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Outline: First Half

• What is Reinforcement Learning and when should I use it? 
• Finite Markov Decision Processes
• Dynamic Programming
• Monte Carlo Methods
• Temporal-Difference Learning
• Planning
• Deadly Triad
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Outline: Second Half

• Function Approximation: Model-free Methods
• DQN
• REINFORCE and Policy gradient
• Actor-Critic Methods

• Function Approximation: Model-based Methods
• Dyna
• MBPO
• PETS

• Advanced Topics
• Abstractions and Generalization
• Leveraging Structure in RL
• Self-supervised RL
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• http://incompleteideas.net/book/the
-book-2nd.html

• CS394R/ECE381V: Reinforcement 
Learning: Theory and Practice -- 

Spring 2024
https://www.cs.utexas.edu/~pstone/

Courses/394Rspring24/
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From a Supervised Learning Lens

cat

dog

What about sequential data?
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S"ll can be represented as a supervised learning problem

Desired 
action

Desired 
action

Desired 
ac"on

Desired 
action

What if we don’t know the best moves to take?

Learn via trial and error:
 Learn from a reward signal and try to maximize that reward
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Reinforcement Learning Framework

Assumption: Environment is a Markov Decision Process
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Goal of Reinforcement Learning

Maximize long-term reward: 

Agent

Environment

Action

State

Reward

Discount factor

Trajectory 
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Key Quantities

Maximal reward you can get starting from state 𝑠

Agent

Environment

Action

State

Reward

Maximal reward starting from 𝑠 after taking action 𝑎
Probability of taking action 𝑎 given state 𝑠
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Key Quantities

Reward you can get, starOng from 𝑠 following policy 𝜋

Agent

Environment

AcBon

State

Reward

Reward starting from 𝑠 after taking action 𝑎 and following 𝜋
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Iterative Policy Evaluation
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Dynamic Programming: Policy Improvement
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Policy Improvement Theorem

• If for all states

• Then for all states

• A guarantee in the tabular setting that updates will always lead to 
improved policies, until convergence at the optimal value function.

15



Policy Improvement Theorem Proof
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Takeaway

Policy improvement thus must give us a strictly better policy 
except when the original policy is already optimal. 
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Policy 
Iteration

Policy evaluation Policy improvement 18



Policy iteration drawbacks

• Convergence of policy evaluaOon can be expensive
• Maybe we don’t need to converge policy evaluaOon 

to find the opOmal policy

Convergence of iterative 
policy evaluation in a 
gridworld
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Value Iteration

• We can speed up the previous algorithm by truncating the policy 
evaluation step:
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Value Iteration
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Generalized Policy Iteration

• We use the term generalized policy iteration 
(GPI) to refer to the general idea of letting 
policy-evaluation and policy-improvement 
processes interact, independent of the 
granularity and other details of the two 
processes. 
• Almost all reinforcement learning methods are 

well described as GPI.
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Monte Carlo Methods

• Previous methods computed value functions using knowledge of the 
MDP
• Impractical assumption in most use cases

• How can we learn value functions from sample (Monte Carlo) returns 
instead?
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Policy Evaluation Setting
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Monte Carlo Control

where E denotes a complete policy evaluation and I 
denotes a complete policy improvement.
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Differences between DP and MC methods 

DP methods:
• Require environment dynamics p(s’, r | s, a)
• Difficult to acquire in practice

MC methods:
• Don’t need environment dynamics p(s’, r | s, a)
• Only need environment samples!
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Off-policy Prediction via Importance Sampling

• Simplest setting:  
• prediction problem
• Both target and behavior policies are fixed

• Required assumptions: 
• Coverage assumption: Every action taken under the target policy is also taken 

under the behavior policy.
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Off-policy Prediction via Importance Sampling

• Importance sampling: technique for estimating expected values under 
one distribution given samples from another.
• Probability of a state-action trajectory under any policy pi:

Relative probability of the trajectory under target and behavior policies
Dynamics cancel out 
- doesn’t depend on 
MDP! 30



Off-policy Prediction via Importance Sampling

Recall: wish to estimate expected returns under target policy, but only 
have returns under behavior policy. 

