
Reinforcement Learning
Amy Zhang

Machine Learning Summer School 2024
OIST

1

Outline: First Half

• What is Reinforcement Learning and when should I use it?
• Finite Markov Decision Processes
• Dynamic Programming
• Monte Carlo Methods
• Temporal-Difference Learning
• Planning
• Deadly Triad

2

Outline: Second Half

• Function Approximation: Model-free Methods
• DQN
• REINFORCE and Policy gradient
• Actor-Critic Methods

• Function Approximation: Model-based Methods
• Dyna
• MBPO
• PETS

• Advanced Topics
• Abstractions and Generalization
• Leveraging Structure in RL
• Self-supervised RL

3

• http://incompleteideas.net/book/the
-book-2nd.html

• CS394R/ECE381V: Reinforcement
Learning: Theory and Practice --

Spring 2024
https://www.cs.utexas.edu/~pstone/

Courses/394Rspring24/

4

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

From a Supervised Learning Lens

cat

dog

What about sequential data?

5

S"ll can be represented as a supervised learning problem

Desired
action

Desired
action

Desired
ac"on

Desired
action

What if we don’t know the best moves to take?

Learn via trial and error:
 Learn from a reward signal and try to maximize that reward

6

Reinforcement Learning Framework

Assumption: Environment is a Markov Decision Process

7

Goal of Reinforcement Learning

Maximize long-term reward:

Agent

Environment

Action

State

Reward

Discount factor

Trajectory

8

Key Quantities

Maximal reward you can get starting from state 𝑠

Agent

Environment

Action

State

Reward

Maximal reward starting from 𝑠 after taking action 𝑎
Probability of taking action 𝑎 given state 𝑠

9

Key Quantities

Reward you can get, starOng from 𝑠 following policy 𝜋

Agent

Environment

AcBon

State

Reward

Reward starting from 𝑠 after taking action 𝑎 and following 𝜋

10

11

12

Iterative Policy Evaluation

13

Dynamic Programming: Policy Improvement

14

Policy Improvement Theorem

• If for all states

• Then for all states

• A guarantee in the tabular setting that updates will always lead to
improved policies, until convergence at the optimal value function.

15

Policy Improvement Theorem Proof

16

Takeaway

Policy improvement thus must give us a strictly better policy
except when the original policy is already optimal.

17

Policy
Iteration

Policy evaluation Policy improvement 18

Policy iteration drawbacks

• Convergence of policy evaluaOon can be expensive
• Maybe we don’t need to converge policy evaluaOon

to find the opOmal policy

Convergence of iterative
policy evaluation in a
gridworld

19

Value Iteration

• We can speed up the previous algorithm by truncating the policy
evaluation step:

20

Value Iteration

21

Generalized Policy Iteration

• We use the term generalized policy iteration
(GPI) to refer to the general idea of letting
policy-evaluation and policy-improvement
processes interact, independent of the
granularity and other details of the two
processes.
• Almost all reinforcement learning methods are

well described as GPI.

22

23

Monte Carlo Methods

• Previous methods computed value functions using knowledge of the
MDP
• Impractical assumption in most use cases

• How can we learn value functions from sample (Monte Carlo) returns
instead?

24

25

Policy Evaluation Setting

26

Monte Carlo Control

where E denotes a complete policy evaluation and I
denotes a complete policy improvement.

27

Differences between DP and MC methods

DP methods:
• Require environment dynamics p(s’, r | s, a)
• Difficult to acquire in practice

MC methods:
• Don’t need environment dynamics p(s’, r | s, a)
• Only need environment samples!

28

Off-policy Prediction via Importance Sampling

• Simplest setting:
• prediction problem
• Both target and behavior policies are fixed

• Required assumptions:
• Coverage assumption: Every action taken under the target policy is also taken

under the behavior policy.

29

Off-policy Prediction via Importance Sampling

• Importance sampling: technique for estimating expected values under
one distribution given samples from another.
• Probability of a state-action trajectory under any policy pi:

Relative probability of the trajectory under target and behavior policies
Dynamics cancel out
- doesn’t depend on
MDP! 30

Off-policy Prediction via Importance Sampling

Recall: wish to estimate expected returns under target policy, but only
have returns under behavior policy.

