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Hecke algebras

Fix F: an alg. closed field of char. p ⩾ 0 throughout.
The Iwahori–Hecke algebra of the symmetric group is the unital,
associative F-algebra Hn with generators T1,T2, . . . ,Tn−1 and
relations

(Ti − q)(Ti + 1) = 0 for all i ,

TiTj = TjTi for |i − j | > 1,

TiTi+1Ti = Ti+1TiTi+1 for 1 ⩽ i ⩽ n − 2,

where q ∈ F is a primitive eth root of unity.
Hn is semisimple if e > n.

The Specht modules {Sλ | λ ⊢ n} over Hn are the ordinary
irreducible Hn-modules, indexed by partitions λ of n.

If e ⩽ n, the simple modules appear as quotients of the Specht
modules: {Dλ | λ ⊢ n, λ is e-regular}.



Blocks

Specht modules Sλ and Sµ (or simple modules Dλ and Dµ) are in
the same block of Hn if and only if λ and µ have the same core.

Example

Let λ = (5, 4), µ = (32, 2, 1), and e = 3. Then λ and µ are in the
same block:

[λ] = [µ] =

The weight of a partition is the number of e-rim hooks that can be
removed before obtaining the core. e.g. w = 3 above, with core
the empty partition.



Representation type

Definition

The representation type of an F-algebra A is said to be:

• finite if it has finitely many indecomp. modules, up to isom.;

• tame if for any d , all but fin. many d-dimensional indecomp.
modules lie in fin. many one-parameter families, up to isom.;

• wild if ∃ a fin.-gen. A−F⟨X ,Y ⟩-bimodule M, which is free as
a right F⟨X ,Y ⟩-module, s.t. the functor
M ⊗F⟨X ,Y ⟩ − : F⟨X ,Y ⟩-mod → A-mod preserves
indecomposability and isomorphism classes.

Theorem (Drozd, 1979)

Any F-algebra A has representation type that is exactly one of the
above three types.



Representation type of blocks of Hn

Theorem (Erdmann–Nakano, 2002)

Let e ⩾ 3, and let B be a weight w block of a Hecke algebra Hn.
Then B is

• simple if w = 0;

• of finite representation type if w = 1;

• wild if w ⩾ 2.



Strictly wild algebras

Definition

An F-algebra A is said to be:

• wild if ∃ a fin.-gen. A−F⟨X ,Y ⟩-bimodule M, which is free as
a right F⟨X ,Y ⟩-module, s.t. the functor
M ⊗F⟨X ,Y ⟩ − : F⟨X ,Y ⟩-mod → A-mod preserves
indecomposability and isomorphism classes.

• strictly wild if the functor above is full.

Not every wild algebra is strictly wild. e.g. F[x , y , z ]/(x , y , z)2 is
wild, but not strictly wild.



Schurian-finiteness

For any F-algebra A, we say that an A-module M is Schurian (or a
brick) if EndA(M) ∼= F. We say that A is Schurian-finite (or
brick-finite) if there are only finitely many isomorphism classes of
Schurian A-modules, and Schurian-infinite (or brick-infinite)
otherwise.

Schurian modules must be indecomposable, so clearly

representation-finite ⇒ Schurian-finite.

The converse is not true in general – e.g. preprojective algebras of
type other than An for 1 ⩽ n ⩽ 4 are representation-infinite, but
Schurian-finite.



Strictly wild vs. Schurian-finite

A result of Demonet, Iyama and Jasso (2019) yields that A is
Schurian-finite if and only if it is τ -tilting finite.

Fact

A strictly-wild algebra is Schurian-infinite (brick-infinite).
In fact, stronger still, a strictly-wild algebra is actually brick-wild.



Reduction

Proposition

Let Q be a finite, acyclic, connected quiver.

• Q not finite type ADE , ⇒ path algebra FQ is brick-infinite.

• Q not finite/affine type ADE , ⇒ FQ is strictly wild.