Computing this expectation in practice requires a scaling term
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Off-policy PredicMon via Importance Sampling

Recall: wish to estimate expected returns under target policy, but only 
have returns under behavior policy. 

Computing this expectation in practice requires a scaling term
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Trade-offs of on-policy vs. off-policy

• On-policy method are simpler

• Off-policy methods:
• Because the data is due to a different policy, off-policy methods are often of 

greater variance and are slower to converge. 

• More powerful and general. They include on-policy methods as the special 
case in which the target and behavior policies are the same. 
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Incremental Implementation of MC Prediction
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Off-policy Monte Carlo Control

Add a step of policy improvement
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Recap: MC vs. TD

• MC doesn’t need a (full) model
• Can learn from actual or simulated experience

• DP takes advantage of a full model
• Doesn’t need any experience

• MC expense independent of number of states
• No bootstrapping in MC
• Not harmed by Markov violations
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Policy Evaluation Setting
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Sarsa: On-policy TD control
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Q-learning: Off-policy TD Control
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N-step Bootstrapping

• Unifying MC and TD methods
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Previously: MC and TD

• Monte Carlo update:

• 1-step TD update:

• n-step TD update:
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N-step TD prediction

• The space of methods between Monte Carlo and TD. This gives us the 
following state-value learning algorithm:

• while the values of all other states remain unchanged: 
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The control problem: n-step Sarsa

• Let’s construct an on-policy TD control method. 
• Previously: Sarsa -> one-step Sarsa or Sarsa(0)

• We redefine n-step returns in terms of estimated action-values:

New update:

49



N-step tradeoffs

• More accurate, but fewer and slower updates.
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Bridging Methods

• n-step methods bridge TD and MC
• TD(0) −→ MC
• All online (model-free)

• Now we talk about bridging to DP 
(model-based)
• TD,MC −→ DP (e.g. VI)
• Also called learning vs. planning
• Model-based RL does both
• computational efficiency vs. sample 

efficiency
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Two Types of Planning

• Model-based learning
• e.g. Dyna

• Lookahead search
• e.g. Monte Carlo Tree Search (MCTS)
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Dyna: Integrated Planning, Acting, and 
Learning
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Tabular Dyna-Q
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Dyna 

• Downsides: uniform sampling is inefficient
• Planning can be much more efficient if simulated transitions and 

updates are focused on particular state–action pairs.
• Search might be usefully focused by working backward from goal 

states.
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Prioritized Sweeping
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Trajectory Sampling

• Two ways of distributing updates:
• Exhaustive sweeps over entire state or state-action space (e.g. dynamic 

programming)
• Sampling from a distribution 

• Uniformly (Dyna-Q)
• On-policy distribution (Trajectory sampling)
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Planning at Decision Time

• Previous methods all use planning at training time. 
• What about decision time planning?
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Heuristic Search

Sequence of one-step updates in a specific order (selective depth-first search).
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Rollout Algorithms

• Produce Monte Carlo estimates of action values only for each current 
state and for a given policy usually called the rollout policy.
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Monte Carlo Tree Search

62

• MCTS is a rollout algorithm
• enhanced by the addition of a means for accumulating value estimates 

obtained from the Monte Carlo simulations in order to successively direct 
simulations toward more highly-rewarding trajectories.

• Largely responsible for the improvement in computer Go from a weak 
amateur level in 2005 to a grandmaster level (6 dan or more) in 2015



Monte Carlo Tree Search
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Monte Carlo Tree Search
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Monte Carlo Tree Search
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Monte Carlo Tree Search
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What about function approximation?
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The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:

• Func:on approxima:on

• Bootstrapping

• Off-Policy training
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The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:

• Function approximation

• Bootstrapping

• Off-Policy training
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The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:

• Function approximation

• Bootstrapping

• Off-Policy training
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The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:

• Function approximation

• Bootstrapping

• Off-Policy training
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Off-policy semigradient methods

Stability of semigradient methods depends on on-policy distribution of updates.  Why?