Computing this expectation in practice requires a scaling term

31

Off-policy PredicMon via Importance Sampling

Recall: wish to estimate expected returns under target policy, but only
have returns under behavior policy.

Computing this expectation in practice requires a scaling term

32

Trade-offs of on-policy vs. off-policy

• On-policy method are simpler

• Off-policy methods:
• Because the data is due to a different policy, off-policy methods are often of

greater variance and are slower to converge.

• More powerful and general. They include on-policy methods as the special
case in which the target and behavior policies are the same.

33

Incremental Implementation of MC Prediction

34

Off-policy Monte Carlo Control

Add a step of policy improvement
35

Recap: MC vs. TD

• MC doesn’t need a (full) model
• Can learn from actual or simulated experience

• DP takes advantage of a full model
• Doesn’t need any experience

• MC expense independent of number of states
• No bootstrapping in MC
• Not harmed by Markov violations

36

37

38

39

40

Policy Evaluation Setting

41

42

Sarsa: On-policy TD control

43

Q-learning: Off-policy TD Control

44

45

N-step Bootstrapping

• Unifying MC and TD methods

46

Previously: MC and TD

• Monte Carlo update:

• 1-step TD update:

• n-step TD update:

47

N-step TD prediction

• The space of methods between Monte Carlo and TD. This gives us the
following state-value learning algorithm:

• while the values of all other states remain unchanged:

48

The control problem: n-step Sarsa

• Let’s construct an on-policy TD control method.
• Previously: Sarsa -> one-step Sarsa or Sarsa(0)

• We redefine n-step returns in terms of estimated action-values:

New update:

49

N-step tradeoffs

• More accurate, but fewer and slower updates.

50

51

Bridging Methods

• n-step methods bridge TD and MC
• TD(0) −→ MC
• All online (model-free)

• Now we talk about bridging to DP
(model-based)
• TD,MC −→ DP (e.g. VI)
• Also called learning vs. planning
• Model-based RL does both
• computational efficiency vs. sample

efficiency

52

Two Types of Planning

• Model-based learning
• e.g. Dyna

• Lookahead search
• e.g. Monte Carlo Tree Search (MCTS)

53

Dyna: Integrated Planning, Acting, and
Learning

54

Tabular Dyna-Q

55

Dyna

• Downsides: uniform sampling is inefficient
• Planning can be much more efficient if simulated transitions and

updates are focused on particular state–action pairs.
• Search might be usefully focused by working backward from goal

states.

56

Prioritized Sweeping

57

Trajectory Sampling

• Two ways of distributing updates:
• Exhaustive sweeps over entire state or state-action space (e.g. dynamic

programming)
• Sampling from a distribution

• Uniformly (Dyna-Q)
• On-policy distribution (Trajectory sampling)

58

Planning at Decision Time

• Previous methods all use planning at training time.
• What about decision time planning?

59

Heuristic Search

Sequence of one-step updates in a specific order (selective depth-first search).

60

Rollout Algorithms

• Produce Monte Carlo estimates of action values only for each current
state and for a given policy usually called the rollout policy.

61

Monte Carlo Tree Search

62

• MCTS is a rollout algorithm
• enhanced by the addition of a means for accumulating value estimates

obtained from the Monte Carlo simulations in order to successively direct
simulations toward more highly-rewarding trajectories.

• Largely responsible for the improvement in computer Go from a weak
amateur level in 2005 to a grandmaster level (6 dan or more) in 2015

Monte Carlo Tree Search

63

Monte Carlo Tree Search

64

Monte Carlo Tree Search

65

Monte Carlo Tree Search

66

What about function approximation?

67

The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:

• Func:on approxima:on

• Bootstrapping

• Off-Policy training

68

The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:

• Function approximation

• Bootstrapping

• Off-Policy training

69

The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:

• Function approximation

• Bootstrapping

• Off-Policy training

70

The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:

• Function approximation

• Bootstrapping

• Off-Policy training

71

Off-policy semigradient methods

Stability of semigradient methods depends on on-policy distribution of updates. Why?

