
Semi-supervised and
transfer Learning

Makoto Yamada
makoto.yamada@oist.jp

Kyoto University

1 / 30

Review: Supervised Learning

Problem formulation of supervised learning.

• Input vector: x = (x1, x2, . . . , xd)⊤ ∈ Rd

• Output: y ∈ R
• (xi, yi) i.i.d.∼ p(x, y)
• Labeled data: {(x1, y1), (x2, y2), . . . , (xn, yn)}
• Model: f(x;w) = w⊤x. (Linear model)

Risk: R(w) =
∫∫

loss(y, f(x;w))p(x, y)dxdy

Empirical Risk: Remp(w) = 1
n

∑n
i=1 loss(yi, f(xi;w))

Empirical Risk Minimization (ERM): ŵ = argmin w Remp(w)

2 / 30

Semi-Supervised Learning

Problem formulation of semi-supervised learning.

• (xi, yi) i.i.d.∼ p(x, y)
• xi

i.i.d.∼ p(x)
• Labeled data: {(x1, y1), (x2, y2), . . . , (xn, yn)}
• Unlabeled data: {xn+1,xn+2, . . . ,xn+m}
• Usually n≪ m and n is small

Semi-supervised learning:

• We have both labeled and unlabeled samples.
• Semi-supervised learning uses both labeled and unlabeled

samples.
• The unlabeled samples follow the same distribution of the

marginal distribution of p(x, y) 3 / 30

Role of unlabeled data

Data generation process

• Input x is generated by a distribution with p(x).
• Output y for x is generated by conditional distribution

with probability density p(y|x).

Unlabeled data can be used for capturing p(x)

• input data distribution, input space metric, or better
representation.

1 KYOTO UNIVERSITY

�

�
�

� is closer

�

�

�

� is closer

�
�
�

� � � �
��

�

�

��
�
�

� � � �
��

direct
distance

geodesic distance

only with labeled data Both unlabeled and labeled data

? ?

�: unlabeled
+1 +1

-1-1

4 / 30

Semi-supervised learning frameworks

• Weighted maximum likelihood estimation
• Graph-based learning
• Self-training
• Clustering
• Generative models

5 / 30

Weighted maximum likelihood

The original goal of MLE is to maximize:

Ep(x,y)[log p(y|x)] =
∫∫

log P (y|x;w) p(y|x)p(x)︸ ︷︷ ︸
p(x,y)

dxdy,

≈ 1
n

n∑
i=1

log(P (yi|xi;w))

where P (y|x;w) is a model. Each training instance is equally
weighted.

Note, MLE is equivalent to maximize the negative
log-likelihood function:

L(w) = log
(

n∏
i=1

P (yi|xi;w)
)
∝ 1

n

n∑
i=1

log(P (yi|xi;w))

6 / 30

Weighted maximum likelihood

Weighted maximum likelihood:

max
w

n∑
i=1

p(xi) log(P (yi|xi;w))

• Each training data instance is weighted by p(xi).
• p(x) is estimated by using unlabeled data.
• Denser areas are largely weighted
• Training a classifier focusing on the dense areas

1 KYOTO UNIVERSITY

§Weighted maximum likelihood:
–Each training data instance is weighted according to !(#)
–Dense areas are largely weighted

–Training a classifier focusing on the dense areas

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

Dense

7 / 30

Graph-based method

• Basic idea: construct a graph capturing the intrinsic
shape of input space, and make prediction on the graph.

• Assumption: Data lie on a manifold in the feature space
• The graph represent adjacency relationships among data
• K-nearest neighbor graph (e.g., Aij = {0, 1})
• Edge-weighted graph with e.g., Aij = exp(−∥xi − xj∥2

2)

1 KYOTO UNIVERSITY

�

�
�

� is closer

�

�

�

� is closer

�
�
�

� � � �
��

�

�

��
�
�

� � � �
��

direct
distance

geodesic distance

only with labeled data Both unlabeled and labeled data

? ?

�: unlabeled
+1 +1

-1-1

8 / 30

Label propagation

Basic idea: Adjacent instances tend to have the same label.
Transductive setting (we have test instances)

min
f∈Rn+m

n∑
i=1

(fi − yi)2 + λ
n+m∑
i=1

n+m∑
j=1

Aij(fi − fj)2,

where λ > 0 is the regularization parameter.

• 1st term: (squared) loss function to fit to labeled data.
• 2nd term: regularization function to make adjacent nodes

to have similar predictions.