• In tabular case, updaDng one state’s value leaves all others changed

Imagine only updating one state S over and over again (i.e. off-policy):

• With function approx + MC, multiple state values are updated, but V(S) is 
estimated independently of them via rewards only

• With function approx + TD (semigradient), multiple values are updated, which are 
then used to help estimate V(S) via bootstrapping, which are then updated again, 
which are then used to help estimates V(S)…

On-policy distribution forces state values to be “grounded” to something real
72



Examples of Off-policy Divergence
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Baird’s Counterexample
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Step size alpha=1
Discount factor gamma = 1
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Outline: First Half

• What is Reinforcement Learning and when should I use it? 
• Finite Markov Decision Processes
• Dynamic Programming
• Monte Carlo Methods
• Temporal-Difference Learning
• Planning
• Deadly Triad
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Coffee Break!
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Outline: First Half

• What is Reinforcement Learning and when should I use it? 
• Finite Markov Decision Processes
• Dynamic Programming
• Monte Carlo Methods
• Temporal-Difference Learning
• Planning
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Outline: Second Half

• Function Approximation: Model-free Methods
• DQN
• REINFORCE and Policy gradient
• Actor-Critic Methods

• Function Approximation: Model-based Methods
• Dyna
• MBPO
• PETS

• Advanced Topics
• Abstractions and Generalization
• Leveraging Structure in RL
• Self-supervised RL
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A Coarse Breakdown of Model-free Methods 

• Q-Learning

• Policy Gradient

• Actor-Critic
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Algorithm

As long as we can enumerate all possible states and actions

Tabular Q-learning

Value IteraOon

Iteratively table filling
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Deep Q-Network (DQN)

Q-learning

Parametric funcBon

now have generalization capability

How could you take the gradient w.r.t 𝜃 ?
Note that 𝜃 appears on both sides.

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]92



DQN

Q-learning

Old fixed parameters

Target networkFixing RHS and learn 𝜃 from LHS.

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]93



DQN

Q-learning (make the target even smoother)

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]

Temporal Difference (TD) Error

Smoothing factor
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DQN Results

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]

t-SNE embedding
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DQN Issue

• Exploding Q values
Q values

[Hado van Hasselt. Double Q-learning. NeurIPS 2010]
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DQN Issue

• Exploding Q values
• Fix: Double Q-Learning

Q values

[Hado van Hasselt. Double Q-learning. NeurIPS 2010]

• Use two Q networks instead of one
to reduce bias.
• One model get the optimal

action
• The other returns the Q value.
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DQN Tricks

• Prioritized Experience Replay

Replay Buffer

S, A, R, S’
S, A, R, S’
S, A, R, S’
S, A, R, S’

Uniform Standard replay

[Schaul et al. Prioritized Experience Replay. ICLR 2016]
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DQN Tricks

• Prioritized Experience Replay

Replay Buffer

S, A, R, S’
S, A, R, S’
S, A, R, S’
S, A, R, S’

Weighted Prioritized replay

Scoring mechanism: TD error
For vanilla DQN

For Double DQN

[Schaul et al. Priori"zed Experience Replay. ICLR 2016]
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DQN Tricks

• Dueling networks

[Wang et al. Dueling Network Architectures for Deep Reinforcement Learning. ICML 2016]

Standard Q-network
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DQN Tricks

• Dueling networks

[Wang et al. Dueling Network Architectures for Deep Reinforcement Learning. ICML 2016]

Dueling Q-network

Where A(s, a) := Q(s, a)� V (s)
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is the advantage function.
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DQN Tricks

• Multi-step learning (also known as n-step returns)

• Multi-step variant of DQN loss:
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DQN Tricks 

• Distributional reinforcement learning
• Model the value distribution rather than the expected value.

[Bellemare et al. A distribu"onal perspec"ve on reinforcement learning. ICML 2017]

Next state distribution under policy Discounting shrinks the distribution towards 0

The reward shifts it Projection step
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DQN Tricks 

• Noisy Nets: Noisy linear layers for exploration

[Fortunato et al. Noisy networks for explora"on. ICLR 2018]
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Rainbow DQN: Which tricks are most important?