• In tabular case, updaDng one state’s value leaves all others changed

Imagine only updating one state S over and over again (i.e. off-policy):

• With function approx + MC, multiple state values are updated, but V(S) is
estimated independently of them via rewards only

• With function approx + TD (semigradient), multiple values are updated, which are
then used to help estimate V(S) via bootstrapping, which are then updated again,
which are then used to help estimates V(S)…

On-policy distribution forces state values to be “grounded” to something real
72

Examples of Off-policy Divergence

73

74

75

76

Baird’s Counterexample

77

78

Step size alpha=1
Discount factor gamma = 1

79

80

81

82

83

84

Outline: First Half

• What is Reinforcement Learning and when should I use it?
• Finite Markov Decision Processes
• Dynamic Programming
• Monte Carlo Methods
• Temporal-Difference Learning
• Planning
• Deadly Triad

85

Coffee Break!

86

Outline: First Half

• What is Reinforcement Learning and when should I use it?
• Finite Markov Decision Processes
• Dynamic Programming
• Monte Carlo Methods
• Temporal-Difference Learning
• Planning

87

Outline: Second Half

• Function Approximation: Model-free Methods
• DQN
• REINFORCE and Policy gradient
• Actor-Critic Methods

• Function Approximation: Model-based Methods
• Dyna
• MBPO
• PETS

• Advanced Topics
• Abstractions and Generalization
• Leveraging Structure in RL
• Self-supervised RL

88

89

A Coarse Breakdown of Model-free Methods

• Q-Learning

• Policy Gradient

• Actor-Critic

90

Algorithm

As long as we can enumerate all possible states and actions

Tabular Q-learning

Value IteraOon

Iteratively table filling

91

Deep Q-Network (DQN)

Q-learning

Parametric funcBon

now have generalization capability

How could you take the gradient w.r.t 𝜃 ?
Note that 𝜃 appears on both sides.

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]92

DQN

Q-learning

Old fixed parameters

Target networkFixing RHS and learn 𝜃 from LHS.

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]93

DQN

Q-learning (make the target even smoother)

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]

Temporal Difference (TD) Error

Smoothing factor

94

DQN Results

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]

t-SNE embedding

95

DQN Issue

• Exploding Q values
Q values

[Hado van Hasselt. Double Q-learning. NeurIPS 2010]
96

DQN Issue

• Exploding Q values
• Fix: Double Q-Learning

Q values

[Hado van Hasselt. Double Q-learning. NeurIPS 2010]

• Use two Q networks instead of one
to reduce bias.
• One model get the optimal

action
• The other returns the Q value.

97

DQN Tricks

• Prioritized Experience Replay

Replay Buffer

S, A, R, S’
S, A, R, S’
S, A, R, S’
S, A, R, S’

Uniform Standard replay

[Schaul et al. Prioritized Experience Replay. ICLR 2016]
98

DQN Tricks

• Prioritized Experience Replay

Replay Buffer

S, A, R, S’
S, A, R, S’
S, A, R, S’
S, A, R, S’

Weighted Prioritized replay

Scoring mechanism: TD error
For vanilla DQN

For Double DQN

[Schaul et al. Priori"zed Experience Replay. ICLR 2016]
99

DQN Tricks

• Dueling networks

[Wang et al. Dueling Network Architectures for Deep Reinforcement Learning. ICML 2016]

Standard Q-network

100

DQN Tricks

• Dueling networks

[Wang et al. Dueling Network Architectures for Deep Reinforcement Learning. ICML 2016]

Dueling Q-network

Where A(s, a) := Q(s, a)� V (s)

<latexit sha1_base64="NayZ50xRK+D7npWQZt1NkvoZ+Dg=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2ARWtAyIxVFEKpuXLZgH9AOJZOmbWjmQZIRylDwV9y4UMSt3+HOvzGdzkJbD1zu4Zx7yc1xQ86ksqxvI7O0vLK6ll3PbWxube+Yu3sNGUSC0DoJeCBaLpaUM5/WFVOctkJBsedy2nRHd1O/+UiFZIH/oMYhdTw88FmfEay01DUPbgryBBevrmtJR6eoUZDFrpm3SlYCtEjslOQhRbVrfnV6AYk86ivCsZRt2wqVE2OhGOF0kutEkoaYjPCAtjX1sUelEyfnT9CxVnqoHwhdvkKJ+nsjxp6UY8/Vkx5WQznvTcX/vHak+pdOzPwwUtQns4f6EUcqQNMsUI8JShQfa4KJYPpWRIZYYKJ0Yjkdgj3/5UXSOCvZ5dJ5rZyv3KZxZOEQjqAANlxABe6hCnUgEMMzvMKb8WS8GO/Gx2w0Y6Q7+/AHxucPpH6Stw==</latexit>

is the advantage function.
101

DQN Tricks

• Multi-step learning (also known as n-step returns)