1 KYOTO UNIVERSITY

Label propagation:
Simple graph-based method

!"
prediction:

labeled data unlabeled data

9 / 30

Transfer Learning

Supervised Learning:

• Training {(xtr
i , ytr

i)}n
i=1

i.i.d.∼ ptr(x, y)
• Test (xte, yte) i.i.d.∼ pte(x, y) (Not observed during training)
• ptr = pte (Training and test distributions are same)

Semi-supervised Learning:

• Training {(xtr
i , ytr

i)}n
i=1

i.i.d.∼ ptr(x, y),
{xtr

i }n+m
i=n+1

i.i.d.∼ ptr(x).
• Test (xte, yte) i.i.d.∼ pte(x, y) (Not observed during training)
• ptr = pte (Training and test distributions are same)

If ptr ̸= pte, supervised method and semi-supervised method do
not perform well. A solution: Transfer Learning!

10 / 30

Problem formulations of Transfer Learning

Unsupervised transfer learning

• {(xtr
i , ytr

i)}ntr
i=1

i.i.d.∼ ptr(x, y),
• {xte

j }nte
j=1

i.i.d.∼ pte(x), ntr ≪ nte

Supervised transfer learning

• {(xtr
i , ytr

i)}ntr
i=1

i.i.d.∼ ptr(x, y)
• {(xte

j , yte
j)}nte

j=1
i.i.d.∼ pte(x, y), nte ≪ ntr

Semi-supervised transfer learning

• {(xtr
i , ytr

i)}ntr
i=1

i.i.d.∼ ptr(x, y)
• {(xte

j , yte
j)}nte

j=1
i.i.d.∼ pte(x, y), nte ≪ ntr

• {xte
j }

nte+n′
te

j=nte+1
i.i.d.∼ pte(x), ntr ≪ nte

11 / 30

Unsupervised Transfer Learning

We assume

• It does not need to have test label
• Need some assumption

Standard approaches

• Importance weighted method (e.g., Covariate shift
adaptation)

• Subspace based method.

12 / 30

Covariate Shift Adaptation [1]

Problem setup:

• {(xtr
i , ytr

i)}ntr
i=1

i.i.d.∼ ptr(x, y),
• {xte

j }nte
j=1

i.i.d.∼ pte(x), ntr ≪ nte

Key idea: Learning a function so that error in test data is
minimized under the assumption ptr(y|x) = pte(y|x)

Density-Ratio Applications (1)
nChange point detection
nTransfer learning

nSpeaker identification
nHuman pose estimation
nAction recognition

nDimensionality reduction
nOutlier detection

1

Yamada et al. (NIPS 2011)

Liu, Yamada, Collier, & Sugiyama(NN 2012)

Yamada, Sigal, & Raptis (ECCV 2012)

Yamada, Sugiyama, & Matsui (SP 2010)
Change Point

Simodaira (JSPI 2000)

Yamada & Sugiyama (AAAI 2012)

Training

Test

Yamada et al. (NIPS 2011)

13 / 30

Covariate Shift Adaptation

The risk for pte(x, y) can be written as

J(w) =
∫∫

L(y, f(x))pte(x, y)dxdy

=
∫∫

L(y, f(x))pte(x, y)
ptr(x, y)ptr(x, y)dxdy

=
∫∫

L(y, f(x))pte(y|x)pte(x)
ptr(y|x)ptr(x) ptr(y,x)dxdy

=
∫∫

L(y, f(x))pte(x)
ptr(x)ptr(y,x)dxdy

≈ 1
ntr

ntr∑
i=1

L(ytr
i , f(xtr

i))pte(xtr
i)

ptr(xtr
i)

Actually, it is a weighted maximum likelihood problem. Note
pte(xtr

i)
ptr(xtr

i) is a ratio of probability densities (density-ratio).
14 / 30

Covariate Shift Adaptation

Exponentially-flattened Importance weighted empirical risk
minimization (IW-ERM) [1]:

min
f∈F

1
ntr

ntr∑
i=1

L(ytr
i , f(xtr

i))
(

pte(xtr
i)

ptr(xtr
i)

)τ

where 0 ≤ τ ≤ 1 is a tuning parameter for stabilizing the
covariate shift adaptation.

• τ = 0→ ERM
• 0 < τ < 1→ Intermediate
• τ = 1 IW-ERM

Setting τ to 0 < τ < 1 is practically useful.
15 / 30

Covariate Shift Adaptation

Relative Importance weighted empirical risk minimization
(RIW-ERM) [2]:

min
f∈F

1
ntr

ntr∑
i=1

L(ytr
i , f(xtr

i)) pte(xtr
i)

(1− α)pte(xtr
i) + αptr(xtr

i)
where 0 ≤ τ ≤ 1 is a tuning parameter for stabilizing the
covariate shift adaptation.

