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Outline: First Half

* What is Reinforcement Learning and when should | use it?
* Finite Markov Decision Processes

* Dynamic Programming

* Monte Carlo Methods

* Temporal-Difference Learning

* Planning

* Deadly Triad



Outline: Second Half

* Function Approximation: Model-free Methods
 DQN
* REINFORCE and Policy gradient
e Actor-Critic Methods

* Function Approximation: Model-based Methods
* Dyna
* MBPO
* PETS

* Advanced Topics
* Abstractions and Generalization
* Leveraging Structure in RL
» Self-supervised RL
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From a Supervised Learning Lens
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What about sequential data?
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Still can be represented as a supervised learning problem
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What if we don’t know the best moves to take?

Learn via trial and error:
Learn from a reward signal and try to maximize that reward



Reinforcement Learning Framework

Assumption: Environment is a Markov Decision Process

e S is a set of states,

e A a set of actions,

Action Observation, e po(S) is the initial state distribution,

Reward

T'(st41|8t, at) is the probability of transitioning from state s; € S to s¢4+1 €
S after action a; € A,

R(7¢41|8¢,at) is the probability of receiving reward r¢4; € R after execut-
ing action a; while in state sy,

v € [0,1) is the discount factor.




Goal of Reinforcement Learning
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Key Quantities

State S

\ 4

Agent

Reward 7

Action

Environment |

V*(s

) Maximal reward you can get starting from state s
Q" (S, CL) Maximal reward starting from s after taking action a

W(a\s) Probability of taking action a given state s



Key Quantities

State S

\ 4

Agent

Reward 7

Environment

Y

Action

VT (S) Reward you can get, starting from s following policy

Q" (S, a) Reward starting from s after taking action a and following 7

10
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cf. Dynamic Programming

V(s)< E, {rm +y V(s )}
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R. 8. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating V =~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V' (s) arbitrarily, for s € 8, and V (terminal) to 0

Loop:
A+0
Loop for each s € 8:
v« V(s)
V(s) « Y mlals) >, . p(s',7]s,a) [r + vV (s)]
A + max(A,|v—V(s)|)
until A < 6

13



Dynamic Programming: Policy Improvement

vi(s) = meE[RtH + Y0 (Se41) | Se=s, Ar=a]
= mapr(s’, r|s,a) ['r + Y, (s’)] :

or

g«(s,a) = E[Rm +ymax g.(Si41,4) ( StZSaAt:a]

= Zp(s’,r|s,a) [r—l—'quxq*(s’,a’)],

s',r

14



Policy Improvement Theorem

e |f for all states

qr (s, (5)) 2 vr(s)

 Then for all states
Ve (8) > v (8).

* A guarantee in the tabular setting that updates will always lead to
improved policies, until convergence at the optimal value function.



Policy Improvement Theorem Proof

02(8) < ax(8,7(5))
= E[Rt+1 + Y0r(Se41) | Se=s, Ar=m"(s)]
= Ex[Rit1 + v0r(St41) | Se=$]
< Ex[Ris1 + ¥er(St41, 7 (St41)) | Se=5]
= Ex[R11 + YE[Riy2 + Y0 (St42)|St41, Aey1 =7 (Se41)] | Se=3]
=Ex[Ri+1 + YRtz + Y2 vr (Set2) | Sy =s]
< En|Riy1 + YRiq2 + Y Riv3 + 7 vr (Si43) | Sy=s]

< Enx[Rip1 4+ YRip2 + Y Reys + Y’ Rypa+ - | Sp=s]

= vn(8).
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Takeaway

n'(s) = argmaxgq,(s,a)
a

= argmaxE[R; 1 + Y0, (Si+1) | St=s, A =qa]

= argmapr(s’, r|s,a) [7' + ’Y’UW(S/)] )

/
s, T

v (8) = me]E[RtH + YV (St41) | Se=s, Ar=a]
= ma,pr(s',Hs,a)[r+'yv,r/(s')].

Policy improvement thus must give us a strictly better policy

except when the original policy is already optimal.
17



Policy Iteration (using iterative policy evaluation) for estimating 7 ~ m,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8; V(terminal) =0

2. Policy Evaluation
Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(5) & Xy 08", 7] 5,7(5)) [r + 4V ()]

POl IC A < max(A, jv — V(s)])
until A < 6 (a small positive number determining the accuracy of estimation)

. 3. Policy Improvement
| te rat I O n policy-stable < true
For each s € 8:
old-action < m(s)
m(s) « argmax, Y., .p(s',7|s,a)[r + YV (s')]
If old-action # w(s), then policy-stable < false
If policy-stable, then stop and return V = v, and 7w = 74; else go to 2

E I E I I E
T — Upy — M1 — Uppy > o > .. > Ty — Vs

Policy evaluation Policy improvement 18



Policy iteration drawbacks

* Convergence of policy evaluation can be expensive

* Maybe we don’t need to converge policy evaluation
to find the optimal policy

Convergence of iterative
policy evaluation in a
gridworld

Vg, for the greedy policy
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Value Iteration

* We can speed up the previous algorithm by truncating the policy
evaluation step:

Uk+1(8) = mC?XE[RtH +Y0k(St41) | St=s, Ar=a]

= max ) p(s',rls,a) |+ you(s)]

LA

20



Value Iteration

Value Iteration, for estimating m ~ 7,

Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V (s), for all s € 87, arbitrarily except that V (terminal) =0

Loop:

| A+0

| Loop for each s € 8:

| v+ V(s)

| V(s) < maxq Y, . p(s',7]s,a)[r + 4V (s')]
| A + max(A,|v—V(s)|)

until A < 6

Output a deterministic policy, m ~ m,, such that
7(s) = argmax, Es,,rp(sl, r|s,a) [r -+ ’}'V(sl)]

21



Generalized Policy Iteration

* We use the term generalized policy iteration
(GPI) to refer to the general idea of letting
policy-evaluation and policy-improvement
processes interact, independent of the
granularity and other details of the two
processes.

e Almost all reinforcement learning methods are
well described as GPI.

evaluation

m

s

7 ~ greedy (V)

v

improvement

>’U*
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Monte Carlo Methods

* Previous methods computed value functions using knowledge of the
MDP

* Impractical assumption in most use cases

 How can we learn value functions from sample (Monte Carlo) returns
instead?



Simple Monte Carlo

V(s)< V(s) +a[R,-V(s,)]

where R is the actual return following state s, .