[Rainbow: Combining Improvements in Deep Reinforcement Learning, Hessel et al, 2017]

Prioritized DQN

Distribu<onal DQN

Multi-step learning

Noisy Nets

Rainbow
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Downsides of Q-Learning  

• Danger of instability and divergence caused by the Deadly Triad:
1. Function approximation
2. Bootstrapping
3. Off-policy training 

Sutton & Barto. Reinforcement Learning: An Introduction.

Hence, the use of tricks to get things working with deep neural networks!
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Downsides of Q-Learning  

• Difficult to implement for conOnuous acOon spaces

How do we extract a policy from a Q funcOon?

s

Q(s, a1)

Q(s, a2)

Q(s, an)

…

argmax
a

Q(s, a)
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Policy Gradient

CumulaOve reward along a trajectory 𝜏

Trajectory 𝜏 

Probability of taking action 𝑎 given state 𝑠
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Policy Gradient

Trajectory 𝜏 
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Policy Gradient

Score funcBon

Trajectory 𝜏 
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Policy Gradient

Independent of 𝜃

Trajectory 𝜏 
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Policy Gradient

EsBmated by sampling

Trajectory 𝜏 
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REINFORCE

Actual reward obtained by rolling out from 
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REINFORCE
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REINFORCE

Actual reward obtained by rolling out from 

+

+
-

+Too many positive rewards.
We only want to pick the best of the best. 
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REINFORCE + baseline

Actual reward obtained by rolling out from 

+

+
-

+mean of all the rewards

Can be any function that only depends on state. 116



Off-Policy Policy Gradient

Off-policy Policy Gradient:

Importance sampling factor

Policy Gradient:

Pros: We could now use off-policy data!
Cons: the factor might explode, when 
we sample rare experience w.r.t. the behavior

Policy Gradient Theorem
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Issues with Policy Gradient

• If data are on-policy, then it learns quite fast. 

• Data need to be on-policy
• Massive real-time simulations needed!
• Low sample efficiency (you throw samples away immediately after using them)

• Reward estimation is not accurate
• Random rollout 
• Tail value is not accurate. 
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Actor-Critic Models
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Actor-CriMc Models

Use the value function as the baseline

Rollout return as a parametric function (critic)

Advantage funcDon

“Advantageous Actor-Critic”

Rollout to the end or not?
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Policy Gradient in practice

Use old and fixed parameters
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Trust Region Policy Optimization (TRPO)

max

s.t.

Take baby steps, make sure the approximation is not off.

Advantage also works here

[Schulman et al, Trust Region Policy Optimization]
123



Proximal Policy Optimization (PPO)

For negative advantage,
assume things will go very bad

For posi?ve advantage,
don’t be too op?mis?c

[Schulman et al, Proximal Policy Optimization Algorithms]

Dota 2
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Deterministic Policy Gradient (DPG)

[Determinis"c Policy Gradient Algorithms, D. Silver et al. ]

Q-function following policy 𝜇

Deterministic policy function (e.g., if action is continuous)

ObjecBve
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Deterministic Policy Gradient (DPG)

Taking Derivative w.r.t 𝜃:

Sample state from the distribution, s! ∼ 𝜌":

Scalar gradient at (s, a)

No need to take gradient w.r.t 𝜇
Because of deterministic policy
gradient theorem

126
[Determinis"c Policy Gradient Algorithms, D. Silver et al. ]



DDPG (Deep Deterministic Policy Gradient)

• Use deep networks to represent policy / Q.
• Generate trajectories with current policy + noise
• Since the policy is deterministic

• Save trajectories into replay buffer and sample from it (Off-policy!)
• Learn 𝑄! via DQN using target network
• Learn 𝜇 using the slide above.