Proposition

Let A be a finite-dimensional algebra.

• If the Gabriel quiver of A contains the quiver of an affine
Dynkin diagram with zigzag orientation (i.e. every vertex is a
sink or a source) as a subquiver, then A is Schurian-infinite.

• If the Gabriel quiver of A contains a subquiver as above + an
extra vertex connected to it, then A is strictly wild.



Why does this work?

If the Gabriel quiver of A contains such a quiver Q, then since Q
has no paths of length > 1, we have a surjection A → FQ. This
gives us a fully faithful exact functor FQ-mod → A-mod.

This functor sends bricks to bricks, so Schurian-infiniteness is
preserved. It also gives us a fully faithful exact functor
F⟨X ,Y ⟩-mod → A-mod, so strict wildness is preserved, too.

We want to determine which blocks of type A Hecke algebras are
strictly wild/Schurian-infinite using this proposition.



Graded decomposition numbers

Results of Brundan, Kleshchev, and Wang ⇝ Hn is isomorphic to
a cyclotomic KLR algebra, and its Specht modules and simple
modules may be graded.

The graded decomposition number de,p
λµ (v) is defined to be the

graded composition multiplicity of Dµ in Sλ. In other words

de,p
λµ (v) = [Sλ : Dµ]v =

∑
d∈Z

[Sλ : Dµ⟨d⟩]vd ∈ N[v , v−1].



Graded decomposition numbers

Using a result of Shan on Jantzen filtrations and radical filtrations
of Weyl modules for q-Schur algebras, we can deduce the following.

Lemma

Suppose that e ⩾ 3, p = 0, and λ, µ are e-regular partitions of n.
If the coefficient of v in de,0

λµ (v) is nonzero, then

Ext1(Dλ,Dµ) = Ext1(Dµ,Dλ) ̸= 0.

Combining this with an argument involving idempotent truncation,
we’re able to obtain our main tool for showing that a given block
of Hn is Schurian-infinite or strictly wild.



Key Proposition (Ariki–Lyle–S., S.)

Suppose e ⩾ 3 & p ⩾ 0. If the char 0 graded decomposition
matrix has (†) (resp. (‡)) as a submatrix, and
de,p
λµ (1) = de,0

λµ (1) ∈ {0, 1} for all row labels λ, µ of the submatrix,
then the block is Schurian-infinite (resp. strictly wild).

1
v 1
v ∗ 1
∗ v v 1

 (†)


1
v 1
∗ v 1
∗ v ∗ 1
∗ ∗ v v 1

 (‡)

Why these matrices? e-regular partitions λ, µ, ν, ω with submatrix
(†) ⇝ if p = 0, the previous lemma gives subquiver

λ µ

ν ω

which is A
(1)
3 ⇝ the result (in characteristic 0).



e-regular partitions κ, λ, µ, ν, ω with submatrix (‡) ⇝ if p = 0, the
previous lemma gives subquiver

κ λ µ

ν ω

which is A
(1)∧
3 ⇝ the result (in characteristic 0).



Main results

(Weight 0 and 1 blocks of Hn are representation-finite and
therefore Schurian-finite.)

Theorem (Ariki–Lyle–S., 2023)

Suppose e ⩾ 3, and that B is any block of weight ⩾ 2. Then B is
Schurian-infinite in any characteristic.

Theorem (S., 2024)

Suppose e ⩾ 3, and that B is any block of Hn with weight ⩾ 2. If
e = 3, suppose further that B is not (Scopes equivalent to) the
weight 2 Rouquier block. Then B is strictly wild, and therefore
brick-wild, in any characteristic.



Row removal

We will illustrate our method of proof in an example. First, we’ll
need the following row removal results.

Theorem (Chuang–Miyachi–Tan, 2002)

Let λ = (λ1, λ2, . . . , λr ) and µ = (µ1, µ2, . . . , µs). If λ1 = µ1, let
λ̄ = (λ2, . . . , λr ) and µ̄ = (µ2, . . . , µs). Then de,0

λµ (v) = de,0

λ̄µ̄
(v).