R. 8. Sutton and 4. G. Barto: Reinforcement Learning: An Introduction

25



Policy Evaluation Setting

First-visit MC prediction, for estimating V ~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following m: So, Ao, R1, 51, A1, R2,...,S7—1,Ar—1, Rr
G+ 0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G +—vG + Riya
Unless S; appears in Sy, S1,...,S:—1:
Append G to Returns(St)
V(St) < average(Returns(St))

26



Monte Carlo Control

where E denotes a complete policy evaluation and |
denotes a complete policy improvement. evaluation

Q~ ar
W/\Q

7 ~ greedy(Q)

improvement

E I E I E I E
o EQTF() }7'(-1 >q7'l'1 >7r2 > e _>7T* —)q*,



Differences between DP and MC methods

DP methods:
* Require environment dynamics p(s’, r | s, a)
* Difficult to acquire in practice

MC methods:
* Don’t need environment dynamics p(s’, r | s, a)
* Only need environment samples!



Off-policy Prediction via Importance Sampling

* Simplest setting:
 prediction problem
* Both target and behavior policies are fixed

* Required assumptions:

» Coverage assumption: Every action taken under the target policy is also taken
under the behavior policy.



Off-policy Prediction via Importance Sampling

* Importance sampling: technique for estimating expected values under
one distribution given samples from another.
* Probability of a state-action trajectory under any policy pi:
PI‘{At,St-{-l, At-l'-la ceey ST | Sta At:T—l sl ﬂ-}
= 7(A¢|St)p (St+1|St1At)7r(At+1|St+l) - p(S7|Sr-1, A1)

T-1
H (Ak|Sk)P(Sk+1]Sk, Ar),

Relative probability of the trajectory under target and behavior policies

HZ tl (Ak|Sk)p(Sk+1 |Sk, Ak) g Il AHS};) Dynamics cancel out
b(

T - doesn’t depend on
| iy b(Ak|Sk)P(Sks1|Sk, Ak) o b(AklSk)  yoe

PeT— 1—



Off-policy Prediction via Importance Sampling

Recall: wish to estimate expected returns under target policy, but only
have returns under behavior policy.

- [T ™(Ax|Sk)P(Sk11 Sk, Ar) _
[152) b(AkISE)P(Sks1 | Sk, Ax) i b(Ak|Sk)

T-1

Pt:T—1

Elpt.7-1Gt | St] = v (S)
Computing this expectation in practice requires a scaling term

- Ztev(s) pe.1(t)-1Gt
[T(s)

V(s) :
|
¥~ Number of steps

31

Ordinary importance sampling



Off-policy Prediction via Importance Sampling

Recall: wish to estimate expected returns under target policy, but only
have returns under behavior poIicy

7 (Ag|Sk)
- b (Ag|Sk)

Pt:T—-1 =

E[pt:T—lct | St] = Uﬂ(St)

Computing this expectation in practice requires a scaling term

Zte‘]‘ ) Pt:T(t)— 1G

V(s) =
Zte‘I( ) Pt:T(t)—1

Weighted importance sampling 32



Trade-offs of on-policy vs. off-policy

* On-policy method are simpler

* Off-policy methods:

* Because the data is due to a different policy, off-policy methods are often of
greater variance and are slower to converge.

* More powerful and general. They include on-policy methods as the special
case in which the target and behavior policies are the same.



Incremental Implementation of MC Prediction

Off-policy MC prediction (policy evaluation) for estimating Q ~ ¢,

Input: an arbitrary target policy w

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) « 0

Loop forever (for each episode):

b < any policy with coverage of 7

Generate an episode following b: Sy, Ag, R1,...,S7_1,Ar_1, Ry

G+0

W1

Loop for each step of episode, t =T—-1,T-2,...,0:
G ’)’G + Rt+1
C(S:, At) «+ C(St, Ay) + W
Q(Si, Ar) + Q(St, A) + iy G — Q(S1, Av)
W Wiigtsy
If W = 0 then exit For loop

34



Off-policy Monte Carlo Control

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) « 0

m(s) «— argmax, Q(s,a) (with ties broken consistently)

Loop forever (for each episode):
b < any soft policy
Generate an episode using b: So, Ao, R1,...,Sr7—1,Ar—1,Rr
G+ 0
W1
Loop for each step of episode, t =T—-1,T7—-2,...,0:
G + YG + R+
C(S:, Ay) «+ C(St, A) + W
Q(St, Ar) = Q(St, Ar) + gr5i Ay [G — Q(St, Av)]
w(St) < argmax, Q(St,a) (with ties broken consistently)
If A; # m(S:) then exit For loop

1
W Wiaiso

Add a step of policy improvement

35



Recap: MCvs. TD

* MC doesn’t need a (full) model
e Can learn from actual or simulated experience

* DP takes advantage of a full model
* Doesn’t need any experience
* MC expense independent of number of states

* No bootstrapping in MC
* Not harmed by Markov violations
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TD Prediction

Policy Evaluation (the prediction problem):
for a given policy , compute the state-value function V*

Recall:  Simple every - visit Monte Carlo method :
V(s,) < V(s,) +a[R - V(s,)]

target: the actual return after time ¢

The simplest TD method, TD(0):
V(s) < V(s) +alr,, +7V(s,)- V(s)]
| I

target: an estimate of the return

R. 8. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 38



Simplest TD Method

V(s,) < V(s,) +a|r, +yV(s,.,) - V(s)]

R. 8. Sutton and &. G. Barto: Reinforcement Learning: An Introduction 39



TD methods bootstrap and sample

[ABootstrapping: update involves an estimate
= MC does not bootstrap
= DP bootstraps
« TD bootstraps

[ASampling: update does not involve an
expected value

« MC samples
= DP does not sample
« TD samples

R. 8. Sutton and &. G. Barto: Reinforcement Learning: An Introduction

40



Policy Evaluation Setting

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S)«< V(S + a[R +4V(S") — V(S)]
S+ S

until S is terminal

41



Advantages of TD Learning

T TD methods do not require a model of the environment,
only experience

T TD, but not MC, methods can be fully incremental
= You can learn before knowing the final outcome
— Less memory
— Less peak computation
= You can learn without the final outcome
— From incomplete sequences

1 Both MC and TD converge (under certain assumptions to
be detailed later), but which is faster?

42
R. 8. Sutton and &. G. Barto: Reinforcement Learning: An Introduction



Sarsa: On-policy TD control

Sarsa (on-policy TD control) for estimating Q = q.

