T5 learns to fill in dropped-out spans of text

Any caveats for fine-tuning?

59

• Fine-tuning is more data efficient than vanilla training, but still needs the training data
to be on the scale of ~10,000.

• Fine-tuning uses downstream task input-output to change the model (overwrite some
parameters). As a result, it also causes the model to “forget” some knowledge in the
original pre-trained model

Generations from “not very large” LMs are bad

60

Example credit to Tuo Zhao (Georgia Tech)

More is different: large language models

61

Example credit to Tuo Zhao (Georgia Tech)

Overview

• Part 1: Basics in NLP
üIntroduction to NLP (10 mins)
üDifferent NLP tasks (10 mins)
üWord2vec (25 mins)
üPretrained LLMs (15 mins)
qIn-context learning (15 mins)

62

GPT (117M parameters; Radford et al., 2018)
• Transformer decoder with 12 layers.
• Trained on BooksCorpus: over 7000 unique books (4.6GB text).

Showed that language modeling at scale can be an effective pretraining technique for
downstream tasks like natural language inference.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

Emergent abilities of large language models: GPT (2018)

63

entailment

Decoder

Slides from CS224n

Emergent abilities of large language models: GPT-2 (2019)

64

GPT-2 (1.5B parameters; Radford et al., 2019)
• Same architecture as GPT, just bigger (117M -> 1.5B)
• But trained on much more data: 4GB -> 40GB of internet text data (WebText)

• Scrape links posted on Reddit w/ at least 3 upvotes (rough proxy of human quality)

GPT
(2018)

GPT-2
(2019)

117M 1.5B

Slides from CS224n

One key emergent ability in GPT-2 is zero-shot learning: the ability to do many tasks with no
examples, and no gradient updates, by simply:

• Specifying the right sequence prediction problem (e.g. question answering):

Passage: Tom Brady... Q: Where was Tom Brady born? A: ...

• Comparing probabilities of sequences (e.g. Winograd Schema Challenge [Levesque, 2011]):

The cat couldn’t fit into the hat because it was too big.
Does it = the cat or the hat?

≡ Is P(...because the cat was too big) >=
 P(...because the hat was too big)?

Emergent zero-shot learning

65

[Radford et al., 2019]

Slides from CS224n

Emergent zero-shot learning

66

You can get interesting zero-shot behavior if you’re creative enough with how you specify
your task!
Summarization on CNN/DailyMail dataset [See et al., 2017]:

SAN FRANCISCO,
California (CNN) --
A magnitude 4.2
earthquake shook
the San Francisco
...
overturn unstable
objects.

2018 SoTA

Supervised (287K)

“Too Long, Didn’t Read”
“Prompting”?

 TL;DR: Select from article

ROUGE

GPT-2 beats SoTA on language modeling benchmarks with no task-specific fine-tuning

Slides from CS224n

Emergent abilities of large language models: GPT-3 (2020)

67

GPT-3 (175B parameters; Brown et al., 2020)
• Another increase in size (1.5B -> 175B)
• and data (40GB -> over 600GB)

117M 1.5B

GPT
(2018)

GPT-2
(2019)

GPT-3
(2020)

175B

Slides from CS224n

Emergent few-shot learning

68

[Brown et al., 2020]

• Specify a task by simply prepending examples of the task before your example
• Also called in-context learning, to stress that no gradient updates are performed when

learning a new task (there is a separate literature on few-shot learning with gradient updates)

Slides from CS224n

Emergent few-shot learning

69

Zero-shot

Slides from CS224n

Emergent few-shot learning

70

One-shot

Slides from CS224n

Emergent few-shot learning

71

Few-shot

Slides from CS224n

Few-shot learning is an emergent property of model scale

72

Synthetic “word unscrambling” tasks, 100-shot
Cycle letters:
pleap ->
apple

Random insertion:
a.p!p/l!e ->
apple

Reversed words:
elppa ->
apple

Slides from CS224n

Prompting

73

Traditional fine-tuning

Zero/few-shot prompting

[Brown et al., 2020]

Slides from CS224n

Limits of prompting for harder tasks?

Some tasks seem too hard for even large LMs to learn through prompting alone.
Especially tasks involving richer, multi-step reasoning.
(Humans struggle at these tasks too!)

 Solution: change the prompt!

74

19583 + 29534 = 49117
98394 + 49384 = 147778
29382 + 12347 = 41729
93847 + 39299 = ?

Slides from CS224n

Chain-of-thought prompting

75
[Wei et al., 2022; also see Nye et al., 2021]Slides from CS224n

Chain-of-thought prompting

76

Do we even need
examples of reasoning?
Can we just ask the model
to reason through things?

Slides from CS224n

There are 16
balls in total. Half of the balls are golf
balls. That means there are 8 golf balls.
Half of the golf balls are blue. That means
there are 4 blue golf balls.

A: Let’s think step by step.

Zero-shot chain-of-thought prompting

77

[Kojima et al., 2022]

Q: A juggler can juggle 16 balls. Half of
the balls are golf balls, and half of the golf
balls are blue. How many blue golf balls
are there?

Slides from CS224n

Zero-shot chain-of-thought prompting

78

[Kojima et al., 2022]

Manual CoT
still better

Greatly outperforms
zero-shot

Slides from CS224n

Zero-shot chain-of-thought prompting

79
[Zhou et al., 2022; Kojima et al., 2022]

LM-Designed

Slides from CS224n

The new dark art of “prompt engineering”?

Use Google code header to generate more “professional” code?

Asking a model for reasoning

On Second Thought, Let's Not Think Step by Step! Bias and
Toxicity in Zero-Shot Reasoning (Shaikh et al., 2023)

“Jailbreaking” LMs
https://twitter.com/goodside/status/1569128808308957185/photo/1

80
Slides from CS224n

Downside of prompt–based learning

82

1. Inefficiency: The prompt needs to be processed every time the model makes a
prediction.

2. Poor performance: Prompting generally performs worse than fine-tuning [Brown et
al., 2020].

3. Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], order of examples
[Zhao et al., 2021; Lu et al., 2022], etc.

4. Lack of clarity regarding what the model learns from the prompt. Even random labels
work [Zhang et al., 2022; Min et al., 2022]!

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2022.naacl-main.167/
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
https://aclanthology.org/2022.acl-long.556/
https://arxiv.org/abs/2202.12837
https://arxiv.org/pdf/2210.10693.pdf
https://arxiv.org/abs/2202.12837

Overview

• Part 1: Basics in NLP
üIntroduction to NLP (10 mins)
üDifferent NLP tasks (10 mins)
üWord2vec (25 mins)
üPretrained LLMs (15 mins)
üIn-context learning (15 mins)

• Part 2: Advanced topics in NLP
• Parameter efficient fine-tuning for NLP models (40 mins)
• Learning from human feedback (40 mins)

83

