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Introduction

Feature selection is important for high-dimensional data:

• User data (d > 100), e.g., e-mail spam detection.
• Gene expression data (d > 20000), e.g., cancer

classification.
• Text based feature such as TF-IDF (d > 100, 000)

1

HSICの応用２：変数選択
• Marginal Screening

𝑌が各変数 𝑋𝑎 (𝑎 = 1,… , 𝑝)に依存するか
否かによって，変数選択を行う

Sure Independence Screening (Fan & Lv JASA2008)
• 相関 Corr(𝑋𝑎, 𝑌)でランク付けして，トップ 𝑘 個を選択．
• スクリーニングの一致性（真の非ゼロ線形回帰係数を「含む」集合を選
択する確率が１に収束）

• HSICによるmarginal screening
• HSIC(𝑋𝑎, 𝑌)のトップ 𝑘 個を選択 (Song et al JMLR2012; Balasubramanian et al AISTATS2013）
• 𝑘個選んだ後さらに検定が可能（Post selection inference, Yamada et al 2016)
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Motivation1

The purpose of feature selection is

• to improve the prediction accuracy by getting rid of
non-important features.

• to make the prediction faster.
• to interpret data.
• to handle high-dimensional data.
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Motivation2

Let us think about the least-squared regression problem:

min
w∈Rd

∥y − X⊤w∥2
2

where x = (x1, x2, . . . , xd)⊤ ∈ Rd,
X = (x1,x2, . . . ,xn) ∈ Rd×n, w = (w1, w2, . . . , wd)⊤ ∈ Rd,
y ∈ Rn, and ∥ · ∥2

2 is the ℓ2 norm.

Question:

• d < n and the rank of X is d. Please derive the
analytical solution of w.
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Motivation2

Take the derivative with respect to w and set it to zero:
∂

∂w
∥y − X⊤w∥2

2 = −2X(y − X⊤w) = 0

Use Eq. (84) of [1]. The solution is given as

ŵ = (XX⊤)−1Xy.

If the rank of X is d, XX⊤ is invertible.

What happens if the rank of X is less than d?

• XX⊤ is not invertible.

A possible solution is to use feature selection! If we select
r < d features, we can compute w.
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Problem formulation

Problem formulation of feature selection:

• Input vector: x = (x1, x2, . . . , xd)⊤ ∈ Rd

• Output: y ∈ R
• Paired data: {(xi, yi)}n

i=1

Goal: Select r(r < d) features of input x that are responsible
for output y.

Problems: There is 2d combinations :( It is hard even if d is
100.
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Feature Selection Algorithms

The feature selection algorithms can be categorized into three
types.

• Wrapper Method
Use a predictive model to select features.

• Filter Method
Use a proxy measure (such as mutual information)
instead of the error rate to select features.

• Embedded Method
Features are selected as part of the model construction
process.
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Wrapper Method

Use a predictive model (e.g., classifier) to select features.

The simplest approach would be...

1 Generate feature set St

2 Train predictive model with St and test the prediction
accuracy with hold-out set.

3 Iterate 1 and 2 until all feature combination is examined.

Train 
classifier/regr

essor
{(xi, yi)}ni=1

Generate 
feature set

Evaluate the
model with

validation set
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Wrapper Method

Pro:

• It can select features that have feature-feature interaction.

Cons:

• Computationally expensive (2d combination).

Train 
classifier/regr

essor
{(xi, yi)}ni=1

Generate 
feature set

Evaluate the
model with

validation set
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Filter Method

Use a proxy measure (such as mutual information) instead of
the error rate to select features.

Pros:

• It scales well.
• Can select features from high-dimensional data (both

linear and nonlinear way).

Cons:

• The feature selection is independent of the model. The
selected features may not be the best set to achieve
highest accuracy.

• It is hard to detect select features with interaction.
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Filter Method (Example)

Maximum Relevance Feature Selection (MR)
Compute association score between each feature and its
output and rank them.

• Correlation, Mutual information, and the kernel based
independence measures are used.

• Easy to implement and it scales well.

Optimization problem:

max
β∈{0,1}d

1
S

d∑
k=1

βkI(Xk, Y ),

where S = β1 + . . . + βd.
...

Select top-r
features by 

sorting

I(X1, Y )

I(X2, Y )

I(Xd, Y )

{(xi, yi)}ni=1
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Filter Method (Example)

Minimum Redundancy Maximum Relevance (mRMR) [2]
MR feature selection tends to select redundant features.

mRMR method is to

• select features that have high association to its output.
• select independent features.