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s, a), for all s € 81, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) < Q(S,4) + a[R+~Q(S', A) — Q(S, A)]
S+ S A A

until S is terminal

43



Q-learning: Off-policy TD Control

Q-learning (off-policy TD control) for estimating 7w ~ .,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) « Q(S, 4) + a[R + ymax, Q(S', a) - Q(S, A)]
S« S

until S is terminal

44
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N-step Bootstrapping

* Unifying MC and TD methods

Dynamic
programming

Exhaustive

46



Previously: MC and TD

* Monte Carlo update:
Gt = Rir1 +YRiv2 + ¥V’ Riys+ - +97 " 'Ry

e 1-step TD update:
Gii41 = Rip1 +7Ve(Ses1)

* n-step TD update:
Git4n = Riy1 +YRip2 + -+ + 7" 'Rign + 7" Vign—1(St4n)

47



N-step TD prediction

* The space of methods between Monte Carlo and TD. This gives us the
following state-value learning algorithm:

‘/t—i-n(St) = ‘/t—}—n—l(St) T O‘[Gt:t—l—n - ‘/t-i-n—l(St)]a 0 <t< T:

* while the values of all other states remain unchanged:

Viin(s) = Vizn—1(s), for all s#S;



The control problem: n-step Sarsa

e Let’s construct an on-policy TD control method.
* Previously: Sarsa -> one-step Sarsa or Sarsa(0)

Q(St, Ar)  Q(Sis Ar) + | Ruys +7Q(Siv1, Avs1) — Q(Si, A0)]

* We redefine n-step returns in terms of estimated action-values:

Git4n = Riy1 +YRij2+ -+ + ")"n_lRt—n + Y Qt+n-1(St4n, At4n), n21,0<t<T —n

New update:

Qt4+n (St At) = Qryn—1(St, At) + @ [Grityn — Qt4n—1(St, At)]

49



N-step tradeoffs

* More accurate, but fewer and slower updates.

0.55
0.5

Average 045
RMS error
over 19 states 04
and first 10
episodes

0.25

Figure 7.2: Performance of n-step TD methods as a function of «, for various values of n, on

a 19-state random walk task (Example 7.1).

50
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Bridging Methods

* n-step methods bridge TD and MC

« TD(0) -=> MC
* All online (model-free)
* Now we talk about bridging to DP
(model-based)
 TD,MC--> DP (e.g. VI)

 Also called learning vs. planning
* Model-based RL does both

* computational efficiency vs. sample
efficiency

width

of update I D
Temporal- ynamic
difference /0\ programming
learning O

ROO O

depth
(length)
of update

,/O\ Exhaustive

search

Monte
Carlo . .
:’ "

l"ll".

i
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Two Types of Planning

* Model-based learning
* e.g. Dyna

* Lookahead search
* e.g. Monte Carlo Tree Search (MCTS)



Dyna: Integrated Planning, Acting, and
Learning

value/policy
acting
planning direct
RL
model experience
model

learning

54



Tabular Dyna-Q

Loop forever:
1. Select a state, S € 8, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S":
Q(S,A) + Q(S,A) + a[R + ymax, Q(5’,a) — Q(S, A)]

"

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, 4) + Q(S, A) + a[R + ymax, Q(S’,a) — Q(S, A)]
(e) Model(S,A) + R, S’ (assuming deterministic environment)
(f) Loop repeat n times:
S < random previously observed state
A + random action previously taken in S
R,S’ + Model(S, A)
Q(S, 4) + Q(S, A) + a[R +ymax, Q(S’,a) — Q(S, A)] 55




Dyna

* Downsides: uniform sampling is inefficient

* Planning can be much more efficient if simulated transitions and
updates are focused on particular state—action pairs.

* Search might be usefully focused by working backward from goal
states.



Prioritized Sweeping

Prioritized sweeping for a deterministic environment

Initialize Q(s,a), Model(s,a), for all s,a, and PQueue to empty
Loop forever:
(a) S « current (nonterminal) state
(b) A + policy(S,Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Model(S,A) «+ R, S’
(e) P« |R+ ymax, Q(S’,a) — Q(S, A)|.
(f) if P > 0, then insert S, A into PQueue with priority P
(g) Loop repeat n times, while PQueue is not empty:
S, A + first(PQueue)
R,S’ < Model(S, A)
Q(S,4) « Q(S,4) + a[R + ymax, Q(S’,a) — Q(S, A)]
Loop for all S, A predicted to lead to S:
R « predicted reward for S, A, S
P+ |R +ymax, Q(S,a) — Q(S, A)|.

if P > 6 then insert S, A into PQueue with priority P

Updates
until
optimal
solution

107 4

100 1

105 —

104_

103

102

10

Dyna-Q

Prioritized
sweeping

0

I I I I I I I 1
47 94 186 376 752 1504 3008 6016

Gridworld size (#states)
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Trajectory Sampling

* Two ways of distributing updates:
* Exhaustive sweeps over entire state or state-action space (e.g. dynamic
programming)
e Sampling from a distribution

* Uniformly (Dyna-Q)
* On-policy distribution (Trajectory sampling)

on-policy
on-policy b=1
34 b:1
3
1,000 STATES
10,000 STATES
Value of 2 Value of
start state start ;tate 2
under
under b=3 i e
greedy greeay
policy 1 policy
on-policy
0 0 T T T 1
0 5 (;00 IO.IOOO 15 l0()0 20. Z)OO 0 50,000 100,000 150,000 200,000 5 8
Computation time, in expected updates

Computation time, in expected updates



Planning at Decision Time

* Previous methods all use planning at training time.
* What about decision time planning?



Heuristic Search

Sequence of one-step updates in a specific order (selective depth-first search).

60



Rollout Algorithms

* Produce Monte Carlo estimates of action values only for each current
state and for a given policy usually called the rollout policy.

] /s ~
’ \ | / \ ! - 61



Monte Carlo Tree Search

* MCTS is a rollout algorithm

* enhanced by the addition of a means for accumulating value estimates
obtained from the Monte Carlo simulations in order to successively direct
simulations toward more highly-rewarding trajectories.

* Largely responsible for the improvement in computer Go from a weak
amateur level in 2005 to a grandmaster level (6 dan or more) in 2015



Monte Carlo Tree Search

L» Selection

£

"




Monte Carlo Tree Search

Repeat while ti

L>Se|ection ——— Expansion

AR

2

Tree
Policy

64



Monte Carlo Tree Search

Repeat while time remal
L>Se|ect|on —— Expansion —— Simulation

/«/?\/Q

A

Tree Rollout
Policy Policy
|

X

65



Monte Carlo Tree Search

while time remains

: Repeat )
L»Selection — Expansion — Simulation —— Backup




What about function approximation?



The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:
e Function approximation
e Bootstrapping

« Off-Policy training

68



The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:
e Function approximation
e Bootstrapping

o Off-Policy training

69



The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:
e Function approximation
e Bootstrapping

« Off-Policy training

70



The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:
e Function approximation
e Bootstrapping

o Off-Policy training

71



Off-policy semigradient methods @—*@

Imagine only updating one state S over and over again (i.e. off-policy):

. In tabular case, updating one state’s value leaves all others changed

. With function approx + MC, multiple state values are updated, but V(S) is
estimated independently of them via rewards only

. With function approx + TD (semigradient), multiple values are updated, which are
then used to help estimate V(S) via bootstrapping, which are then updated again,
which are then used to help estimates V(S)...