• Multi-step variant of DQN loss:

102

DQN Tricks

• Distributional reinforcement learning
• Model the value distribution rather than the expected value.

[Bellemare et al. A distribu"onal perspec"ve on reinforcement learning. ICML 2017]

Next state distribution under policy Discounting shrinks the distribution towards 0

The reward shifts it Projection step
103

DQN Tricks

• Noisy Nets: Noisy linear layers for exploration

[Fortunato et al. Noisy networks for explora"on. ICLR 2018]
104

Rainbow DQN: Which tricks are most important?

[Rainbow: Combining Improvements in Deep Reinforcement Learning, Hessel et al, 2017]

Prioritized DQN

Distribu<onal DQN

Multi-step learning

Noisy Nets

Rainbow

105

Downsides of Q-Learning

• Danger of instability and divergence caused by the Deadly Triad:
1. Function approximation
2. Bootstrapping
3. Off-policy training

Sutton & Barto. Reinforcement Learning: An Introduction.

Hence, the use of tricks to get things working with deep neural networks!

106

Downsides of Q-Learning

• Difficult to implement for conOnuous acOon spaces

How do we extract a policy from a Q funcOon?

s

Q(s, a1)

Q(s, a2)

Q(s, an)

…

argmax
a

Q(s, a)

<latexit sha1_base64="CTu9NJ9CaO4d4IufQlgemY9pRms=">AAACCnicbVDLSgMxFM3UV62vqks30SJUkDIjFV0W3bhswT6gHYY7aaYNTWaGJCOWoWs3/oobF4q49Qvc+Tem7Sy0eiDkcM69yb3HjzlT2ra/rNzS8srqWn69sLG5tb1T3N1rqSiRhDZJxCPZ8UFRzkLa1Exz2oklBeFz2vZH11O/fUelYlF4q8cxdQUMQhYwAtpIXvGwJ0APozid3VKkIAcC7icTD3CjrE7hxCuW7Io9A/5LnIyUUIa6V/zs9SOSCBpqwkGprmPH2jUPa0Y4nRR6iaIxkBEMaNfQEARVbjpbZYKPjdLHQSTNCTWeqT87UhBKjYVvKqcDq0VvKv7ndRMdXLopC+NE05DMPwoSjnWEp7ngPpOUaD42BIhkZlZMhiCBaJNewYTgLK78l7TOKk61ct6olmpXWRx5dICOUBk56ALV0A2qoyYi6AE9oRf0aj1az9ab9T4vzVlZzz76BevjG3WCmrk=</latexit>

107

Policy Gradient

CumulaOve reward along a trajectory 𝜏

Trajectory 𝜏

Probability of taking action 𝑎 given state 𝑠

108

Policy Gradient

Trajectory 𝜏

109

Policy Gradient

Score funcBon

Trajectory 𝜏

110

Policy Gradient

Independent of 𝜃

Trajectory 𝜏

111

Policy Gradient

EsBmated by sampling

Trajectory 𝜏

112

REINFORCE

Actual reward obtained by rolling out from

113

REINFORCE

114

REINFORCE

Actual reward obtained by rolling out from

+

+
-

+Too many positive rewards.
We only want to pick the best of the best.

115

REINFORCE + baseline

Actual reward obtained by rolling out from

+

+
-

+mean of all the rewards

Can be any function that only depends on state. 116

Off-Policy Policy Gradient

Off-policy Policy Gradient:

Importance sampling factor

Policy Gradient:

Pros: We could now use off-policy data!
Cons: the factor might explode, when
we sample rare experience w.r.t. the behavior

Policy Gradient Theorem

117

Issues with Policy Gradient

• If data are on-policy, then it learns quite fast.

