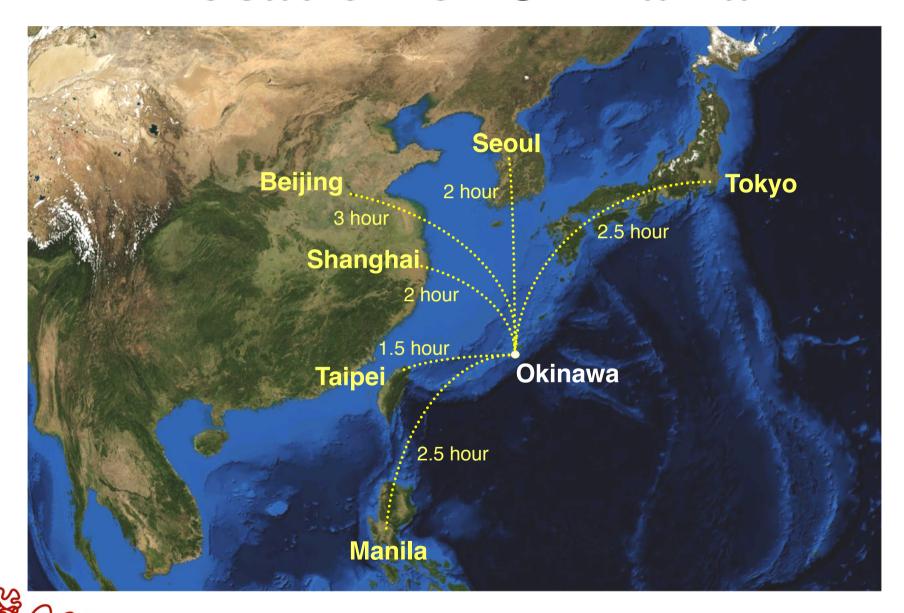


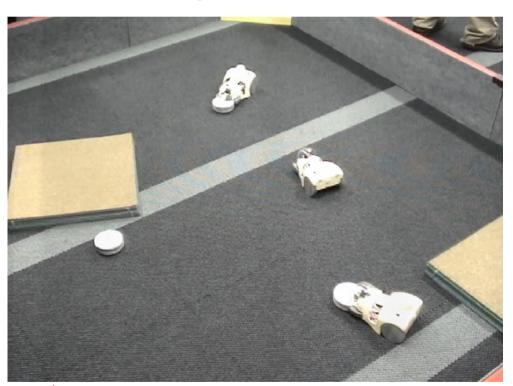
Location of Okinawa



OIST Neural Computation Unit

How to build adaptive, autonomous systems

robot experiments



How the brain realizes robust, flexible adaptation

neurobiology

Outline

Reinforcement Learning

- Can robots create their own reward function?
- Value function and basal ganglia

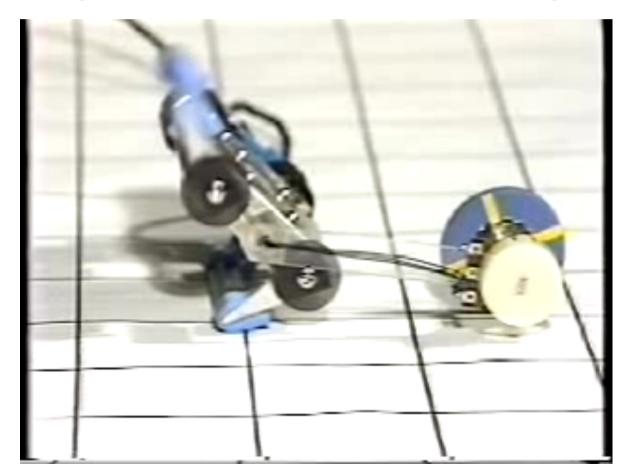
Mental Simulation

- Model-based action planning
- Dynamic Bayesian inference
- Patience, confidence and serotonin

Learning to Walk

(Doya & Nakano, 1985)