Examples of Off-policy Divergence
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Baird’s Counterexample

-
’

W i W e e s

. : H
‘/ w(solid|-) =1

~

O

T

p(dashed|-) = 6/7
u(solid|-) = 1/7
v =0.99

Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov process is of the
form shown by the linear expressions inside each state. The solid action usually results in the seventh state,

and the dashed action usually results in one of the other six states, each with equal probability. The reward is
always zero.
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Outline: First Half

* What is Reinforcement Learning and when should | use it?
* Finite Markov Decision Processes

* Dynamic Programming

* Monte Carlo Methods

* Temporal-Difference Learning

* Planning

* Deadly Triad






Outline: First Half

* What is Reinforcement Learning and when should | use it?
* Finite Markov Decision Processes

* Dynamic Programming

* Monte Carlo Methods

* Temporal-Difference Learning

* Planning



Outline: Second Half

* Function Approximation: Model-free Methods
 DQN
* REINFORCE and Policy gradient
e Actor-Critic Methods

* Function Approximation: Model-based Methods
* Dyna
* MBPO
* PETS

* Advanced Topics
* Abstractions and Generalization
* Leveraging Structure in RL
» Self-supervised RL
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A Coarse Breakdown of Model-free Methods

» Q-Learning Q (s,a)=r(s,a)+ 7y max @(s’(s, a),a’)

* Policy Gradient J(H) — ETNpG(T) [7“(7')]

e Actor-Critic



Algo rlthm lteratively table filling

Tabular Q-learning

Q™ (s,a) < r(s,a) +ymax Q"7 (s'(s, a),a")

Value Iteration

V(”)(S) — maxr(s,a) + ’)/V(n_l)(S/(S, a))

As long as we can enumerate all possible states and actions



Deep Q‘NetWO rk (DQN) Parametric function

Q-learning

Qo(s¢,as) < 1(5¢,at) + ’YHZS}X Qo(5¢11,0")

Convolution Convolution Fully connected
- v v

_n
c
<
8
A
5
@
Q
2
@
Q

i B/ i)
QQ (S, CL) now have generalization capability =2 e

>

“—) 1 (z
: NG AMNEL:
O &

How could you take the gradient w.r.t 6 ?
Note that 8 appears on both sides.

(]
DEU!IDDDD
D/
.\\
L B
© AN IR Jue Vv N
~ + I+ 0+ 00+ 1+
@) (@] (] [¢] (€] (] (©]

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]



DQN
Q-learning

Qo(st,at) < 1(8¢,a¢) + 7 ax Q‘H’(St-l-l? a')

Old fixed parameters

Fixing RHS and learn 8 from LHS.

Target network

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]



DQN

Q-learning (make the target even smoother)

Smoothing factor

Qo (st at) < (1 — a)Qo(st,ar) + e! r(se, at) + W’mﬁx Qo (5141,a")

AQ@(Sta at) X T(Su Clt) - Y max QG’(St—Ha CL,) - QG(Sta at)
I a |

Temporal Difference (TD) Error )

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]



DQN Results

Video Pinball
Boxing -
Breakout o

Star Gunner
Robotank

Atlantis Asterix | 6% —
Crazy Climber Battle Zone _| 673l —
Gopher Wizard of Wor | 675l ——
. De";ﬁ_" "g‘a‘:k Chopper Command | G5l —
ame This Game E
Krul Centipede | 2% ——
Assault Bank Heist | St
Road Runner River Raid _| 7l
Kangaroo Zaxxon | sa%ll—
James Bond Amidar | 45—
Tennis Alien | @2~
Pong g
Space Invaders Venture |l .
Seacuest | -2 t-SNE embedding
Tutankham Double Dunk _| g
Kung-Fu Master Bowling | B1e%
Freeway Ms. Pac-Man | JJ-13%
Theme Asteroids |-7%
Fishing Derby Frostbite il L 6%
Up and Down Gravitar _|Fs% m
Ice Hockey Private Eye |}2% =
Qbert Montezuma's Revenge || 0%

H.ER.O. At human-level or above

T T T T T T
100 200 300 400 500 600

100 * (DQN score - random play score)/ (human score - random play score)
[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]
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DQN Issue

Q values |

* Exploding Q values

Q*(s,a) = r(s,a) +ymaxQ*(s'(s,a),a’)

a

96
[Hado van Hasselt. Double Q-learning. NeurlPS 2010]



DQN Issue

Qvalues .|

* Exploding Q values
* Fix: Double Q-Learning ="

20200

Algorithm 1 Double Q-learning
1: Initialize Q4,Q%,s

2: repeat o i
3:  Choose a, based on Q“(s,-) and Q5 (s, -), observe r, s’ Use two Q I:]EtWOFkS instead of one
4:  Choose (e.g. random) either UPDATE(A) or UPDATE(B) to reduce bias.
5: if UPDATE(A) then * One model get the optimal
6: Define a* = argmax, Q“(s’, a) ti
7 QA(s,a) « QA(s,a) + als,a) (r +7QB(s',a%) — QA(s, a)) action
8: else if UPDATE(B) then * The other returns the Q value.
9: Define b* = arg max, QZ(s’, a)
10: QP (s,a) QP (s,a) + afs, a)(r +vQ4(s',0%) — QF(s,))
11:  endif
12: s+« &

13: until end

97
[Hado van Hasselt. Double Q-learning. NeurlPS 2010]



DQN Tricks

* Prioritized Experience Replay

Uniform Standard replay

=)

Replay Buffer

98
[Schaul et al. Prioritized Experience Replay. ICLR 2016]



DQN Tricks

* Prioritized Experience Replay

Prioritized replay

Weighted
Replay Buffer ‘ P(i) = ;'
>k D%
0; =7+ ')’majc Qy (8t11,a) — Qo(st,ar) For vanilla DQN
ac

Scoring mechanism: TD error
i =1t +¥Qy- (St11,argmax,. 4 Qo(ss+1,a)) — Qo(st, ar)
For Double DQN

99
[Schaul et al. Prioritized Experience Replay. ICLR 2016]



DQN Tricks

* Dueling networks

Standard Q-network

/
17

o

174

100
[Wang et al. Dueling Network Architectures for Deep Reinforcement Learning. ICML 2016]



DQN Tricks

* Dueling networks

P—
==
Q(s,a) =V (s)+ A(s,a)

Where A(S, a,) = Q(S, a,) — V(S) is the advantage function.

101
[Wang et al. Dueling Network Architectures for Deep Reinforcement Learning. ICML 2016]

Dueling Q-network




DQN Tricks

* Multi-step learning (also known as n-step returns)

e Multi-step variant of DQN loss:

(B + 7" max g(Sin, ') = a6(St, Ar))?



DQN Tricks

* Distributional reinforcement learning
* Model the value distribution rather than the expected value.