• α = 0→ ERM
• 0 < α < 1→ Intermediate
• α = 1 IW-ERM

rα(x) = pte(x)
(1− α)ptr(x) + αptr(x) <

1
1− α

The density ratio is bounded above by 1/(1− α).
16 / 30

Importance Weighted Least Squares

The importance weighted least squares problem can be written
as

min
w

J(w) = 1
ntr

ntr∑
i=1

r(xtr
i)∥ytr

i −w⊤xtr
i ∥2

2,

where r(x) is a weight function (e.g., density-ratio).

Take the derivative w.r.t. w and equating it to zero.

∂J(w)
∂w

= − 2
ntr

ntr∑
i=1

r(xtr
i)(ytr

i −w⊤xtr
i)xtr

i = 0

ŵ =
(

ntr∑
i=1

r(xtr
i)xtr

i x
tr
i

⊤
)−1 ntr∑

i=1
r(xtr

i)ytr
i x

tr
i

17 / 30

Synthetic Example

Comparison of EIW-LS and RIW-LS:

Toy Example

nPredicted output by IWKR (IWKR = RIW-LS)

3

RIW method gives smaller error and varianceJ

Yamada et al. (NIPS 2011)

18 / 30

Supervised Transfer Learning

Problem formulation:

• {(xtr
i , ytr

i)}ntr
i=1

i.i.d.∼ ptr(x, y)
• {(xte

j , yte
j)}nte

j=1
i.i.d.∼ pte(x, y), nte ≪ ntr

We assume to have a large number of training samples and a
small number of paired target labeled samples.

• Frustratingly easy domain adaptation [3].
• Multi-task Learning
• Fine-tuning (Deep Learning)

19 / 30

Importance Weight

Naive approach: Pooling training and test samples

J(w) =
∫∫

loss(y, f(x;w))pte(x,y)dxdy

= α
∫∫

loss(y, f(x;w))ptr(x,y)dxdy

+ (1− α)
∫∫

loss(y, f(x;w))pte(x,y)dxdy

≃ α

ntr

ntr∑
i=1

loss(ytr
i , f(xtr

i ;w)) + (1− α)
nte

nte∑
j=1

loss(yte
j , f(xte

j ;w)),

where 0 ≤ α ≤ 1 is a tuning parameter to control trade off
between source and target errors.

20 / 30

Multi-task Learning

Problem formulation:

• Task1:{(x(1)
i , y

(1)
i)}n1

i=1
i.i.d.∼ p1(x, y)

• ...
• TaskM :{(x(M)

j , y
(M)
j)}nM

j=1
i.i.d.∼ pM(x, y)

• Linear Models: f1(x(1)) = w⊤
1 x

(1), f2(x(2)) =
w⊤

2 x
(2), . . . , fM(x(M)) = w⊤

Mx(M)

min
w1,...,wM

M∑
m=1

1
nm

nm∑
i=1

loss(y(m)
i , fm(x(m))) + λR(w1, . . . ,wM).

where R(w1, . . . ,wM) is a regularizer.

• λ = 0 : Independently optimize ws
• λ > 0 : We share some information among models.

21 / 30

Multi-task Learning

Multi-task learning optimization (Graph-Laplacian).

min
w1,...,wM

M∑
m=1

1
nm

nm∑
i=1

loss(y(m)
i , fm(x(m)

i)) + λ

M∑
m=1

M∑
m′=1

rm,m′ ∥wm − wm′ ∥2
2.

where rm,m′ ≥ 0 is a model parameter (similarity between
models). If rm,m′ > 0, we make wm and wm′ close.

22 / 30

Multi-task Learning [4]

Other approach: Explicitly including shared parameter. We
decompose wm = w0 + vm

That is

• f1(x(1)) = (w0 + v1)⊤x(1),
• f2(x(2)) = (w0 + v2)⊤x(2),
• . . .

• fM(x(M)) = (w0 + vM)⊤x(M)

where w0 is a common factor for all models.
For squared-loss, we can write the problem as

min
w1,...,wM

1
2

M∑
m=1

1
nm

nm∑
i=1

(
y

(m)
i − (w0+vm)⊤x

(m)
i

)2
+λ(∥w0∥2

2+
M∑

m=1

∥vm∥2
2)

23 / 30

Supervised Transfer Learning: Frustratingly
easy domain adaptation

A frustratingly easy feature augmentation approach:

ztr = (xtr⊤
xtr⊤

0d
⊤)⊤, zte = (xte⊤

0d
⊤ xte⊤)⊤,

The inner product of z in the same domain is give as

ztr⊤
ztr = 2xtr⊤

xtr, zte⊤
zte = 2xte⊤

xte,

while we have

ztr⊤
zte = xtr⊤

xtr, .