Optimization problem:

max
β∈{0,1}d

1
S

d∑
k=1

βkI(Xk, Y ) − 1
S2

d∑
k=1

d∑
k′=1

βkβk′I(Xk, Xk′).

This optimization problem can be solved by using greedy
algorithm.
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Filter Method (Mutual Information)

To optimize mRMR, we tend to use the mutual information as
an association score.

Independence:

p(x,y) = p(x)p(y)

Mutual Information:

MI(X, Y ) =
∫∫

p(x,y) log p(x,y)
p(x)p(y)dxdy

Under independence:

MI(X, Y ) =
∫∫

p(x,y) log p(x)p(y)
p(x)p(y)dxdy = 0
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Filter Method (Linear Correlation)

To optimize mRMR, we may be able to use the Pearson’s
correlation coefficient

Pearson’s correlation coefficient:

PCC(X, Y ) = Cov(X, Y )
σXσY

,

Cov(X, Y ) = E[(X − µX)(Y − µY )]

where µX = E[X], µY = E[Y ], σ2
X = E[(X − µX)2], and

σ2
Y = E[(Y − µY )2].

The cross-covariance can be written as

Cov(X, Y ) = E[(X − µX)(Y − µY )] = E[XY ] − E[X]E[Y ].

That is, if PCC(X, Y ) = 0, E[XY ] = E[X]E[Y ]
16 / 36



The relationship between independence and
correlation

If X and Y are independent, we can write

E[XY ] =
∫∫

xy p(x, y)dxdy,

=
∫∫

xy p(x)p(y)dxdy, (independence)

=
(∫

x p(x)dx
)(∫

y p(y)dy
)

= E[X]E[Y ]

That is, if X and Y are independent, E[XY ] = E[X]E[Y ].
Note that, even if E[XY ] = E[X]E[Y ], X and Y can be
dependent.
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Empirical estimation of Cross-covariance

To optimize mRMR, we may be able to use the Pearson’s
correlation coefficient

Cross-Covariance (population):

Cov(X, Y ) = E[(X − µX)(Y − µY )]

Cross-Covariance estimation:

Ĉov(X, Y ) = 1
n

n∑
i=1

(xi − µ̂X)(yi − µ̂Y )

µ̂X = 1
n

n∑
i=1

xi = 1
n
x⊤1n, µ̂Y = 1

n

n∑
i=1

yi = 1
n
y⊤1n,

where 1n = (1, 1, . . . , 1)⊤ ∈ Rn is the vector with all ones.
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Empirical estimation of cross-covariance

Cross-Covariance estimation:

Ĉov(X, Y ) = 1
n

n∑
i=1

(xi − 1
n
x⊤1n)(yi − 1

n
y⊤1n)

= 1
n

(
n∑

i=1
xiyi − 1

n
x⊤1n1

⊤
ny

)

= 1
n

(
x⊤y − 1

n
x⊤1n1

⊤
ny
)

= 1
n
x⊤

(
In − 1

n
1n1

⊤
n

)
y

= 1
n
x⊤Hy,

where H = In − 1
n
1n1

⊤
n is the centering matrix and In is the

identity matrix. (Note HH = H).
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Empirical estimation of covariance

Covariance estimation:

Ĉov(X, Y )2 = 1
n2x

⊤Hyx⊤Hy,

= 1
n2 tr

(
x⊤Hyy⊤Hx

)
= 1

n2 tr
(
xx⊤Hyy⊤H

)
= 1

n2 tr (KHLH) ,

where K = xx⊤ ∈ Rn×n and L = yy⊤ ∈ Rn×n.
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Advanced Topic (Hilbert-Schmidt Indepen-
dence Criterion)

Hilbert Schmidt Independence Criterion (HSIC) [3]

Empirical V-statistics of HSIC is given as

HSIC(X, Y ) = 1
n2 tr(KHLH),

where we use the Gaussian kernel:

Kij = exp
(

−∥xi − xj∥2
2

2σ2

)
, Lij = exp

(
−∥yi − yj∥2

2
2σ2

)
.

HSIC takes 0 if and only if X and Y are independent.