Next state distribution under policy Discounting shrinks the distribution towards 0

P ~P"Z

A
i ‘

R+~P™ OT"Z
(©) (@

The reward shifts it Projection step

103
[Bellemare et al. A distributional perspective on reinforcement learning. ICML 2017]



DQN Tricks

* Noisy Nets: Noisy linear layers for exploration

y=wzx +b

| b
(e%,e”)

w=u"+c"ee" /
b=p’+o’@e"

T

xZ

104
[Fortunato et al. Noisy networks for exploration. ICLR 2018]



Rainbow DQN: Which tricks are most important?

Rainbow
DQN
— no double
Prioritized DON — no priority
200%}- " 1o mutt step
. . . no distribution
Distributional DQN o | — nonoisy e
é == Rainbow et \ \
Multi-step learning g
Noisy Nets %100/‘"
=

[Rainbow: Combining Improvements in Deep Reinforcement Learning, Hessel e%ogll, 2017]



Downsides of Q-Learning

* Danger of instability and divergence caused by the Deadly Triad:
1. Function approximation
2. Bootstrapping
3. Off-policy training

Hence, the use of tricks to get things working with deep neural networks!

Sutton & Barto. Reinforcement Learning: An Introduction.



Downsides of Q-Learning

e Difficult to implement for continuous action spaces

How do we extract a policy from a Q function?

%ﬁ% N B argmax((s,a)

m~

107



Policy Gradient

Tt Tt+1 T't4+2
at , at41 , at4-2 .
St Jét+1 /: ‘St—|—2 —/. *e — Trajectory’l'

J(0) = Erpp(r) [r(7)]

o (CL|S) Probability of taking action a given state s

7“(7') Cumulative reward along a trajectory T

108



Policy Gradient

Tt T't11 I't4-2

at , at41 , at4-2 .
St Jét+1 /: ‘St—|—2 —Z..C . TrajectoryT

J(0) = Erpy(r) [r(7)]

VoJ(0) = /V@W@(T)T(T)dT = /W@(T)VQ log g (7)r(7)dT

= B oy Ve logmg(T)r(7)]



Policy Gradient

Tt T't4+1 T't+2
at , at41 , at4-2 .
St Jét+1 /: ‘St—|—2 —Z. *e —> Trajectory’l'

J(0) = Erpp(r) [r(7)]

VoJ(0) = Ermpy(r) [7(T) Vo log po(T)]

Score function

110



Policy Gradient

Tt Tt+1 T't4+2
at , at41 , at4-2 .
St Jét+1 /: ‘St—|—2 —/. *e — TraJectoryT

Vo (0) =E pyr) [1(T) Ve log pe (7))

logpg( ) logp 31 ZIOgWG at’3t Zlogp(stﬂ\st,at)
t=1

Independent of 6 t



Policy Gradient

Tt Tt+1 T't4+2
at , at41 , at4-2 .
St Jét+1 /: ‘St—|—2 —/. *e — Trajectory’l'

T
Vo (0) =Erpyr) [7(7) Y Vologma(als:)

t=1
Estimated by sampling 7; ~ mg(als)
1 N T o
Vo (0) = > r(m))  Velogmg(ay|s;)

1=1 t=1 112



REINFORCE

T(T) Actual reward obtained by rolling out from S

\/ ot )

mo(als )A
S\; ; To, 7(T2)
— ()

e

N
1
VoJ(0) =~ Z [frz Vo log 7T9(at|8t)
: =

113



REINFORCE

1. Initialize the policy parameter 8 at random.
2. Generate one trajectory on policy 7y: S1,A1, R, 82, A, ..., ST.
3.Fort=l, 2, .., T:

1. Estimate the the return Gy;

2. Update policy parameters: 8 < 0 + ay'G,Vy In ny(A;|S;)

114



REINFORCE

T(T) Actual reward obtained by rolling out from S

T1,7(T1) +

/
S ool ~— (12) +
> > T2,T\T2
N

B

Too many positive rewards.

We only want to pick the best of the best. T4,T (7-4) +

115



REINFORCE + baseline

T(T) Actual reward obtained by rolling out from S
T,7(T1) + — b

/
779(@|3)/v\
S — > ’7'2,7“(7'2) + — b
§ — () - b

B

\/\7'4,7“(7'4) + — b

b mean of all the rewards

Can be any function that only depends on state. 116



Off-Policy Policy Gradient

Policy Gradient: Policy Gradient Theorem

VQJ(H) — ]Ext,atNﬂ- [V@ 10g Wg(at\xt)Q”(xt, CLt)]

Off-policy Policy Gradient:

VoJ(0) = Ey, a,~8 lptVeologme(as|x) Q™ (x4, ar))

7T(at ’3t) Pros: We could now use off-policy data!
Ot Importance sampling factor Cons: the factor might explode, when
6(at|8t) we sample rare experience w.r.t. the behavior




Issues with Policy Gradient
* |f data are on-policy, then it learns quite fast.

* Data need to be on-policy

* Massive real-time simulations needed!
* Low sample efficiency (you throw samples away immediately after using them)

 Reward estimation is not accurate
e Random rollout
* Tail value is not accurate.



Actor-Critic Models

Actor-critic methods consist of two models, which may optionally share parameters:

e Critic updates the value function parameters w and depending on the algorithm it could be

action-value Q,,(als) or state-value V,,(s).
e Actor updates the policy parameters @ for zg(als), in the direction suggested by the critic.

1. Initialize s, 6, w at random; sample a ~ ng(als).
2.Fort=1...T:
1. Sample reward r; ~ R(s, a) and next state s/ ~ P(s|s, a);
2. Then sample the next action a’ ~ mg(a’|s);
3. Update the policy parameters: 8 < 0 + agQ,,(s, a)Vg In my(als);
4. Compute the correction (TD error) for action-value at time t:
6 =1 +y0u(s',a") — Ou(s, a)
and use it to update the parameters of action-value function:
w <« w+ a,o6,V,,0,(s,a)
5.Updatea « @’ and s «< 5. ”,



Rollout to the end or not?

Actor-Critic Models . —— T TN
/< \»,V\\A”'

S /\\:_ - e
»\\_ N _}\

r(T) = Qg (5,a) Rollout return as a parametric function (critic)

b(S) — VG(S) Use the value function as the baseline

r(7) — b(s) = Qp(s,a) — Vy(s) = Az (s,a)

Advantage function

“Advantageous Actor-Critic”

120



Policy Gradient in practice

J(0) = ETNpe(T) (7)) = Eswpﬁe anwe(-|s)Qwe (37 a)
p— SNP'N@ Zﬂ'g Qﬂ'g S CL)

~ K s~Prg, ZWQ a]S/Q”ﬁ (s,a)
\

Use old and fixed parameters

mo(als)
:ESN anvT "% 9
s | a0



Trust Region Policy Optimization (TRPO)

Advantage also works here

/
Q"% (s, a)

mo(als)

max [k
o, (als)

S anryT

st Bap [Dicr (o, ([9)l|mo(-|s)] < 6

Take baby steps, make sure the approximation is not off.

