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Review: Supervised Learning

Problem formulation of supervised learning.

Input vector: @ = (x1,22,...,14)" € R?

Output: y € R

(x4, vi) S p(z,y)

Labeled data: {(@1,y1), (22, ¥2), - -, (T, yn)}

Model: f(x;w) =w z. (Linear model)

Risk: R(w) = [[loss(y, f(x; w))p(x, y)dzdy
Empirical Risk: Repp(w) = 2 30, loss(y;, f(x:; w))

T n

Empirical Risk Minimization (ERM): w = argmin ,, Rep,(w)
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Semi-Supervised Learning

Problem formulation of semi-supervised learning.

iid.
(Cﬂ'i.,_%@') ~ p(wa Z/)

e Labeled data: {(x1,41), (2, %2), .., (Tn, yn)}
e Unlabeled data: {x,11,Tpi2, .-, Tpim}

Usually n < m and n is small
Semi-supervised learning:

e We have both labeled and unlabeled samples.

e Semi-supervised learning uses both labeled and unlabeled
samples.

e The unlabeled samples follow the same distribution of the

marginal distribution of p(x,y) 3/30



Role of unlabeled data

Data generation process

e Input x is generated by a distribution with p(x).
e Output y for x is generated by conditional distribution
with probability density p(y|x).

Unlabeled data can be used for capturing p(x)

e input data distribution, input space metric, or better
representation.
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Semi-supervised learning frameworks

Weighted maximum likelihood estimation

Graph-based learning

Self-training

Clustering

Generative models
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Weighted maximum likelihood

The original goal of MLE is to maximize:

Ep(ellog p(y|)] = [[10g P(yl; w) p(ylw)p() dwdy,

p(,y)
> log(P(yi|xi; w))
i=1

where P(y|x; w) is a model. Each training instance is equally
weighted.

1
“n

Note, MLE is equivalent to maximize the negative
log-likelihood function:

L(w)zlog(ﬁp(yi|mz‘; ) Zlog (yilxi; w))

i=1
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Weighted maximum likelihood

Weighted maximum likelihood:

max >~ p(:) log(P (sl w)

i=1

Each training data instance is weighted by p(x;).

p(x) is estimated by using unlabeled data.
e Denser areas are largely weighted
e Training a classifier focusing on the dense areas

g
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Graph-based method

e Basic idea: construct a graph capturing the intrinsic
shape of input space, and make prediction on the graph.

Assumption: Data lie on a manifold in the feature space

The graph represent adjacency relationships among data

K-nearest neighbor graph (e.g., A;; = {0,1})

Edge-weighted graph with e.g., 4;; = exp(—|lz; — ;||3)
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Label propagation

Basic idea: Adjacent instances tend to have the same label.
Transductive setting (we have test instances)

n n-+mn+m
,min,_ Z( — i) + A Zl Zl Aii(fi — £)°
? J

where A > 0 is the regularization parameter.

e Ist term: (squared) loss function to fit to labeled data.
e 2nd term: regularization function to make adjacent nodes
to have similar predictions.

yi =1
labeled data e Az‘j =1 0 unlabeled data
prediction: fl fj
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Transfer Learning

Supervised Learning:

||.d

® Trammg {( Z; J'yz ) =1 .ptr(m,y)
o Test (', ™) "5 pe(x,y) (Not observed during training)

® Py = Pre (Training and test distributions are same)

Semi-supervised Learning:

e Training {(z{", yi")}, Hg- e, y),

{@ Y20 ™ ple).
o Test (x', y*) HRg Dre(, y) (Not observed during training)
® Dy = Pre (Training and test distributions are same)

If ptr # Pre, Supervised method and semi-supervised method do

not perform well. A solution: Transfer Learning!
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Problem formulations of Transfer Learning

Unsupervised transfer learning

o {(&¥, YN} " pule,y),

d.
® {m] ?tel Irl\' pte(m) Nty K Ne

Supervised transfer learning

nge 14-d.
L {(wz 7yz )} ~ ptr(w7y)
nge  1-i.d.
o {(F,Y5°) )7 ™ DPre(®, Y)s Mte K Mty