Since we can decompose K = Φ⊤Φ and L = Ψ⊤Ψ, we have

HSIC(X, Y ) = 1
n2 tr(Φ⊤ΦHΨ⊤ΨH) = 1

n2 ∥vec(ΨHΦ⊤)∥2
2 ≥ 0

We can use the normalized variant of HSIC (takes 0 to 1) [4]:

NHSIC(X, Y ) = tr(K̄L̄), K̄ = HKH

∥HKH∥F

, L̄ = HLH

∥HLH∥F
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Advanced Topic (HSIC)

Hilbert-Schmidt Independence Criterion (HSIC) experiments

NHSIC = 0.0031 
Pearson CC= 0.0343

NHSIC = 0.2842
Pearson CC = 0.1983 

X and Y are independent X and Y are dependent

1

X

Y

X

Y
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Embedded Method

Features are selected as part of the model construction
process. Embedded method can be regarded as an
intermediate method between wrapper and filter methods.

Pros:

• Can select features with high prediction accuracy.
• Computationally efficient than wrapper method.

Cons:

• Computationally expensive than filter method.
• If the input output relationship are nonlinear, it is

computationally expensive. It is more suited for linear
method.
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Embedded Method (Lasso)

Least Absolute Shrinkage and Selection Operator (Lasso)

The optimization problem of Lasso can be written as

min
w

1
2∥y − X⊤w∥2

2 + λ∥w∥1,

where ∥w∥1 = ∑d
k=1 |wk| is an ℓ1 norm.

Lasso is a convex method: The first term is a convex function
w.r.t. w. ℓ1 norm (all norm) is convex:

∥αw + (1 − α)v∥1 ≤ ∥αw∥1 + ∥(1 − α)v∥1

= α∥w∥1 + (1 − α)∥v∥1

where 0 ≤ α ≤ 1. The sum of two convex functions is convex.
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Embedded Method (Lasso)

The ℓ1 regularization is equivalent to ℓ1 norm constraint:

min
w

f(w) + λ∥w∥1 −→ min
w

f(w), s.t. ∥w∥1 ≤ η.

There exists the same solution of the ℓ1 norm constraint with
an arbitrary λ.

Using the ℓ1 regularizer, we can make w sparse.

1 KYOTO UNIVERSITY

1

1 w1

w2

1

1 w1

w2

kwk2 = 1 kwk1 = 1
w⇤

f(w) = C

w⇤
f(w) = C

L2 regularization (Ridge) L1 regularization (Lasso) 25 / 36



When Lasso helpful?

Let us think about a least-squared regression problems:

min
w∈Rd

∥y − X⊤w∥2
2.

Take the objective function with respect to w and set it to
zero:

∂

∂w
∥y − X⊤w∥2

2 = −2X(y − X⊤w) = 0

Use Eq. (84) of [1]. The solution is given as

ŵ = (XX⊤)−1Xy.

If the rank of X is d, the rank of XX⊤ is also d and it is
invertible.

What happens if the rank of X is less than d?

• XX⊤ is not invertible → Adding ℓ1 regularizer to make
w sparse

• The number of nonzero elements of w should be smaller
than n.

26 / 36



Lasso with ADMM (1/8)

Lasso has no closed form solution. Thus, we need to
iteratively optimize the problem.

Here, we introduce the Alternating Direction Method of
Multipliers (ADMM) [5].

We can rewrite the Lasso optimization problem as

min
w,z

1
2∥y − X⊤w∥2

2 + λ∥z∥1 + ρ

2∥w − z∥2
2

s.t. w = z

The key idea here is to split the main objective and the
non-differentiable regularization term. Since the last term
ρ
2∥w − z∥2

2 is zero if the constraint is satisfied, this problem is
equivalent to the original Lasso problem.
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Lasso with ADMM (2/8)

Let us denote the Lagrange multipliers as γ ∈ Rd, we can
write a Lagrangian function (called Augmented Lagrangian
function) as follows:

J(w, z,γ) = 1
2∥y − X⊤w∥2

2 + γ⊤(w − z)

+ λ∥z∥1 + ρ

2∥w − z∥2
2,

where ρ > 0 is a tuning parameter.
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Lasso with ADMM (3/8)

In ADMM, we consider the following optimization problem:

min
w,z

max
γ

J(w, z,γ) = 1
2∥y − X⊤w∥2

2 + γ⊤(w − z)

+ λ∥z∥1 + ρ

2∥w − z∥2
2,

Since we have the relationship,

max
γ

J(w, z,γ) =


1
2∥y − X⊤w∥2

2 + λ∥z∥1 (w = z)
∞ (Otherwise)

The optimization problem is equivalent to the original Lasso
problem.
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Lasso with ADMM (4/8)

Minimizing J(w, z,γ) w.r.t. w. If we fix z and γ as z(t) and
γ(t), J(w, z(t),γ(t)) is convex w.r.t. w. That is,

∂J(w, z,γ)
∂w

= −X(y − X⊤w) + γ + ρ(w − z) = 0.