[Schulman et al, Trust Region Policy Optimization]



Proximal Policy Optimization (PPO)

JCLIP A>0 4<0
. l—e¢ 1 .
For positive advantage,
don’t be to:o optimistic

For negative advantage,
assume things will go very bad

CLIP __mg(at | st)
L Tt(e) — 7T901d (at | St)

LOLIP(g [mm (r:(6)As,clip(ry(6), 1 — €, 1+ €)Ay)|

124
[Schulman et al, Proximal Policy Optimization Algorithms]



Deterministic Policy Gradient (DPG)

Objective

J(p6) = Esnpn [Q"(s, 116(5))]

Lo (8) Deterministic policy function (e.g., if action is continuous)

Q“ (S, CL) Q-function following policy u

[Deterministic Policy Gradient Algorithms, D. Silver et al. ]



Deterministic Policy Gradient (DPG)

Ta king Derivative w.r.t 9: No need to take gradient w.r.t u
Because of deterministic policy

/gradienttheorem
Vod(po) = Eswpn | Voo (s)VaQH (8, a)|azp(s)]

Scalar gradient at (s, a)

Sample state from the distribution, s; ~ p*:

VQJ ,u9 ZVHMH aQu(SiaaHa:u(Si)

126
[Deterministic Policy Gradient Algorithms, D. Silver et al. ]



DDPG (Deep Deterministic Policy Gradient)

» Use deep networks to represent policy / Q.

* Generate trajectories with current policy + noise
* Since the policy is deterministic

 Save trajectories into replay buffer and sample from it (Off-policy!)
* Learn Q" via DQN using target network
* Learn u using the slide above.

[Continuous Control With Deep Reinforcement Learning, Lillicrap et al. ICLR 2016]



Distributed Distributional Deterministic Policy
Gradients (D4PG)

e Distributional version of DDPG

Distributional critic

N-step returns
Multiple distributed parallel actors

W N e

Prioritized experience replay



Twin Delayed DDPG (TD3)

Clipped Double Q-learning (CDQ)

300

Average Value

Two independent models 0, Y;and 0,, 1,
. / /
y1 =7+ min Qg (s, 74, (s'))

Policy
500 Delayed Update of Target and
400 Policy Networks
300
200 . .
S e Target Policy Smoothing
DDPG -e- True DDPG

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6) Time steps (1e6)

(a) Hopper-v1 (b) Walker2d-v1

129
[Addressing Function Approximation Error in Actor-Critic Methods, S Fujimoto et al, ICML 2018]



Soft Actor-Critic (SAC)

ObjECtlve Maximum entropy objective

ZE@t,at)fvp [r(st,a¢) + aH(n (- |s¢))]

t=0

Improve policy diversity

Quantities to Learn simultaneously:

Vip(st)  Qolse,ar) melag|st)

130
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]



Learning Value function

Jv () = Es,np [% (Vo (st) — Eaynm, [Qo(st, ar) — log 7T¢(at|st)])2]

Match values with Q and policy

Vv (@) = VyVi(se) (Vi (se) — Qolse, ar) + log mg(aclse))

131
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]



Learning Q-function

1 . 2
Jo(0) = Es,,a,)~D [5 (QO(Styat) — Q(St7at)) ]

Target:

A

Q(st,at) = r(st,as) + Y Es,yy~p Vi (St41)]

DQN-like step. Look one step ahead!

132
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]



Learning Policy without Policy Gradient

Matching policy with the current Q-value using KL-divergence

e ))]

T2(6) = Exio |Dic (o150

With deterministic action a; = f(€;; S¢), things are simpler:
(@) = Es,np e [alog s (fo (€15 8¢ )[8¢) — Qa(st, fo(€t;8¢))]

Policy gradient is avoided so that it can work on off-policy data (replay buffer)

133
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]



SAC with Automatically Adjusted Temperature

SAC is brittle with respect to the temperature parameter. Unfortunately it is
difficult to adjust temperature, because the entropy can vary unpredictably
both across tasks and during training as the policy becomes better.

J(a) = [EatNEt[_a log 7:(a; | s;) — aHp]

[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]



Algorithm 1 Soft Actor-Critic

Input: 604, 0, ¢ > Initial parameters
01 < 01,05 < 0, > Initialize target network weights
D« 0 > Initialize an empty replay pool

for each iteration do
for each environment step do

a; ~ my(ag|st) > Sample action from the policy
St+1 ~ P(Str1|st,as) > Sample transition from the environment
D < DUA{(st,as,r(st,a¢),8¢+1)} > Store the transition in the replay pool

end for

for each gradient step do
0; « 0; — AoV, Jo(6;) fori € {1,2} > Update the Q-function parameters
O P — vaquW(qS) TD3 components > Update policy weights
o+ a—AVaJ(a) > Adjust temperature
0; < 76, + (1 — 7)0; fori € {1,2} > Update target network weights

end for

end for

Output: 604, 65, ¢ > Optimized parameters

135



Function Approximation:
Model-based Methods



Model-Based Reinforcement Learning

DA\
| Agent |
Action Observation,
Reward
| Environment |

e S is a set of states,
e A a set of actions,

e po(S) is the initial state distribution,

e T'(s¢+1|st,at) is the probability of transitioning from state s; € S to si41 €
S after action a; € A,

e R(ri41]|st,ar) is the probability of receiving reward ;41 € R after execut-
ing action a; while in state sy,

Action Observation,
Reward e v €[0,1) is the discount factor.

Environment

g 8 —_— Supervised learning problem!
Ay
137




Dyna: Integrating Planning, Acting, and
Learning

value/policy / AN
Policy/value functions
acting planning update
planning direct direct RL simulated
RL update experience
real
learning control
model experlence

Model

— del [Enw ronment]

learning
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Model Type
Probabilistic model n

Can capture aleatoric uncertainty
—inherent noise in the system

Can capture epistemic uncertainty —
uncertainty due to scarcity of data

//ll 139



Model-Based Policy Optimization (MBPO)

MBPO (high-level)

1. Collect environment trajectories; add to Degpy
2. Train model ensemble on environment data Deyy
3. Perform k-step model rollouts branched from Dy ; add to Diyodel

4. Update policy parameters on model data D, del

. . 14Q
Janner et al. When to Trust Your Model: Model-Based Policy Optimization. NeurlPS 2019.



Probabilistic Ensembles with Trajectory
Sampling (PETS)

Dynamics Model Trajectory Propagation Planning via Modgl Predictive Control
N @ LJC\\] A

\

2 A\C AN /
o 4 A 4
- _ —
o M D
© Bootstrap 1 \./"\. of‘ \\v,//
~ T Tenning bata L4

Chua et al. Deep Reinforcement Learning in a Handful of
Trials using Probabilistic Dynamics Models. NeuriPS 2018.



