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Various types of GNNs

A brief history of graph neural nets

“Spatial methods” MoNet Relation Nets
N SQantarn at al '-‘.raphSAGE
((IEVI\?SI‘R'Z‘OT%) amilton et al.
Original GNN GG-NN Pro%r"z-;r?n:n?sseGraphs NIPS 2017)
= Gorietal. == Lietal
(2005) (ICLR 2016) ] 'gﬁ:'e"w; feLean NRI
\ ipf et al.
(ICML 2017) GAT N
Velickovic etal, M-2018)
(ICLR 2018)
GCN
Kipf & Welli
(IIE‘,LR 231';)9 “DL on graph explosion”
Other early work:
- Duvenaud et al. (NIPS 2015)
- Dai et al. (ICML 2016)
Spectral :
ChebNet - Niepert et al. (ICML 2016)
Graph CNN “Spectral methods”

Bruna et al.
(ICLR 2015)

= Defferrard et al.

(NIPS 2016)

- Battaglia et al. (NIPS 2016)
- Atwood & Towsley (NIPS 2016)
- Sukhbaatar et al. (NIPS 2016)

(slide inspired by Alexander Gaunt's talk on GNNs)

http://tkipf.github.io/misc/SlidesCambridge.pdf
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http://tkipf.github.io/misc/SlidesCambridge.pdf

Graph
A graph consists of Nodes V' and edges E. G = (V, E)

Undirected graph Directed graph
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Attributed graph

Graph + features
In each node, a feature vector is given. X = (x1, >, ..., x,)

We mainly use Attributed graphs for GNN.

Attributed graph
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Adjacency matrix & Degree matrix

Adjacency matrix A

n X n matrix with edge information

- 1 (i-th node is connected to j-th node)
Y] 0 (Otherwise)

Degree matrix D

n X n matrix with degree information.

D = diag(dll, d22, 500 7dnn) e Rmxm
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Graph Laplacian

Graph Laplacian

L=D-A,
® u'Lu=37] 5} aj(u; —u;)* > 0 (PSD)
® L1, =0, (minimum eigenvalue is zero)

Normalized graph Laplacian

L=D:LD:=1,-D :AD:

® u'Lu=3%7",>", aij (i — \/:)2 >0 (PSD)
(@ = D Y?u and v Lu = o' La)
® LD'?1, = Ld =0, (minimum eigenvalue is 0 and

maximum eigenvalue is less than 2) -



What is GNN?

It is an embedding method for graph.
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Convolution

Convolutional Neural Networks (CNN)
® Aggregate neighbor pixels.
® Apply o(-) and propagate the information to higher layers.

e.g., Convolution for 5th pixel.

h{™ = o (WORY + WORY .+ WOR)
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Graph Neural Networks (GNN)

GNN: Neural network with graph convolution.

Graph Neural Networks

$7/5z—5 4$—41z1 &5‘44
. 7
ZAT ol A
g\ g B2 convolution convolution <R h$3 —-2
9 6 & 6
g AL

Task z; = WhY) W € RExd.
® Node classification : softmax(z;)
® Graph classification : softmax(}_; z;)

® Link prediction : p(a;;) = o(z] 2;)
8/24



GNN (Node classification)

We compute probability by using an additional layer
(W = (wy,...,wg)" € REX) to the graph embedding
h{"

EXp( Th(L))

D eXP(w )

o — softmax(Whl(L)) =
exp(w;';,hEL))
Zf, exp(wT h(.L))
Loss function (Training data: {(x;, y;)},, A € R™")

n K
L= yiilog(z;)

i=1 k=1

z; = (214,---,2Ki)", Y; is an one-hot vector.
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GNN (Graph classification)

We transform the output of graph convolution hZ(L) by an
additional layer and aggregate them to compute probability.

exp(w z h(L))
Zk, exp(w ZZ hZ

z; = softmax(W 3_ h{") =
2 exp(w Z h(L))

ZS, exp(w Zl hz
Loss function (Training data: {(X;,y;, 4:)}%,)

E=ZZymlog Zhyi)

i=1 k=1

z; = (214,---,2Ki)", Y; is a one-hot vector,
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GNN (Link prediction)

The output of an GNN: z; = th)

Generative model

p(A|Z) = H Hp (oA E e,

i=14=1
play = 1|z, 2)) = o(z] ;)
o(-) is the sigmoid function.