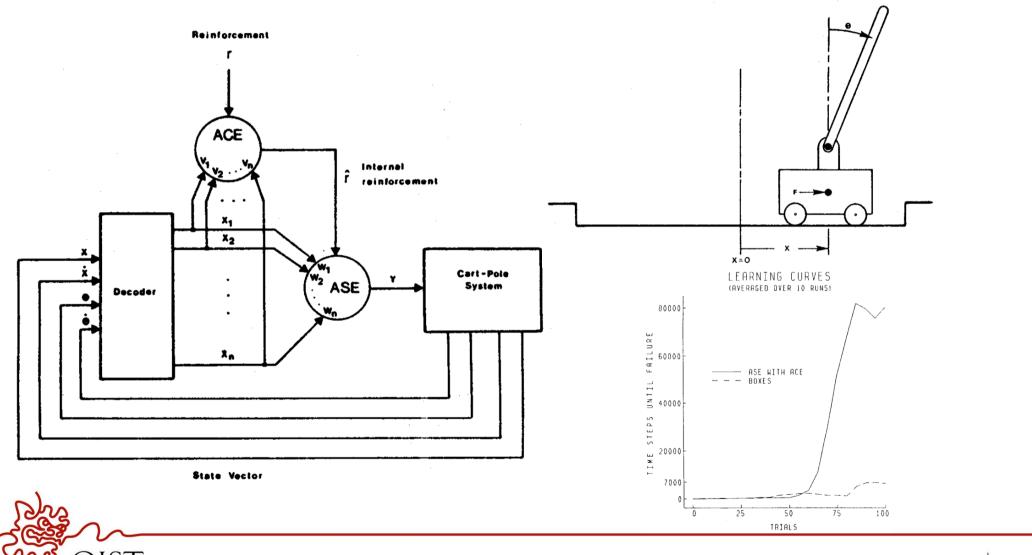
- Explore actions (cycle of 4 postures)
- Learn from performance feedback (speed sensor)



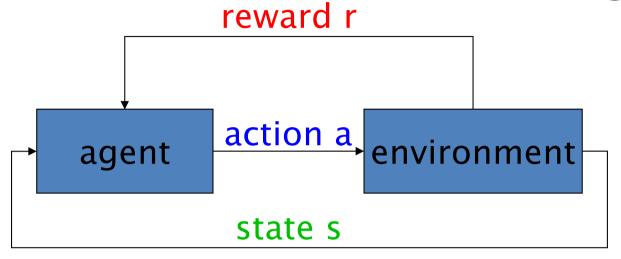
Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problems

ANDREW G. BARTO, MEMBER, IEEE, RICHARD S. SUTTON, AND CHARLES W. ANDERSON

(1983)



Reinforcement Learning



- Learn action policy: $s \rightarrow a$ to maximize rewards
- Value function: expected future rewards

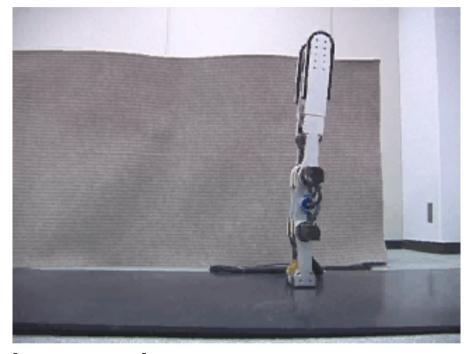
•
$$V(s(t)) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2) + \gamma^3 r(t+3) + ...]$$

• $0 \le \gamma \le 1$: discount factor $\gamma V(s(t+1))$

Temporal difference (TD) error:

Reinforcement Learning

(Morimoto & Doya, 2000)



- Learning from reward and punishment
 - reward: height of the head
 - punishment: bump on the floor

Cyber Rodent Project

(Doya & Uchibe, 2005)