• Data need to be on-policy
• Massive real-time simulations needed!
• Low sample efficiency (you throw samples away immediately after using them)

• Reward estimation is not accurate
• Random rollout
• Tail value is not accurate.

118

Actor-Critic Models

119

Actor-CriMc Models

Use the value function as the baseline

Rollout return as a parametric function (critic)

Advantage funcDon

“Advantageous Actor-Critic”

Rollout to the end or not?

120

Policy Gradient in practice

Use old and fixed parameters

122

Trust Region Policy Optimization (TRPO)

max

s.t.

Take baby steps, make sure the approximation is not off.

Advantage also works here

[Schulman et al, Trust Region Policy Optimization]
123

Proximal Policy Optimization (PPO)

For negative advantage,
assume things will go very bad

For posi?ve advantage,
don’t be too op?mis?c

[Schulman et al, Proximal Policy Optimization Algorithms]

Dota 2

124

Deterministic Policy Gradient (DPG)

[Determinis"c Policy Gradient Algorithms, D. Silver et al.]

Q-function following policy 𝜇

Deterministic policy function (e.g., if action is continuous)

ObjecBve

125

Deterministic Policy Gradient (DPG)

Taking Derivative w.r.t 𝜃:

Sample state from the distribution, s! ∼ 𝜌":

Scalar gradient at (s, a)

No need to take gradient w.r.t 𝜇
Because of deterministic policy
gradient theorem

126
[Determinis"c Policy Gradient Algorithms, D. Silver et al.]

DDPG (Deep Deterministic Policy Gradient)

• Use deep networks to represent policy / Q.
• Generate trajectories with current policy + noise
• Since the policy is deterministic

• Save trajectories into replay buffer and sample from it (Off-policy!)
• Learn 𝑄! via DQN using target network
• Learn 𝜇 using the slide above.

[Continuous Control With Deep Reinforcement Learning, Lillicrap et al. ICLR 2016]
127

Distributed DistribuMonal DeterminisMc Policy
Gradients (D4PG)
• Distributional version of DDPG

1. Distributional critic
2. N-step returns
3. Multiple distributed parallel actors
4. Prioritized experience replay

128

Twin Delayed DDPG (TD3)

[Addressing Function Approximation Error in Actor-Critic Methods, S Fujimoto et al, ICML 2018]

Clipped Double Q-learning (CDQ)
Two independent models 𝜽𝟏, 𝝍𝟏and 𝜽𝟐, 𝝍𝟐

Policy

Delayed update of Target and
Policy Networks

Target Policy Smoothing

129

Soft Actor-Critic (SAC)

ObjecOve:

Improve policy diversity

Quantities to Learn simultaneously:

Maximum entropy objective

130
[Soc Actor-Cri"c: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochas"c Actor, T. Haarnoja et al, ICML 2018]

Learning Value function

Match values with Q and policy

131
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]

Learning Q-function

DQN-like step. Look one step ahead!

Target:

132
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]

Learning Policy without Policy Gradient

Matching policy with the current Q-value using KL-divergence

Policy gradient is avoided so that it can work on off-policy data (replay buffer)

With deterministic action 𝑎& = 𝑓'(𝜖&; 𝑠&), things are simpler:

133
[Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, T. Haarnoja et al, ICML 2018]

SAC with AutomaMcally Adjusted Temperature
SAC is brittle with respect to the temperature parameter. Unfortunately it is
difficult to adjust temperature, because the entropy can vary unpredictably
both across tasks and during training as the policy becomes better.

134
[Soc Actor-Cri"c: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochas"c Actor, T. Haarnoja et al, ICML 2018]

TD3 components

135

Function Approximation:
Model-based Methods

136

Model-Based Reinforcement Learning

Supervised learning problem!