Loss function (X € R¥*" A € R™")
L =Eyzx,4)logp(A|Z2)] - KL[g(Z]| X, A)[|p(Z)]

KL[q(-)||p(+)] is the KL-divergence.
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Graph Convolutional Networks (GCN)

Graph convolution

A =5 (W“m T LwOn )

Jiag, ]7£0 (I‘]

Attributed graph Graph convolution
T Iy T4 T = QCB4 i3l
5 4 — 1 5 +~—
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Graph Convolutional Networks (GCN)

Graph convolution

1
R — 5 (Wé”h&‘# > —Wl(f)hg.@)

jiai j#0 Cii

Definition of variables

® AcR™™ . Adjacency matrix
o Wl(z) € Rmexme=1 T Transformation matrix
o hy) € R™ . i-th sample’s intermediate

representation of the /-th layer
® () . Activation function

Explain about graph convolution through graph Fourier

transform.
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Fourier transform

Transform real signal to frequencies.

Discrete Fourier transform

i
L
L

n—

X(k) =Y a(k)e™ " = 3 a(k)w)

i=0 i=0

Matrix representation
X(0) w® W@ e wfd #(0)
X(1) o W@ ey || a(y)
X(n—-1) w® ) gy() x(n—1)

Low frequency component tends to be constant.
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Fourier transform

B

sin(x) DFT

sin(x) + sin(10z) DFT 15/ 24



Fourier transform

sin(x) + sin(10z) DFT

==
50 100 150 20

Filter. Filtered signal (IDFT)

4
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Graph Fourier transform

Definition Eigenvalue decomposition of the (normalized)
graph Laplacian.

L=UNU"
Normalized graph Laplacian
L=D:LD :=I-D :AD:
L=D-A,
where

U= (uy,uy,...,u,)
A:dlag()\la)\2>7)\n)70§)\1§/\2g S)\n
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Graph Fourier transform

Eigenvalue decomposition (1st eigenvalue)

Since we have L1,, = 01,, and L is a PSD matrix, \/iﬁln is the

corresponding eigenvector.

Moreover, we can write the eigenvalue decomposition as

n n
min uw Lu =YY ay(u; — u;)?
i=1j=1

T

st. v u=1.

Thus, the minimum is achieved when
uy = up = ... = u, = Const. with its eigenvector \/iﬁln. (i.e.,

Low pass filter)
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Graph Fourier transform

Eigenvalue decompsition (2nd eigenvalue)
n n
min ’U/TL’U, = Z Zaij(ui — Uj)2
u
i=1j=1

T

st. w'u=1u"us =0.

U = %ln is the first eigenvector.

Interpretation

We want to have an eigenvector that is orthogonal to the 1st
eigenvector u; and minimizes u' Lu.

That is, eigenvectors with small eigenvalues are low pass
filters and eigenvectors with high eigenvalues are high pass

filters. 1924



Graph convolutions (Graph Fourier)

We apply (graph) Fourier transform to the input and then
apply filters to the transformed vector. Then, we apply inverse
(graph) Fourier transform to the filtered signal.

Graph Fourier transform

z=U'zx

Convolution (multiplication in frequency domain.)
Oz =0U"z

Inverse Graph Fourier transform

Tiitered = UBU "

© is estimated from training data set.
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Graph convlution (ChebyNet)

In graph Fourier transform, it needs to solve eigenvalue
decomposition O(n?).

ChebyNet Compute filter without eigenvalue decomposition

K 2
O(N) ~ 3 6,T; (A A— In>
k=1 max

0y are the model parameters, T)(A) is the k-th Chebychev

polinomial.

Te(A) = 2AT 1 (N) — T2(A)(k > 2), To(N) = L, Ti(A) = A

2

K
Tfiered = UBU ' ~ [Z 0T (

k=1 max

L—In)]a;
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Graph convolution (GCN)

We use the normalized graph Laplacian (Anax = 2) and use
the 1st order ChebyNet.

Tfiered = U [0, + 61(N — L,)] U '@
= [66UU" + 6(UNUT - I)|
= [6oI, + 6:(I, - D> AD? - I)| o
= 6oz — 6D :ADx
Thus, this can be written more generally as
R = 5 (Wé”h@ + Y ;M%ﬁf’)
jiai ;70 Cind
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Graph convolution (matrix form)

We can write the graph convolution by matrix multiplications.

Without normalization

HE — (W(f) H®Y A)

With normalization
HOW — o (WOHROD 4D )

There exist many variants.
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Graph data

Introduction to graph neural networks

[ ]
(]
® Graph Fourier transform
® Graph convolution

(]

Graph Convolutional Networks (GCN)
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