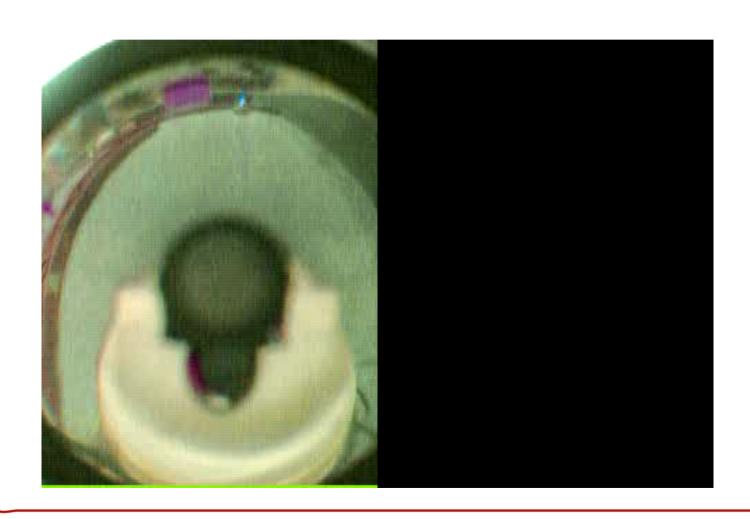
What is the origin of rewards?

Robots with same constraint as biological agents

- Self-preservation
 - capture batteries
- Self-reproduction
 - exchange programs through IR ports

Vision of Cyber Rodents

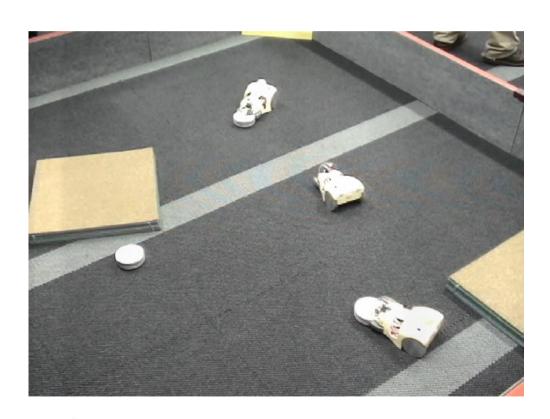
■Robot eye view

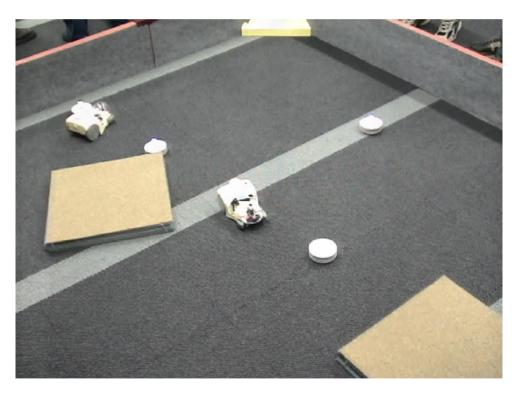


Learning to Survive and Reproduce

- Catch battery packs
 - survival

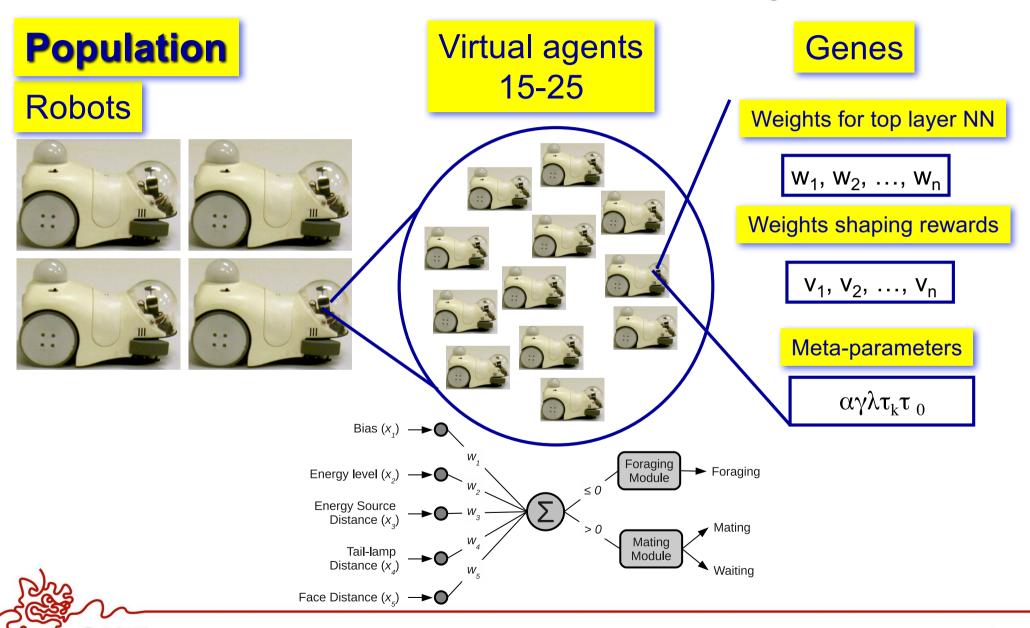
- Copy 'genes' by IR ports
 - reproduction, evolution