137

Dyna: IntegraMng Planning, AcMng, and
Learning

Sutton & Barto. Introduction to Reinforcement Learning.
138

Model Type
a

s

µ

<latexit sha1_base64="VcocTnj16BNQzs21sCszgk0ZXnI=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKRY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJDz2Z9ssVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6R1UfVr1cv7WqV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwBf9o3e</latexit>

�2

<latexit sha1_base64="K+FsJgvFGez+5x4idZvt9uc2Mz8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktFT0WvXisYD+kXUs2zbahSXZJskJZ+iu8eFDEqz/Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpP5nSeqNIvkvZnG1Bd4JFnICDZWeuhrNhL4sVYalCtu1Z0DrRIvJxXI0RyUv/rDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dH7wDJ1ZZYjCSNmSBs3V3xMpFlpPRWA7BTZjvexl4n9eLzHhlZ8yGSeGSrJYFCYcmQhl36MhU5QYPrUEE8XsrYiMscLE2IyyELzll1dJu1b16tWLu3qlcZ3HUYQTOIVz8OASGnALTWgBAQHP8ApvjnJenHfnY9FacPKZY/gD5/MH/3OP4w==</latexit>

Can capture aleatoric uncertainty
– inherent noise in the system

a

s

µ

<latexit sha1_base64="VcocTnj16BNQzs21sCszgk0ZXnI=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKRY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJDz2Z9ssVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6R1UfVr1cv7WqV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwBf9o3e</latexit>

�2

<latexit sha1_base64="K+FsJgvFGez+5x4idZvt9uc2Mz8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktFT0WvXisYD+kXUs2zbahSXZJskJZ+iu8eFDEqz/Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpP5nSeqNIvkvZnG1Bd4JFnICDZWeuhrNhL4sVYalCtu1Z0DrRIvJxXI0RyUv/rDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dH7wDJ1ZZYjCSNmSBs3V3xMpFlpPRWA7BTZjvexl4n9eLzHhlZ8yGSeGSrJYFCYcmQhl36MhU5QYPrUEE8XsrYiMscLE2IyyELzll1dJu1b16tWLu3qlcZ3HUYQTOIVz8OASGnALTWgBAQHP8ApvjnJenHfnY9FacPKZY/gD5/MH/3OP4w==</latexit>

a

s

µ

<latexit sha1_base64="VcocTnj16BNQzs21sCszgk0ZXnI=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKRY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJDz2Z9ssVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6R1UfVr1cv7WqV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwBf9o3e</latexit>

�2

<latexit sha1_base64="K+FsJgvFGez+5x4idZvt9uc2Mz8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktFT0WvXisYD+kXUs2zbahSXZJskJZ+iu8eFDEqz/Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpP5nSeqNIvkvZnG1Bd4JFnICDZWeuhrNhL4sVYalCtu1Z0DrRIvJxXI0RyUv/rDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dH7wDJ1ZZYjCSNmSBs3V3xMpFlpPRWA7BTZjvexl4n9eLzHhlZ8yGSeGSrJYFCYcmQhl36MhU5QYPrUEE8XsrYiMscLE2IyyELzll1dJu1b16tWLu3qlcZ3HUYQTOIVz8OASGnALTWgBAQHP8ApvjnJenHfnY9FacPKZY/gD5/MH/3OP4w==</latexit>

a

s

µ

<latexit sha1_base64="VcocTnj16BNQzs21sCszgk0ZXnI=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKRY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJDz2Z9ssVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6R1UfVr1cv7WqV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwBf9o3e</latexit>

�2

<latexit sha1_base64="K+FsJgvFGez+5x4idZvt9uc2Mz8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktFT0WvXisYD+kXUs2zbahSXZJskJZ+iu8eFDEqz/Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpP5nSeqNIvkvZnG1Bd4JFnICDZWeuhrNhL4sVYalCtu1Z0DrRIvJxXI0RyUv/rDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dH7wDJ1ZZYjCSNmSBs3V3xMpFlpPRWA7BTZjvexl4n9eLzHhlZ8yGSeGSrJYFCYcmQhl36MhU5QYPrUEE8XsrYiMscLE2IyyELzll1dJu1b16tWLu3qlcZ3HUYQTOIVz8OASGnALTWgBAQHP8ApvjnJenHfnY9FacPKZY/gD5/MH/3OP4w==</latexit>