Semi-supervised transfer learning

neg  i.d.
.{(mz’yz)} ~ t( 7y)
o {(z, y°)}e R pee(,Y), e < Tty
e Ntetny i..d.
¢ {wt :te+1 ~ Pre(@), N K Nee
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Unsupervised Transfer Learning

We assume

e |t does not need to have test label

e Need some assumption

Standard approaches

e Importance weighted method (e.g., Covariate shift
adaptation)

e Subspace based method.
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Covariate Shift Adaptation [1]

Problem setup:

° {(mgr’ yltr) ;irl Irl\‘c‘i ptr(az, y),
° {w;e};”:el HIGE Die(X), Nty K Nye

Key idea: Learning a function so that error in test data is
minimized under the assumption p,(y|x) = pre(y|x)
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Covariate Shift Adaptation

The risk for pw(,y) can be written as

w) = [[ L(y, f@))pee(, y)ddy

(v,
1 & pte( )
= L ) 7 tr
™ e 2 M)
Actually, it is a welghted maximum likelihood problem. Note

% is a ratio of probability densities (density-ratio).
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Covariate Shift Adaptation

Exponentially-flattened Importance weighted empirical risk
minimization (IW-ERM) [1]:

Titr

min 3 LG () (p(“"i)

fe]: ntr i=1 ptr(wz

where 0 < 7 < 1 is a tuning parameter for stabilizing the
covariate shift adaptation.

e 7=0— ERM

e 0 <7 <1— Intermediate

e 7 =1I|W-ERM

Setting 7 to 0 < 7 < 1 is practically useful.
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Covariate Shift Adaptation

Relative Importance weighted empirical risk minimization

(RIW—ERM) [2]:
1 o Pre(x}")
i Mgy ;L v g (1 — a)pee(@f") + apu (')

where 0 < 7 < 1 is a tuning parameter for stabilizing the
covariate shift adaptation.

e o« =0— ERM
e 0 < o< 1— Intermediate
e o =1IW-ERM
pte(w) 1

Tal) = <
(@) (1 —a)pu(x) +apu(x) 1-«
The density ratio is bounded above by 1/(1 — ).
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Importance Weighted Least Squares

The importance weighted least squares problem can be written
as
Ntr
min  J(w) =~ z; (@)t — w3,
1=

where () is a weight function (e.g., density-ratio).

Take the derivative w.r.t. w and equating it to zero.

&]( 2 & T tryt
= —_—— i .r g O
e ntr; —w x)x;
Ntr -1 Ntr
w = (Z (x} )a:tr:l:t'T> Zr(m Vyiral
i=1 i=1
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Synthetic Example

Comparison of EIW-LS and RIW-LS:

1.5 ‘\‘ o _IT_raitning 1 ---EIW-LS
. x les J— -
1 - e RIW-LS]
o |"""EIW-LS (z=0.5) =
== RIW-LS (o = 0.5) e
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Supervised Transfer Learning

Problem formulation:

ng id.
1 {(xz 7yz) i=1 = ptr( y)
o {(=%,45°) i R (@, Y), Mee < Mty

We assume to have a large number of training samples and a
small number of paired target labeled samples.

e Frustratingly easy domain adaptation [3].
e Multi-task Learning
e Fine-tuning (Deep Learning)
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Importance Weight

Naive approach: Pooling training and test samples

J(w) :/ loss(y, f(x; w))pre(x, y)daxdy
= a [[toss(y, /(@ w))pu(@. y)dady

+(1- a)/ Ioss(y,f(zc;w))pte(:c y)dwdy

~ —Zloss u f Z'OSS yi©s f(@ w))

ter Tte

where 0 < o < 1 is a tuning parameter to control trade off
between source and target errors.
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Multi-task Learning

Problem formulation:

Taskl:{(x 51),%(1)) ] L R iz, y)

TaSkM (@™, My B p (2, )
e Linear Models Fi(xW) = w] 2O fo(x@) =
wix?, ... fu(e™) = w]z™)

M

min > — Zloss ™ (@) + AR(wy, . .., way).

m=1T'm =1

where R(wy, ..., wy) is a regularizer.

e )\ = 0: Independently optimize ws

e )\ > 0: We share some information among models.
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Multi-task Learning

Multi-task learning optimization (Graph-Laplacian).