Embodied Evolution

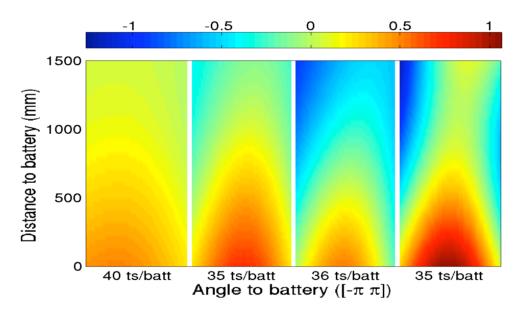
(Elfwing et al., 2011)

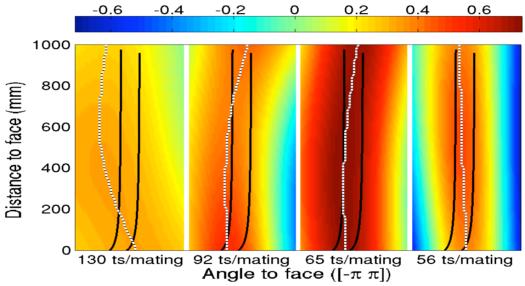


Evolution of Shaping Rewards

Vision of battery

Vision of face

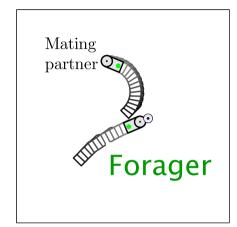


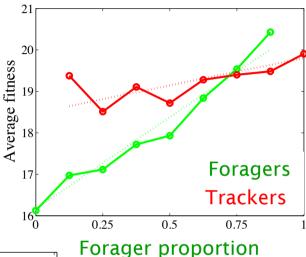


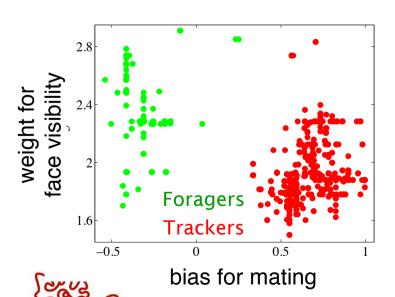
Polymorphism within Colony

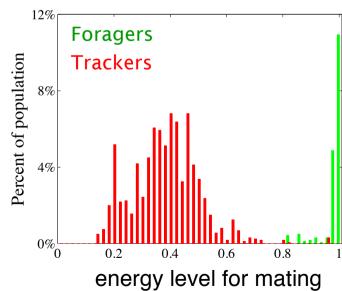
(Elfwing et al. 2014)