�2

<latexit sha1_base64="K+FsJgvFGez+5x4idZvt9uc2Mz8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktFT0WvXisYD+kXUs2zbahSXZJskJZ+iu8eFDEqz/Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpP5nSeqNIvkvZnG1Bd4JFnICDZWeuhrNhL4sVYalCtu1Z0DrRIvJxXI0RyUv/rDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dH7wDJ1ZZYjCSNmSBs3V3xMpFlpPRWA7BTZjvexl4n9eLzHhlZ8yGSeGSrJYFCYcmQhl36MhU5QYPrUEE8XsrYiMscLE2IyyELzll1dJu1b16tWLu3qlcZ3HUYQTOIVz8OASGnALTWgBAQHP8ApvjnJenHfnY9FacPKZY/gD5/MH/3OP4w==</latexit>

Can capture epistemic uncertainty –
uncertainty due to scarcity of data

Probabilistic model

139

Model-Based Policy OpMmizaMon (MBPO)

Janner et al. When to Trust Your Model: Model-Based Policy Optimization. NeurIPS 2019.
140

Probabilistic Ensembles with Trajectory
Sampling (PETS)

Chua et al. Deep Reinforcement Learning in a Handful of
Trials using Probabilistic Dynamics Models. NeurIPS 2018.141

142

Model-Based RL with Latent Models

𝑠
𝑧

𝑎

𝑧′
𝑠’

Forward

Encoder Decoder

Latent space

143

Deep Planning Network (PlaNet)

144hips://blog.research.google/2020/03/introducing-dreamer-scalable.html

Deep Planning Network (PlaNet)

Hafner et al. Learning Latent Dynamics for Planning from Pixels. ICML 2019.

(Like PETS)

Recurrent state-space model (RSSM) Latent overshooting for planning
145

Dreamer

Hafner et al. DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION. ICLR 2020.146

Dreamer Results

147Hafner et al. DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION. ICLR 2020.

Outline: Second Half

• Function Approximation: Model-free Methods
• DQN
• REINFORCE and Policy gradient
• Actor-Critic Methods

• Function Approximation: Model-based Methods
• Dyna
• MBPO
• PETS

• Advanced Topics
• Abstractions and Generalization
• Leveraging Structure in RL
• Self-supervised RL

148

Abstractions

149

A realis)c addi)onal assump)on

𝑆

𝑂

Emission mapping

Goal: Generalization to new observations where the underlying MDP is the same
Solution: Ignore irrelevant information

150

Block MDPs

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)
151

State Abstractions and Bisimulation
State abstractions have been studied as a way to distinguish relevant from irrelevant
information in order to create a more compact representation for easier decision making and
planning.

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)
152

BisimulaMon Metric
Learn a representation where L1 distance between any
two states is their bisimilarity:

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)
153

On-Policy Bisimulation Metrics

Let’s modify the previous definition to get rid of the max over actions:

Scalable methods for computing state similarity in deterministic Markov Decision Processes. P. Castro. AAAI 2020.
154

GeneralizaMon to new observaMons and rewards

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)

155

GeneralizaMon to new observaMons

Walker Walk

Learning Invariant Representations for Reinforcement Learning without Reconstruction. AZ, R. McAllister, R. Calandra, Y. Gal, S. Levine. ICLR 2021 (Oral)

156

Generalization

• Deep RL has had many successes

157

Pinpointing some failures

158

Generalization

[C. Zhang et al. A Study on Overfitting in Deep Reinforcement Learning.]
159

Why the discrepancy?

• Deep RL works really well in single task sejngs in simulaOon with
millions of transiOons.

• Works less well in visually complex and natural sejngs – we don’t see
the same generalizaOon performance we’re gejng in computer
vision and NLP.

160

Open Problems: Compositionality

Bark Simulator

ProcGen

Useful
Assumptions?

161

Factored MDP

• State space is made up of discrete variables:

X := {X 1,X 2, ...,X d}

<latexit sha1_base64="CU8dLYr3R+p220Y22F8jSScSuXU=">AAACKHicbVDLSsNAFJ3UV62vqEs3wSK4KCEpFUUQi25cVrAPaGKZTCbt0MkkzEyEEvo5bvwVNyKKdOuXOGmz6MMDA+eecy9z7/FiSoS0rIlWWFvf2Nwqbpd2dvf2D/TDo5aIEo5wE0U04h0PCkwJw01JJMWdmGMYehS3veF95rdfMBckYk9yFGM3hH1GAoKgVFJPv3VCKAcI0rQzvr5x0rny2a7MV9WKaZoLiu+MSz29bJnWFMYqsXNSBjkaPf3T8SOUhJhJRKEQXduKpZtCLgmieFxyEoFjiIawj7uKMhhi4abTQ8fGmVJ8I4i4ekwaU3V+IoWhEKPQU53ZnmLZy8T/vG4igys3JSxOJGZo9lGQUENGRpaa4ROOkaQjRSDiRO1qoAHkEEmVbRaCvXzyKmlVTbtmXjzWyvW7PI4iOAGn4BzY4BLUwQNogCZA4BW8gy/wrb1pH9qPNpm1FrR85hgsQPv9A8V9pmE=</latexit>

