The Sakai Hydrothermal vent site is a priority for conservation to protect connectivity between all vents of the

Okinawa Trough

Hydrothermal Vent Community Assemblage Networks of the North-West Pacific

INTRO

- Vents support rare and endemic species.
- Okinawa is targeted for the world's first vent mines.
- The regional impact of this mining depends on how connected they are through shared species.

METHODS

- 1. N = 32 vents | 117 species
- 2. From literature and publicly available sources (JAMSTEC and University of Victoria)
- 3. Analysed using techniques from **Network Theory**
 - Modularity with Simulated Annealing
 - Cartographic roles (Guimera & Amaral, 2005a,b)

O. Brunner, C. Chen, T. Giguere, S. Kawagucci, H. Watanabe, V. Tunnicliffe, S. Mitarai

Cartographic roles of each vent site in the network. Coloured by module membership; purple – Okinawa Trough, orange – Izu-Bonin-Mariana(a), blue – Izu-Bonin-Mariana(b), green – Mariana Trough.

* Results may vary after adding newly available occurrence data.

DISCUSSION

- Each Module (colour) represents a biogeographic 'sub-region' of North-West Pacific Vents.
- Connectivity at the scale of the subregion is most relevant to conservation.
- 'Sakai' (Iheya Ridge) is a target for mining but disturbance to this key site in Okinawa would have the most profound impact the biodiversity of the sub-region.

Additional Figures

Map of Vent Network

Contracted Vent – Species Network

Variance Partitioning of Vent Communities

Take a picture to visit the **Marine Biophysics Unit** website

