Uncovering speciation and population structures in the marine zooplankton, *Oikopleura dioica*

Aki Masunaga1, Aleksandra Bliznina1, Andrew W. Liu1, Charles Plessy1, Michael Mansfield1, Yongkai Tan1, Nicholas M. Luscombe1
1. Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Japan, aki.masunaga@oist.jp

BACKGROUND

- Larveaceans – second most abundant zooplankton
- Easy sampling – shore sampling
- Established culture – natural and artificial seawater
- Short lifecycle – 4 days at 23 degrees
- High fecundity – 100 - 400 eggs / female
- Marine snow – vital role in vertical carbon flux
- Chordate – closest relative to vertebrates
- Tiny genome – smallest among chordates, ~70Mb

→ A good model organism for marine ecological studies, evolutionary developmental biology, and genomics.

METHODS

Sample collection & culturing
The animals were collected with a modified plankton net from Kin bay, Okinawa and Sakoshi bay, Hyogo. They were fed three times a day and maintained at 20 degrees.

Crossing experiment
10 pairs of Okinawa x Osaka animals were randomly selected for in vitro fertilization.

DNA extraction and sequencing
Genomic DNA was extracted from a single male using a modified salting out method and sequenced with ligation kit using Nanopore technology. ITS phylogeny
Maximum likelihood was used to estimate a phylogenetic tree from 18S and ITS sequences. Oikopleurin epithelium (OE)
OE was stained with DAPI and Phalloidin and imaged using a confocal microscopy.

RESULTS

- Two populations of dioecious Oikopleura from Okinawa and Osaka are reproductively isolated.
- Comparisons of whole genome alignments showed significant rearrangement at genomic level.
- Genome comparison and ITS sequence analysis indicated three groups of dioecious *Oikopleura* from the Atlantic, the North Pacific, and the Ryukyu Archipelago.
- Overall cellular arrangements and numbers of OE are conserved among genetically distinct populations.

DISCUSSIONS

O. dioica maintains strong morphological similarities among populations worldwide; however, further investigation is necessary for detailed morphological comparison between biologically and genetically distinct populations. Combined investigation of *O. dioica* from multiple aspects in biology will help us grasp the scope of complexity in community structure, biological as well as genetic diversity of this ecologically important pelagic tunicate, which once thought was a single species.

Future work

- Investigate larvacean diversity with eDNA
- More sampling to better assess population structure
- Explore species boundaries using publicly available data like TARA oceans

References:

Acknowledgement:
We are thankful for US Navy for the initial support in establishing the culture system. We thank J. Judy S. Suyama and S. Guillot for the sampling effort and species identification. We are grateful for H. Hibiya, T. Onuma and M. Luscombe for their generous support and guidance for the initial establishment of our culture and providing us animals and microalgal cultures and genome of *O. dioica*.

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

沖縄科学技術大学院大学