162

Relational MDP

Bou"lier, Reiter, & Price 2001
163

Forms of Compositional Generalization

Figure from: Compositionality decomposed: how do neural networks generalize? Hupkes et al. 2020.
164

Structure in Reinforcement Learning: A
Survey and Open Problems

165

Defining Generalization Types

166
[Kirk, AZ, et al. A Survey of Zero-shot Generalisation in Deep Reinforcement Learning.]

Evaluating Generalization

167
[Kirk, AZ, et al. A Survey of Zero-shot Generalisa"on in Deep Reinforcement Learning.]

Self-Supervised RL

• What is self-supervised RL?
• Assume no access to “labels” (reward)

• Why should we care?
• Pre-training and zero-shot/finetuning regime
• What can we do with unlabeled sequential data, and how will it help with

downstream tasks?
• Hint: video generation models and LLMs!

168

Ahmed
Touati

Yann Ollivier

LEARNING ONE REPRESENTATION
TO OPTIMIZE ALL REWARDS

MOTIVATION

Task 1 Task 2

➤ You have an
environment in which
you can perform actions
but no reward signal

➤ Such that as soon as
I describe a reward
function, you
immediately know
what to do to
maximize your
reward.

Task 3

➤ Your mission is to build
a summary of the
environment

Build fully controllable agents able to follow instructions
such as “reach this state while avoiding that place” Slide Credit: Ahmed Touati

MAINRESULT
➤ Informal Theorem: There exists a representation of an environment

on which we can directly read all optimal policies of all reward
functions:

➤ It is learnable from reward-free interactions, off policy.

At test time, reward functions may be specified➤

➤ either explicitly (“reach this state”),

or as a function over states,

or by reward samples as in classical RL.

➤

➤

The forward-backward (FB) representation

171
Slide Credit: Ahmed Touati

Slide Credit: Ahmed Touati

Slide Credit: Ahmed Touati

UNSUPERVISEDPHASE
➤ Theorem: If F and B optimize their training criterion perfectly, then

the obtained policy is guaranteed to be optimal, whatever the reward.

Finite representation dimension = > approximate training = >
approximate policies with controlled error.

➤

a
⇡z(s) = argmax F(s,a,z)>z

F(s,a,z)>B(s0) ⇡
1X

t=0

tц Pr(s t 0= s | s,a,πz)

➤

➤

Learn an occupancy model for many behaviours

“Model-based lite”: no synthesis of states or trajectories

Unsupervised training criterion: for all s, a, s’, z,

Slide Credit: Ahmed Toua"

175
Slide Credit: Ahmed Touati

CONCLUSIONANDPERSPECTIVES
Take-home message:

There exists a learnable representation of an environment on which we can
read all optimal policies of all reward functions (with arbitrary precision by increasing
the dimension).

• IncorporaOng priors is possible (on rewards, relevant features)

• For a single, fixed environment.

• Long-range dependencies are captured well but local blurring of details in the
reward.

• Allows for zero-shot extracOon of the opOmal policy for any downstream
reward funcOon.

Slide Credit: Ahmed Touati

Many research areas I did not cover

• ExploraOon
• Offline sejng
• Arbitrary data
• Different learning signals
• Safety
• Interpretability
• Transfer
• Meta RL

177

Outline: Second Half

• Function Approximation: Model-free Methods
• DQN
• REINFORCE and Policy gradient
• Actor-Critic Methods

• Function Approximation: Model-based Methods
• Dyna
• MBPO
• PETS

• Advanced Topics
• Abstractions and Generalization
• Leveraging Structure in RL
• Self-supervised RL

178