MBRL-Lib: A Modular Library for
Model-based Reinforcement Learning

Luis Pineda Brandon Amos Amy Zhang Nathan O. Lambert
Roberto Calandra
Facebook Al Research
University of California, Berkeley
{lep,bda, amyzhang, rcalandra}@fb.com, nol@berkeley.edu

MBRL-Lib

mbrl is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides
easily interchangeable modeling and planning components, and a set of utility functions that allow writing model-
based RL algorithms with only a few lines of code.




Model-Based RL with Latent Models

Latent space

143



Deep Planning Network (PlaNet)

al a;’.
o 0
s s

https://blog.research.google/2020/03/introducing-dreamer-scalable.html Lad



Deep Planning Network (PlaNet) (ike PETS)

Recurrent state-space model (RSSM) Latent overshooting for planning

145
Hafner et al. Learning Latent Dynamics for Planning from Pixels. ICML 2019.



Dreamer

Hafner et al. DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION. Icir 2020.



Dreamer Results
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Outline: Second Half

* Function Approximation: Model-free Methods
 DQN
* REINFORCE and Policy gradient
e Actor-Critic Methods

* Function Approximation: Model-based Methods
* Dyna
* MBPO
* PETS

* Advanced Topics
* Abstractions and Generalization
* Leveraging Structure in RL
e Self-supervised RL



Abstractions



C L . . Irrelevant Relevant
A realistic additional assumption

g

Emission mapping

=

Latent Space

Goal: Generalization to new observations where the underlying MDP is the same
Solution: Ignore irrelevant information
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Block MDPs

A Block MDP family can be described by
@ State space S
Action space A

°
@ Reward function R
@ Discount factor v

o

Observation space X

@ Rendering mapping g: S — X

Each observation x uniquely determines its generating state s. That is, the
observation space X can be partitioned into disjoint blocks X, each
containing the support of the conditional distribution g(-|s).

151
Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)



State Abstractions and Bisimulation

State abstractions have been studied as a way to distinguish relevant from irrelevant
information in order to create a more compact representation for easier decision making and
planning.

Definition

Given an MDP M, an equivalence relation B between states is a
bisimulation relation if, for all states s;,s; € S that are equivalent under B
(denoted s; =p s;) the following conditions hold:

R(si,a) = R(sj,a) Va e A, (1)
P(Glsi,a) = P(Gl|sj,a) Vae A, VG € Sg, (2)

where Sg is the partition of S under the relation B (the set of all groups
G of equivalent states), and P(Gls,a) = > ¢ P(s']s, a)-

y
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Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)



Bisimulation Metric

Learn a representation where L1 distance between any
two states is their bisimilarity:

Definition
Given a finite MDP M : (S, A,P,R), let c € (0,1) be a discount factor.

Let met be the space of bounded pseudometrics on S equipped with the
metric induced by the uniform norm. Define F : met — met by

F(si,sj) = max(1 —¢)|rd — rd| + cW(P2,P2). (3)
acA ! J i d

Then F has a unique fixed point d which is the bisimulation metric.
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Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)



On-Policy Bisimulation Metrics

Let’s modify the previous definition to get rid of the max over actions:

Definition
Given a finite MDP M : (S, A,P,R), let c € (0,1) be a discount factor.

Let met be the space of bounded pseudometrics on S equipped with the
metric induced by the uniform norm. Define F : met — met by

F(si,siim) = Ex[(1— c)|r2 — r2| + cW/(P2,P2)]. (4)

Then F has a unique fixed point d,; which is the on-policy bisimulation
metric.

154
Scalable methods for computing state similarity in deterministic Markov Decision Processes. P. Castro. AAAI 2020.



Generalization to new observations and rewards

Theorem: Connections to causal feature sets

If we partition observations using the bisimulation metric, those clusters (a
bisimulation partition) correspond to the causal feature set of the
observation space with respect to current and future reward.

Theorem: Task Generalization

Given an encoder ¢ : O — S that maps observations to a latent Figure 3: Causal graph of two
bisimulation metric representation where ||¢(si) — ¢(sj)||2 := d(si,s}), S time steps. Reward depends

. . only on s! as a causal parent,
encodes information about all the causal ancestors of the reward AN(R). but s! causally depends on s2,

so AN(R) is the set {s!, s?}.
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Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)



Generalization to new observations

episode_reward

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)
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Generalization

': :- Google DeepMind

* Deep RL has had many successes & [P

@OpenAI

196w @)
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Pinpointing some failures

(a) Default start (b) Default death (¢) Modified start  (d) Modified death

Player

Enemy

. Unfilled track
B Filled rack

FREEWAY HERO BREAKOUT SPACE INVADERS

Figure: Train and Test on Atari proposed by Witty et al. 2018

Figure: Train and Test on Atari proposed by Farebrother, Machado, and
Bowling 20182 .

Figure: Train and Test on CoinRun proposed by Cobbe et al. 2019
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Generalization

*f | reeE ey
= # train levels = 10

a = 4 train levels = 100
0 # train levels = 1000
= # train levels = 10000 M
“Lo.o 0.5 1.0 0.0 0.5 1.0
Training steps 1e9 Training steps 1e9
ASIC g p g p

G
; —

7 = =
q l— # train levels = 10 r

= # train levels = 100 rw

Episode rewards ‘:; Episode rewards

0 # train levels = 1000
=== # train levels = 10000
— P e SRR ey,
10.0 0.5 1.0 0.0 0.5 1.0
. Training steps 1e9 Training steps 1e9
(i) BLOCKS i e
(%)
2 2
© _ =
(2) An example of a TUNNEL maze. q;) 1 & tra!n layeh = 10
= # train levels = 100
8 0 # train levels = 1000
8 # train levels = 10000
a_ |
w 0.0 0.5 1.0 0.5 1.0
Training steps 1e9 Training steps 1e9
(i) TUNNEL gk g
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[C. Zhang et al. A Study on Overfitting in Deep Reinforcement Learning.]



Why the discrepancy?

* Deep RL works really well in single task settings in simulation with
millions of transitions.

* Works less well in visually complex and natural settings — we don’t see

the same generalization performance we’re getting in computer
vision and NLP.
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Open Problems: Compositionality |

Useful Jis 55
Assumptions? e ” 7 L —

g—i‘ .._ ‘ !