[Continuous Control With Deep Reinforcement Learning, Lillicrap et al. ICLR 2016]
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Distributed DistribuMonal DeterminisMc Policy 
Gradients (D4PG)
• Distributional version of DDPG

1. Distributional critic
2. N-step returns
3. Multiple distributed parallel actors
4. Prioritized experience replay
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Twin Delayed DDPG (TD3)

[Addressing Function Approximation Error in Actor-Critic Methods, S Fujimoto et al, ICML 2018]

Clipped Double Q-learning (CDQ)
Two independent models 𝜽𝟏, 𝝍𝟏and 𝜽𝟐, 𝝍𝟐

Policy

Delayed update of Target and 
Policy Networks

Target Policy Smoothing
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Soft Actor-Critic (SAC)

ObjecOve:

Improve policy diversity

Quantities to Learn simultaneously:

Maximum entropy objective

130
[Soc Actor-Cri"c: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochas"c Actor, T. Haarnoja et al, ICML 2018]



Learning Value function

Match values with Q and policy

131
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]



Learning Q-function

DQN-like step. Look one step ahead!

Target:

132
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]



Learning Policy without Policy Gradient

Matching policy with the current Q-value using KL-divergence

Policy gradient is avoided so that it can work on off-policy data (replay buffer)

With deterministic action 𝑎& = 𝑓'(𝜖&; 𝑠&), things are simpler:

133
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]



SAC with AutomaMcally Adjusted Temperature
SAC is brittle with respect to the temperature parameter. Unfortunately it is 
difficult to adjust temperature, because the entropy can vary unpredictably 
both across tasks and during training as the policy becomes better.

134
[Soc Actor-Cri"c: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochas"c Actor, T. Haarnoja et al, ICML 2018]



TD3 components
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Function Approximation: 
Model-based Methods
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Model-Based Reinforcement Learning

Supervised learning problem!
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Dyna: IntegraMng Planning, AcMng, and 
Learning

Sutton & Barto. Introduction to Reinforcement Learning.
138



Model Type
a

s

µ
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Can capture aleatoric uncertainty 
– inherent noise in the system

a

s

µ
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Can capture epistemic uncertainty – 
uncertainty due to scarcity of data

Probabilistic model
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Model-Based Policy OpMmizaMon (MBPO)

Janner et al. When to Trust Your Model: Model-Based Policy Optimization. NeurIPS 2019.
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Probabilistic Ensembles with Trajectory 
Sampling (PETS)

Chua et al. Deep Reinforcement Learning in a Handful of 
Trials using Probabilistic Dynamics Models. NeurIPS 2018.141
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Model-Based RL with Latent Models

𝑠
𝑧

𝑎

𝑧′
𝑠’

Forward

Encoder Decoder

Latent space
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Deep Planning Network (PlaNet)

144hips://blog.research.google/2020/03/introducing-dreamer-scalable.html



Deep Planning Network (PlaNet)

Hafner et al. Learning Latent Dynamics for Planning from Pixels. ICML 2019.

(Like PETS)

Recurrent state-space model (RSSM) Latent overshooting for planning
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Dreamer

Hafner et al. DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION. ICLR 2020.146



Dreamer Results

147Hafner et al. DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION. ICLR 2020.



Outline: Second Half

• Function Approximation: Model-free Methods
• DQN
• REINFORCE and Policy gradient
• Actor-Critic Methods

• Function Approximation: Model-based Methods
• Dyna
• MBPO
• PETS

• Advanced Topics
• Abstractions and Generalization
• Leveraging Structure in RL
• Self-supervised RL
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Abstractions
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A realis)c addi)onal assump)on 

𝑆

𝑂

Emission mapping

Goal: Generalization to new observations where the underlying MDP is the same
Solution: Ignore irrelevant information
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Block MDPs

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)
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State Abstractions and Bisimulation
State abstractions have been studied as a way to distinguish relevant from irrelevant 
information in order to create a more compact representation for easier decision making and 
planning. 

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)
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BisimulaMon Metric
Learn a representation where L1 distance between any 
two states is their bisimilarity:

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)
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On-Policy Bisimulation Metrics

Let’s modify the previous definition to get rid of the max over actions:

Scalable methods for computing state similarity in deterministic Markov Decision Processes. P. Castro. AAAI 2020.
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GeneralizaMon to new observaMons and rewards

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)

155



GeneralizaMon to new observaMons

Walker Walk

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)
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Generalization

• Deep RL has had many successes

157



Pinpointing some failures
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Generalization

[C. Zhang et al. A Study on Overfitting in Deep Reinforcement Learning.]
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Why the discrepancy?