Here, we can use the following equation (see [1] Eq. (84)):

∂∥y − X⊤w∥2
2

∂w
= −2X(y − X⊤w).

Solving it for w:

(XX⊤ + ρI)w = Xy − γ(t) + ρz(t)

w(t+1) = (XX⊤ + ρI)−1(Xy − γ(t) + ρz(t)).
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Lasso with ADMM (5/8)

Minimizing J(w, z,γ) w.r.t. z. If we fix w and γ as w(t) and
γ(t), J(w(t), z,γ(t)) is convex w.r.t. z.

J(w(t), z,γ(t)) = ρ

2∥z − w(t)∥2
2 + λ∥z∥1 − γ⊤z + Const.

∥z∥1 is not differentiable at 0. However, we can analytically
solve the problem! Moreover, since there is no interaction in
the elements of z, we can solve it for each element.

J(w(t), (z1, . . . , zℓ, . . . , zd),γ(t)) = ρ

2(zℓ − w
(t)
ℓ )2

+ λ|zℓ| − γℓzℓ + Const.
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Lasso with ADMM (6/8)

Case1:
zℓ > 0, ρ(zℓ − w

(t)
ℓ ) + λ − γℓ = 0 −→ zℓ = w

(t)
ℓ + 1

ρ
(γℓ−λ)

That is, zℓ > 0 if w
(t)
ℓ + 1

ρ
γℓ > λ

ρ

Case2:
zℓ < 0, ρ(zℓ − w

(t)
ℓ ) − λ − γℓ = 0 −→ zℓ = w

(t)
ℓ + 1

ρ
(γℓ+λ)

That is, zℓ < 0 if w
(t)
ℓ + 1

ρ
γℓ < −λ

ρ

Case3: zℓ = 0, 0 ∈ ρ(zℓ − w
(t)
ℓ ) + λ[−1 1] − γℓ −→

wℓ + 1
ρ
γℓ ∈ [−λ

ρ
, λ

ρ
], (zℓ = 0).
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Lasso with ADMM (7/8)

Let us introduce the Soft-Thresholding function:

Sλ(x) =


x − λ (x > λ)

0 (x ∈ [−λ, λ])
x + λ (x < −λ)

,

= sign(x) max(0, |x| − λ)

Therefore, the update of zℓ can be simply written by the
soft-thresholding function as

ẑ
(t+1)
ℓ = Sλ

ρ

(
w

(t)
ℓ + 1

ρ
γℓ

)
.
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Lasso with ADMM (8/8)

Maximizing J(w, z,γ) w.r.t. γ. That is the optimization
problem can be written as

max
γ

J(w, z,γ) = γ⊤(w − z).

To optimize this problem, since we cannot get the analytical
solution, we use the gradient ascent algorithm:

γ(t+1) = γ(t) + ρ(w(t) − z(t)).

Thus, the ADMM algorithm for Lasso can be summarized as

w(t+1) = (XX⊤ + ρI)−1(Xy − γ(t) + ρz(t))

z
(t+1)
ℓ = Sλ

ρ
(w(t+1) + 1

ρ
γ)

γ(t+1) = γ(t+1) + ρ(w(t+1) − z(t+1)).
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Elastic-Net

For Lasso, the number of non-zero features should be smaller
than n. How to select r > n variables?

Ans: Use the elastic net regularization [6]:

min
w

∥y − X⊤w∥2
2 + λ(α∥w∥1 + (1 − α)∥w∥2

2),

where 0 ≤ α ≤ 1 and λ > 0 is a regularization parameter.

∥w∥2
2 is differentiable; we can similarly solve it with ADMM.

w(t+1) = (XX⊤ + 2λ(1 − α)I + ρI)−1(Xy − γ(t) + ρz(t))

z
(t+1)
ℓ = Sλα

ρ
(w(t+1) + 1

ρ
γ)

γ(t+1) = γ(t+1) + ρ(w(t+1) − z(t+1)).

Thanks to the ℓ2 regularization, w tends to be dense.
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Summary

• Feature selection: Wrapper method, Filter method, and
Embedded method

• Wrapper method (Selecting features that maximize
prediction accuracy. Computationally expensive.)

• Filter method (Use mutual information to select features,
e.g., MR, mRMR, etc.)

• Embedded method (Selecting features during training.
e.g., Lasso)

• Alternating Direction Method of Multipliers (ADMM).
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