Then, we train a supervised learning method with the
transformed vectors z. Super easy!!!!

24 / 30

Multi-task Learning

Supervised transfer learning can be regarded as a two-task
learning problem. First task is for training and second task is
for test.

Let us denote the transformed vectors as

ztr = (xtr⊤
xtr⊤

0d
⊤)⊤ ∈ R3d,

zte = (xte⊤
0d

⊤ xte⊤)⊤ ∈ R3d,

where 0d ∈ Rd is the vector whose elements are all zero.

And, we consider a linear regression problem: The model
parameter of the linear model can be written as

w = (w⊤
0 v1

⊤ v2
⊤)⊤ ∈ R3d

25 / 30

Multi-task Learning

J(w) =
1

2ntr

ntr∑
i=1

∥ytr
i − ztr

i
⊤
w∥2

2 +
1

2nte

nte∑
i=1

∥yte
i − zte

i
⊤
w∥2

2 + λ∥w∥2
2

=
1
2

M∑
m=1

1
nm

nm∑
i=1

(
y

(m)
i − (w0+vm)⊤x

(m)
i

)2
+λ(∥w0∥2

2+
M∑

m=1

∥vm∥2
2),

where we use

w⊤ztr = (w0 + v1)⊤xtr, w⊤zte = (w0 + v2)⊤xte

xtr = x(1), xte = x(2),

∥w∥2
2 = ∥w0∥2

2 +
2∑

m=1
∥vm∥2

2.

Frustratingly easy domain adaptation is a multi-task learning.
26 / 30

Fine-tuning

In deep learning context, Fine-tuning is a main approach for
transfer learning.

• Prepare a pre-trained model.
• Updating model parameters using a new dataset.

��

�������	����������������
����
�		�����
����

����

����

���������������

 �
�	������
����������

���
��

 �
���

27 / 30

Fine-tuning frameworks

There are mainly two approaches for fine tuning. Let us
denote the pretrained model parameter as {Ŵi}L

ℓ=1, where L

is the number of layers (or blocks).

• Using pre-trained model as feature extractor. Fix the
L− 1 model parameters {Ŵi}L−1

ℓ=1 and train the final
layer WL using a new dataset. (We can change the
number of classes)

• Using pre-train model as initial model parameter. We
train a few epochs using new dataset from the initial
model parameters {Ŵi}L

ℓ=1.

28 / 30

Fine-tuning (LoRA) [5]

In pre-trained model such as large language models (LLM),
the number of model parameters are huge; it is expensive for
fine-tuning.

The low rank adaptation (LoRA) is a widely used technique.
We model the fine-tuned parameter W̄ℓ ∈ Rdℓ×dℓ+1 as

W̄ℓ = Ŵℓ + UℓV
⊤

ℓ ,

where Uℓ ∈ Rdℓ×r and Vℓ ∈ Rdℓ+1×r (r ≪ d). The number of
tuning parameters is only ∑L−1

ℓ=1 (dℓ + dℓ+1)r.

• Fine-tuning Uℓ,Vℓ,∀ℓ.
• Updating parameters Ŵℓ ← Ŵℓ + ÛℓV̂

⊤
ℓ

29 / 30

Summary

• Semi-supervised learning. Use unlabeled samples and
assume the data distribution of unlabeled data is same as
training.

• Weighted Maximum Likelihood, Graph-based method.
• Transfer Learning. Use samples from test data. Training

and test distributions are different.
• Covariate shift adaptation, frustratingly easy domain

adaptation.
• Fine-tuning (LoRA).

30 / 30

[1] Hidetoshi Shimodaira. Improving predictive inference under
covariate shift by weighting the log-likelihood function.
Journal of statistical planning and inference,
90(2):227–244, 2000.

[2] Makoto Yamada, Taiji Suzuki, Takafumi Kanamori,
Hirotaka Hachiya, and Masashi Sugiyama. Relative
density-ratio estimation for robust distribution comparison.
In Advances in neural information processing systems,
pages 594–602, 2011.

[3] Hal Daumé III. Frustratingly easy domain adaptation. ACL
2007, page 256, 2007.

[4] Theodoros Evgeniou and Massimiliano Pontil. Regularized
multi–task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 109–117, 2004.

30 / 30

[5] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685, 2021.

30 / 30