Foragers and Trackers









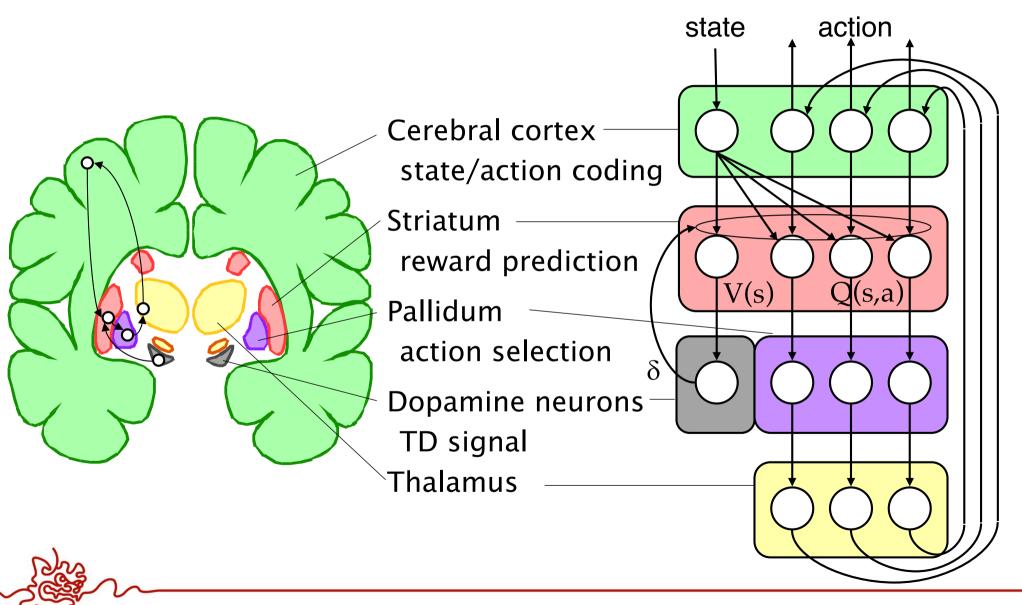
Reinforcement Learning

- Predict reward: value function
 - $V(s) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2)...| s(t)=s]$
 - $Q(s,a) = E[r(t) + \gamma r(t+1) + \gamma^2 r(t+2)... | s(t)=s, a(t)=a]$
- Select action How to implement these steps?
 - $oldsymbol{o}$ greedy: a = argmax Q(s,a)
 - Boltzmann: $P(a|s) \propto exp[\beta Q(s,a)]$
- Update prediction: TD error

 - $\Delta V(s(t)) = \alpha \delta(t)$ How to tune these parameters?

Basal Ganglia for Reinforcement Learning?

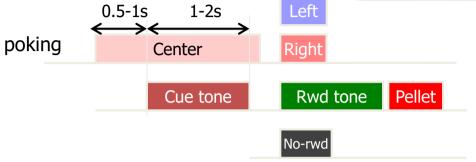
(Doya 2000, 2007)



Fixed and Free Choice Task

(Ito & Doya, 2015, J Neuroscience)

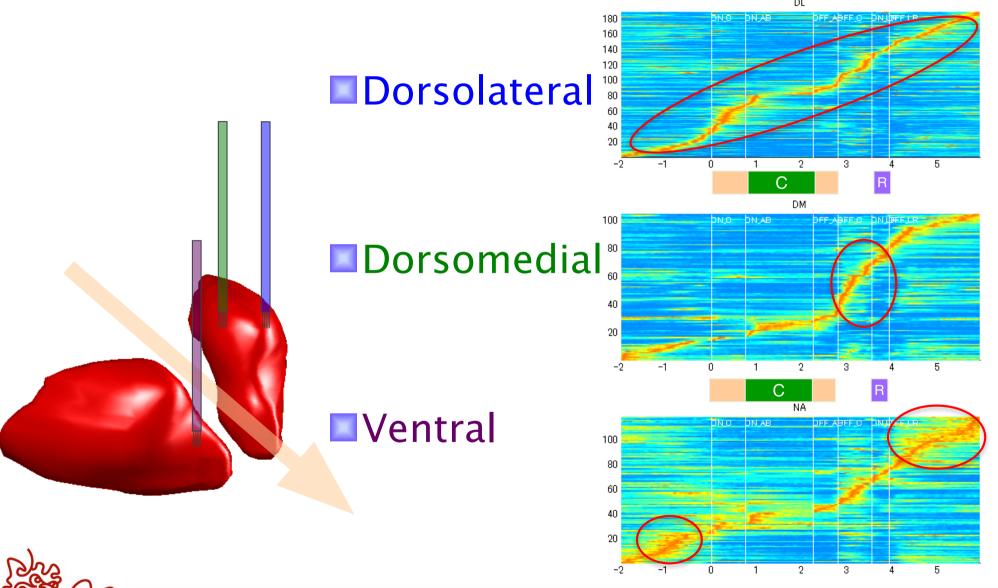
Left Center Right



Cue tone	Reward prob. (L, R)
Left tone	Fixed
(900Hz)	(50%,0%)
Right tone	Fixed
(6500Hz)	(0%, 50%)
	Varied
Free-choice tone	(90%, 50%)
(White noise)	(50%, 90%)
	(50%, 10%)
	(10%, 50%)