Theorem (Donkin, 1998)

If λ, µ, λ̄, and µ̄, are as in either case above, then
de,p
λµ (1) = de,p

λ̄µ̄
(1).



Abacus combinatorics

We may encode partition combinatorics in an abacus display.
We demonstrate this by the following example.

Example

Let e = 4 ⇝ 4-runner abacus. Let ρ = (13) be a core, and
κ = (92, 1), λ = (9, 8, 2), and µ = (9, 6, 22) be three partitions in
the weight 4 block with core ρ.



Runner removal

Theorem (James–Mathas, 2002)

Suppose e ⩾ 3, λ, µ: partitions of n, µ: e-regular, and take abacus
displays for λ, µ. Suppose that the last bead on runner i (some i)
occurs before every unoccupied space on both abacus displays ⇝
define two abacus displays with e−1 runners by deleting runner i
from those of λ, µ ⇝ partitions λ− and µ−. If µ− is
(e−1)-regular, then

de,0
λµ (v) = de−1,0

λ−µ−(v).



Example

Let e = 4, κ = (92, 1), λ = (9, 8, 2), and µ = (9, 6, 22), as before.
We’ll first remove the first row from each partition.

⇝

We obtain κ̄ = (9, 1), λ̄ = (8, 2), and µ̄ = (6, 22).



Example (continued)

From κ̄ = (9, 1), λ̄ = (8, 2), and µ̄ = (6, 22), apply runner removal.

⇝

We obtain κ̄− = (6), λ̄− = (5, 1), and µ̄− = (4, 12). Then e.g.

de,p
λκ (v) = de,p

λ̄κ̄
(v) and de,0

λ̄κ̄
(v) = de−1,0

(5,1)(6)(v) = v .



Example (continued)

κ̄ = (9, 1), λ̄ = (8, 2), and µ̄ = (6, 22).
κ̄− = (6), λ̄− = (5, 1), and µ̄− = (4, 12).

de,p
λκ (v) = de,p

λ̄κ̄
(v) and de,0

λ̄κ̄
(v) = de−1,0

(5,1)(6)(v) = v .

But we’ve only looked in characteristic 0! It is known that in
weight 2 blocks, de,p

λµ (v) = de,0
λµ (v) for any p > 2. But what about

p = 2? Results of Richards & Fayers give the ‘adjustment matrices’
for such blocks, and we may check that we’ve chosen our partitions
well enough so that we see the same submatrix, even if p = 2.

6 5,
1

4,
12

32 3,
2,
1

6 1 · · · ·
5, 1 v 1 · · ·
4, 12 · v 1 · ·
32 · v · 1 ·

3, 2, 1 v v2 v v 1



Summary

First, we solve the problem for weight 2 and 3 blocks: We choose
five partitions so that all the ‘action’ happens on the ‘longest three
runners’. Then we can remove all but these three runners, using
the runner removal result. We use the known adjustment matrices
in weights 2 and 3 to choose our partitions well.

In a given weight w ⩾ 4 block, put w − 2 of the e-rim hooks in the
first row, and choose the other 2 based on what should work for
the ‘remaining’ weight 2 block. Row removal then gives the
decomposition numbers we need.

This strategy usually works, and we may reduce to weight 2, so
long as we don’t land in some degenerate cases, and then we have
to argue in a different manner.



The remaining weight 2 case

What was wrong with the weight 2 Rouquier block when e = 3?

There are only 5 simples! The Gabriel quiver for these just looks

like D
(1)
4 if p ̸= 2, or A5 if p = 2. We get that the block is

Schurian-infinite from the D
(1)
4 , and gave a separate argument to

show that the block is Schurian-infinite if p = 2.

I don’t know if it is strictly wild, or how to go about proving it!
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