• Deep RL works really well in single task sejngs in simulaOon with 
millions of transiOons.

• Works less well in visually complex and natural sejngs – we don’t see 
the same generalizaOon performance we’re gejng in computer 
vision and NLP.
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Open Problems: Compositionality

Bark Simulator

ProcGen

Useful 
Assumptions?
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Factored MDP

• State space is made up of discrete variables:

X := {X 1,X 2, ...,X d}
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Relational MDP

Bou"lier, Reiter, & Price 2001
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Forms of Compositional Generalization

Figure from: Compositionality decomposed: how do neural networks generalize? Hupkes et al. 2020.
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Structure in Reinforcement Learning: A 
Survey and Open Problems
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Defining Generalization Types

166
[Kirk, AZ, et al. A Survey of Zero-shot Generalisation in Deep Reinforcement Learning.]



Evaluating Generalization

167
[Kirk, AZ, et al. A Survey of Zero-shot Generalisa"on in Deep Reinforcement Learning.]



Self-Supervised RL

• What is self-supervised RL?
• Assume no access to “labels” (reward)

• Why should we care?
• Pre-training and zero-shot/finetuning regime
• What can we do with unlabeled sequential data, and how will it help with 

downstream tasks?
• Hint: video generation models and LLMs!
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Ahmed
Touati

Yann Ollivier

LEARNING ONE REPRESENTATION 
TO OPTIMIZE ALL REWARDS



MOTIVATION

Task 1 Task 2

➤ You have an 
environment in which 
you can perform actions 
but no reward signal

➤ Such that as soon as 
I describe a reward 
function, you 
immediately know 
what to do to 
maximize your 
reward.

Task 3

➤ Your mission is to build 
a summary of the 
environment

Build fully controllable agents able to follow instructions 
such as “reach this state while avoiding that place” Slide Credit: Ahmed Touati



MAINRESULT
➤ Informal Theorem: There exists a representation of an environment 

on which we can directly read all optimal policies of all reward 
functions:

➤ It is learnable from reward-free interactions, off policy.

At test time, reward functions may be specified➤

➤ either explicitly (“reach this state”),

or as a function over states,

or by reward samples as in classical RL.

➤

➤

The forward-backward (FB) representation
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Slide Credit: Ahmed Touati



Slide Credit: Ahmed Touati



UNSUPERVISEDPHASE
➤ Theorem: If F and B optimize their training criterion perfectly, then 

the obtained policy is guaranteed to be optimal, whatever the reward.

Finite representation dimension = > approximate training = >  
approximate policies with controlled error.

➤

a
⇡z(s) = argmax F(s,a,z)>z

F(s,a,z)>B(s0) ⇡
1X

t=0

tц Pr(s t 0= s | s,a,πz)

➤

➤

Learn an occupancy model for many behaviours

“Model-based lite”: no synthesis of states or trajectories

Unsupervised training criterion: for all s, a, s’, z,

Slide Credit: Ahmed Toua"
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CONCLUSIONANDPERSPECTIVES
Take-home message:

There exists a learnable representation of an environment on which we can 
read all optimal policies of all reward functions (with arbitrary precision by increasing 
the dimension).

• IncorporaOng priors is possible (on rewards, relevant features)

• For a single, fixed environment.

• Long-range dependencies are captured well but local blurring of details in the
reward.

• Allows for zero-shot extracOon of the opOmal policy for any downstream 
reward funcOon.

Slide Credit: Ahmed Touati



Many research areas I did not cover 

• ExploraOon
• Offline sejng
• Arbitrary data
• Different learning signals
• Safety
• Interpretability
• Transfer
• Meta RL
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Outline: Second Half

• Function Approximation: Model-free Methods
• DQN
• REINFORCE and Policy gradient
• Actor-Critic Methods

• Function Approximation: Model-based Methods
• Dyna
• MBPO
• PETS

• Advanced Topics
• Abstractions and Generalization
• Leveraging Structure in RL
• Self-supervised RL
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