Neural Activity in the Striatum

(Ito & Doya, 2015)

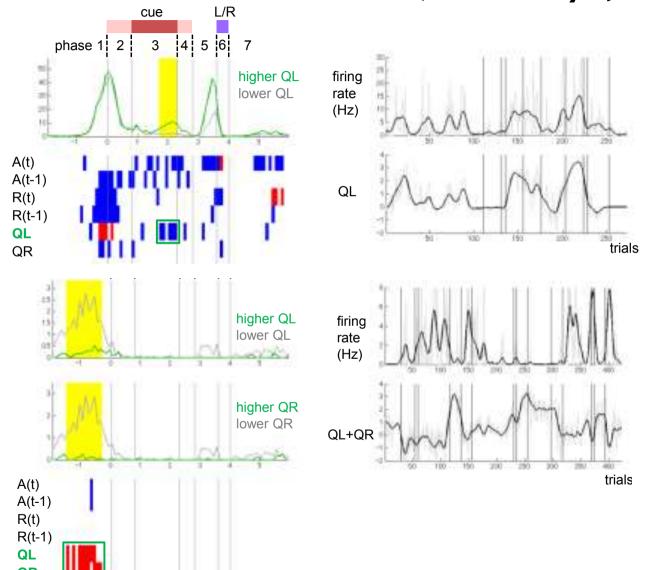


Action/State Value Coding Neurons

(Ito & Doya, 2015)

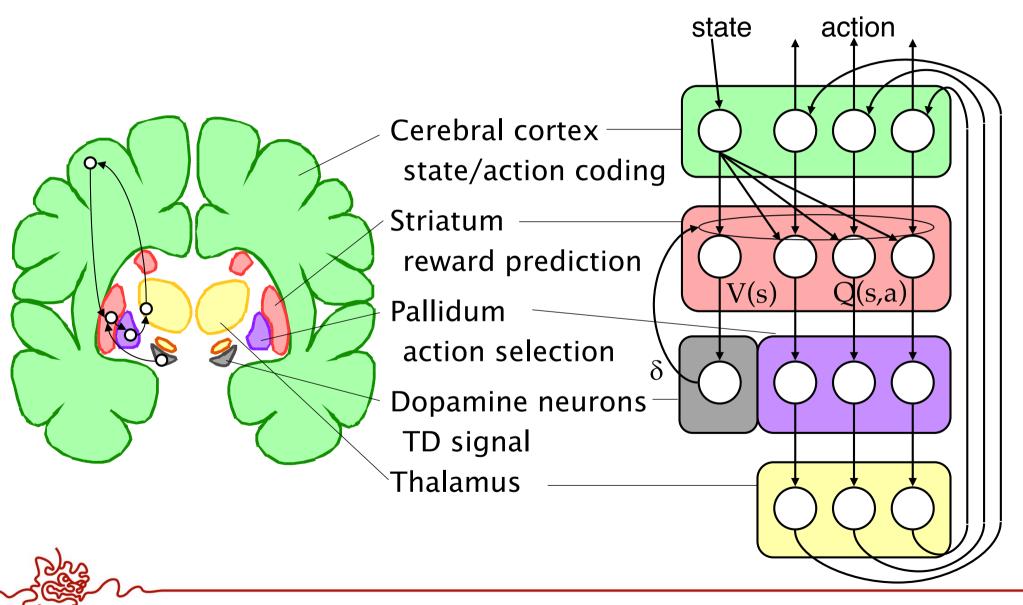
- Action value
 - DLS
 - DMS

VS



Basal Ganglia for Reinforcement Learning?

(Doya 2000, 2007)



Bounce Up and Balance by PILCO

1st try

2nd try

(Paavo Parmas) 8th try

Model-free/Model-based Decisions

Model-free

- No prior knowledge
- Learn from experience
 - state-action-reward
 - values of states/actions

Simple, but slow learning

Model-based

- Internal model of the world
 - o state, action → new state
 - \circ state, action \rightarrow reward
- Mental simulation
 - action planning find the best action sequence
 - hidden state estimation cope with noisy observation

Flexible, but heavy load