ProcGen

Bark Simulator
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Factored MDP

* State space is made up of discrete variables:

Xo={xt x? .. xY

QIO
HOE

Assumption: Factored Transitions

L

For given full state vectors x¢, x;+1 € X, action a € A, and x; denoting the
i*" dimension of state x we have P(x¢t1|x¢, a) = [; P(x{q|xe, @)

Assumption: Factored Rewards

For given full state vectors x;, x;11 € X, action a € A, and x; denoting the
i*" dimension of state x we have R(xq11|x¢,a) = >_; R(x{,1|x¢, a).
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Relational MDP

A Relational MDP family can be described by

@ (: Set of classes denoting different types of object
e.g., {Box, Truck, City}

@ F: Set of function schemata that take objects as input
e.g., {Bin(Box, City), On(Box, Truck)}

@ A: Set of action schemata that operate on objects
e.g., {Unload(Box, Truck,City), Load(Box, City, Truck),
Drive(Truck,City,City) }

@ D: Set of domain objects, each associated with a single type from C

@ T : Transition function

@ R: Reward model

C, F, and A are sets of relational schemata.

163
Boutilier, Reiter, & Price 2001



Forms of Compositional Generalization

06 Q0 +000 © 0000
‘® 00000 © 0®0 O

(a) Systematicity (b) Productivity (c) Substitutivity

OO0 -0
OO0 —-00

v
-

~ o

(d) Localism (e) Overgeneralisation

o O
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Figure from: Compositionality decomposed: how do neural networks generalize? Hupkes et al. 2020.



Structure in Reinforcement Learning: A

Survey and Open Problems

Latent

Factored

Relational

Modular

Patterns of Incorporating

Sample
Efficiency

Generalization

Structure
. . Auxiliary Auxiliary
Abstraction | |Augmentation Optimization Model
Warehouse EnV|ronment Exphcﬂly
Generation Designed

| Interpretability

Safety
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Defining Generalization Types

Singleton Environments

Train and Test Distribution Graphical Models

Example Benchmarks

IID Generalisation Environments

OOD Generlisation Environments

MDP CMDP CMDP
",0' B s udlV a2 e Nl @
'-’“’ &7 =D B~ =2 B
7 ~ ) H L] ]
E @ Q-G
L] -] ]
R..(¢) = p.(©) R..(c)#p.(c)

Train = Test

Train Distribution = Test Distribution

Train Distribution # Test Distribution

[Kirk, AZ, et al. A Survey of Zero-shot Generalisation in Deep Reinforcement Learning.]
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Evaluating Generalization

Key: T\”aininﬁ Contexts [Tra.ining Context Distribution] Interpolation Distribution
XXXXXxy |

(00001 AT I W EiTC Y el ERate W DT e oliia ) (il Single-Factor Extrapolation Distribution il Multi-Factor Extrapolation Distribution

A B C
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[Kirk, AZ, et al. A Survey of Zero-shot Generalisation in Deep Reinforcement Learning.]



Self-Supervised RL

* What is self-supervised RL?
* Assume no access to “labels” (reward)

* Why should we care?
* Pre-training and zero-shot/finetuning regime

* What can we do with unlabeled sequential data, and how will it help with
downstream tasks?

* Hint: video generation models and LLMs!



Ahmed
Touati

\

Yann Ollivier

LEARNING ONE REPRESENTATION
TO OPTIMIZE ALL REWARDS




MOTVATION

> You have an

environment in which

you can perform actions |.-

but no reward signal

> Your mission is to build

a summary of the /

environment

<

Task 1

Task 2

» Such that as soon as
. Idescribe a reward
function, you
immediately know
what to do to
maximize your
., reward.

Task 3

R

Bu11d fully controllable agents able to follow instructions
u such as “reach this state while avoiding that place”

SIidJ Credit: Ahmed Touati




%R MAINRESULT

» Informal Theorem: There exists a representation of an environment
on which we can directly read all optimal policies of all reward
functions:

The forward-backward (FB) representation

» It is learnable from reward-free interactions, off policy.
> At test time, reward functions may be specified

» either explicitly (“reach this state”),

» or as a function over states,

» or by reward samples as in classical RL.

Slide Credit: Ahrﬁéd Touati



.......................................................................................................

> Idea: F(s) represents the future of a state s, and B(s)
represents the past of a state.

» Training criterion: If it is easy to reach s’ from s (in many
steps), then F(s)" B(s') is large

» This training criterion is guaranteed to provide optimal
policies.

F(s)

B(s")

¢ Slide Credit: Ahmed Touati



OUTLINE OF THE METHOD

ﬁ Unsupervised phase

1! Task identification phase

ﬁ“»Exploitation phase

,'

> Choose a representation space Z = R?

|
|

| > Learn two representations

F : States x Actions X Z — Z
B : States — Z

according to some unsupervised criterion (next slide)

> Once rewards are accessible, compute
|

state s

zr = E[r(s)B(s)]

> For instance, zg = B(s) if the reward is located at

1) Apply policy ., (s) = arg mng(s, a,zr)' 2R

No Planning!

Slide Credit:

med Touati



UNSUPERVISED PHASE

» Theorem: If F and B optimize their training criterion perfectly, then
the obtained policy is guaranteed to be optimal, whatever the reward.

> Finite representation dimension => approximate training = >
approximate policies with controlled error.

Unsupervised training criterion: for all s, a, s’, z,

@
|
|
|

.\ F(s,a,2) B(s') = ZytPr(st = s | s,a,
t=0

m,(s) = argmax F(s,a,2)' 2

[; > Learn an occupancy model for many behaviours

!l > “Model-based lite”: no synthesis of states or trajectories

: Ahmed Touati



FB TRAINING

> F and B satisfy a Bellman equation

F(50, 00, 2) " B(5') = 655(5) + VB~ P(ls0120) | F(5:72(51),2) TB()]
N et

Infinitely sparse reward !!

» Can be learned by TD-style from Blier-Tallec-Ollivier 2021
accounting for Dirac exactly even with continuous states

[1] Learning Successor States and Goal-Dependent Values: A Mathematical Viewpoint. Léonard Blier, 175 .
Corentin Tallec, Yann Ollivier, arxiv 2021 Slide Credit: Ahmed Touati



CONCLUSION AND PERSPECTIVES

Take-home message:

There exists a learnable representation of an environment on which we can
read all optimal policies of all reward functions (with arbitrary precision by increasing

the dimension).

* Incorporating priors is possible (on rewards, relevant features)

* For a single, fixed environment.

* Long-range dependencies are captured well but local blurring of details in the
reward.

* Allows for zero-shot extraction of the optimal policy for any downstream
reward function.

Slide Credit: Ahmed Touati



Many research areas | did not cover

* Exploration

* Offline setting
 Arbitrary data

* Different learning signals
 Safety

* Interpretability

* Transfer

* Meta RL



Outline: Second Half

* Function Approximation: Model-free Methods
 DQN
* REINFORCE and Policy gradient
e Actor-Critic Methods

* Function Approximation: Model-based Methods
* Dyna
* MBPO
* PETS

* Advanced Topics
* Abstractions and Generalization
* Leveraging Structure in RL
» Self-supervised RL