M | o M M
min Z —_ Z |°55(y1(-m)’ fm(wgm))) + AZ Z Tm,m/’ ”wm — Wy ”%
WY ,yenny w g Nm, -
m=1 =1 m=1m'=1

where 7, ,,» > 0 is a model parameter (similarity between
models). If r,, v > 0, we make w,, and w,, close.
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Multi-task Learning [4]

Other approach: Explicitly including shared parameter. We
decompose w,, = wq + v,

That is

o fi(2®) = (wo +v1) 2,
o f2($(2)) = (wo + UQ)TZB(2),
°

where wyg is a common factor for all models.
For squared-loss, we can write the problem as

MNm

M M
. 1 1 m m)y)?
min 23 LS (™ (o) T2 ) e X(unlB+ Y foml)

m=1 i=1 m=1
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Supervised Transfer Learning: Frustratingly

easy domain adaptation

A frustratingly easy feature augmentation approach:

tr tr 1 tr 1 T\T te
Od ) , =

P :(m x te T OdT mteT)T’

The inner product of z in the same domain is give as

T T T T
Ztr ztr — 2wtr wtr’ zte zte — zwte wte,

while we have

T T
ztr zte — wtr wtr7 )

Then, we train a supervised learning method with the

transformed vectors z. Super easy!!!!
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Multi-task Learning

Supervised transfer learning can be regarded as a two-task
learning problem. First task is for training and second task is
for test.

Let us denote the transformed vectors as
ztr — (wtrT wtrT OdT)T c R?’d,
te — (mteT OdT wteT)T c R?’d,
where 04 € R? is the vector whose elements are all zero.

And, we consider a linear regression problem: The model
parameter of the linear model can be written as

w=(w;, v;' v) €R*
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Multi-task Learning

Mr Nte

1 T2 1 T, 02 2
J(w) = — § lys — =i w3 + 5— E lyi® — zi* wll3 + Xwll3
2nr 2nte
i=1 i=1

M
2
(44 = (wo+0n)Tel™ ) +A(lwolE+ D 1o B),

m=1 =1 m=1
where we use

w' 2" = (wy+v1) 2", w'2®=(wy+v) x

b — Cc(l), e — w(z)
2
lwll3 = lwoll + > llvall2.
m=1

Frustratingly easy domain adaptation is a multi-task learning.
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Fine-tuning

In deep learning context, Fine-tuning is a main approach for
transfer learning.

e Prepare a pre-trained model.
e Updating model parameters using a new dataset.

Animal classifier trained by million images IMAGENET

ORFRTORAO
SN S
. Pl O SO O EAN O EIN O
NS

O—O—O0—0

Source

New »
Classifier Bad cell
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Fine-tuning frameworks

There are mainly two approaches for fine tuning. Let us
denote the pretrained model parameter as {/WZ‘}@L:L where L
is the number of layers (or blocks).

e Using pre-trained model as feature extractor. Fix the
L — 1 model parameters {W;}-=! and train the final
layer W, using a new dataset. (We can change the
number of classes)

e Using pre-train model as initial model parameter. We
train a few epochs using new dataset from the initial
model parameters {W,},.
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Fine-tuning (LoRA) [5]

In pre-trained model such as large language models (LLM),
the number of model parameters are huge; it is expensive for

fine-tuning.
The low rank adaptation (LoRA) is a widely used technique.
We model the fine-tuned parameter W, € R%>d+1 as

W, =W, +UV,",

where U, € R¥%*" and V, € R%*+1*" (r < d). The number of
tuning parameters is only Zng_ll(de +dpq)r.

e Fine-tuning U,, V;, V.
e Updating parameters W, < W, + U,V,"
20/30



e Semi-supervised learning. Use unlabeled samples and
assume the data distribution of unlabeled data is same as
training.

e Weighted Maximum Likelihood, Graph-based method.

e Transfer Learning. Use samples from test data. Training
and test distributions are different.

e Covariate shift adaptation, frustratingly easy domain
adaptation.

e Fine-tuning (LoRA).
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