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Hecke algebras of type A

The symmetric group &, (= permutation group of {1,2,---  n}) is
generated by {s; = (i,i+1) |1 </i<n—1} subject to

s?=1,( (si+1)(si— 1) =0)

sisj=sjsi if |[i — j| #1, sisjsi = sjsis; if |[i — j| = 1.
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Hecke algebras of type A

The symmetric group &, (= permutation group of {1,2,--- n}) is
generated by {s; = (i,i+1) |1 <i<n—1} subject to

s2=1,(& (si+1)(si— 1) =0)
SiSj = SjSj if‘i—j’#l, Si5jSj = SjSiSj if’i—j‘ = 1.
The Iwahori-Hecke algebra H(&,,) is the Z[q, g ]-algebra
generated by {T; | 1 </ < n— 1} subject to
T2=(g-1)Ti+a,(= (T; + (T~ ) =0)

Wty = i e 0= 2 1 Wi = W i f =) = 1
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From the perspective of Lie theory, one wants to know
e the irreducible representations of H(S,);
e the decomposition numbers of H(S,).

This is accompanied by the rise of many theories, such as
categorification theory, cellular algebra theory, crystal bases theory,
Kazhdan-Lusztig theory, Lascoux-Leclerc-Thibon algorithm, etc.
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From the perspective of Lie theory, one wants to know
e the irreducible representations of H(S,);
e the decomposition numbers of H(S,).

This is accompanied by the rise of many theories, such as
categorification theory, cellular algebra theory, crystal bases theory,
Kazhdan-Lusztig theory, Lascoux-Leclerc-Thibon algorithm, etc.

Now, we have many generalizations of H(&,),
® Hecke algebras of Coxeter groups, i.e., of type B, D, E, etc.

¢ Cyclotomic Hecke algebras (a.k.a. Ariki-Koike algebras). See
[Ariki-Koike, 1994], [Broue-Malle, 1993], and [Cherednik 1987].

® Cyclotomic quiver Hecke algebras (a.k.a. Cyclotomic KLR
algebras). See [Khovanov-Lauda, 2009] and [Rouquier, 2008].
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Quiver Representation Theory

Quivers:

1 O\
O‘CO_)E oQﬁ,o—>o—>o, oO—>o0.,
v

o

e paths: e.g., (auBv)™, (uv)"aX, (auv)k(upr)™, ...
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Quiver Representation Theory

Quivers:

@)

"
QCO? oQﬁ,o—>o—>o, O——0,
v

(@]
* paths: e.g., (apfv)™, (uv)"a*, (apw) (usv)™, ...
Bound quiver algebras A = KQ/!I:

= (3 Awi, )

® )\; € K and wj is a path but not an arrow.
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Any (basic, connected) algebra A over K is isomorphic to a bound
quiver algebra KQ/I.
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Any (basic, connected) algebra A over K is isomorphic to a bound
quiver algebra KQ/I.

From the perspective of algebraic representation theory, one wants
to find all indecomposable rep's of KQ/1.

e.g., the quiver o ——= o ——=o has 6 indecomposable rep's:
K—2 .02 9 K—L. k% 9

0 0 0 1

0——=K—0 0——K——K

0 0 1 1

0——0—K K——K—K
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Representation type of algebras

Theorem (Drozd 1977)

The representation type of any algebra (over K) is exactly one of
rep-finite, tame and wild.
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Representation type of algebras

Theorem (Drozd 1977)

The representation type of any algebra (over K) is exactly one of
rep-finite, tame and wild.

An algebra A is said to be
e rep-finite if the number of indecomposable rep's is finite.

e tame if it is not rep-finite, but all indecomposable rep's can be
organized in a one-parameter family in each dimension.

Otherwise, A is called wild.
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Some examples related to Hecke algebras.

L4 rep—finite: e.g., Brauer tree algebras

! 2 < 4
l==2==3==>4 = 201 362 403
1 2 3 4

® tame: e.g., Brauer graph algebras

° wild:
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Some examples related to Hecke algebras.

L4 rep—finite: e.g., Brauer tree algebras

12 3 4
1 2 3 4 = 201 3® 2 4903
1 2 3 4
® tame: e.g., Brauer graph algebras
1 2 3
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Some examples related to Hecke algebras.

L4 rep—finite: e.g., Brauer tree algebras

12 3 4
1 2 3 4 = 201 3® 2 4903
1 2 3 4
® tame: e.g., Brauer graph algebras
1 2 3 4
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KLR algebras in affine type A
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Cartan matrix of type Agl)

Let / ={0,1,...,¢} be an index set.

o |[f /=1, then
2 =2
= (5 %)
o |[f ¢ > 2, then
2 -1 0 0o -1
-1 2 -1 0 0
0o -1 2 0 O
A= .
0 0 O 2 -1

G

eferences
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Let (A, P,T, PV, 1Y) be the Cartan datum in type A where
o P= @f:o ZN; @ 746 is the weight lattice;
¢ M= {aj|i€l} C P is the set of simple roots;
e PV =Hom(P,Z) is the coweight lattice;
e MV ={h;|i€l} CPVisthe set of simple coroots.

The null root is § = ag + a3 + ... + ay. We have
<h,‘,0¢j> = ajj, <h,’,/\j> = (5,J for all i,j cl.

We set P+ :={A € P | (hi,A) € Zso,i € I}.
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Quiver Hecke algebras

The quiver Hecke algebra R(n) associated with (Q;j(u, Vv))ijer is

the K-algebra generated by

{e() |v=(vi,v2,...,vp) € 1"} {xi |1 <i<n},{¢j|1<j<n—1},

subject to the following relations:
(1) e()e() = dorev), Soeme®) =1, xix; = xixi, xie(v) = e(v)x.
(2) wie(v) = e(si))ei, wivyj = ey if |i — j| > L.
(3) vPe(v) = Quuin (xi xi11)e(v).

—e(v) ifj=iandv;=vj,
(4)

4) (Wix — x, Gviel) = { e(v) if j=i+1and v; =vj1,

0 otherwise.

Qv,-,u,-+1(Xr'er'Jrl)_QV,'-,V,'+1(Xi+2xxr'+1)e(y)

(5) (Yit1viizs — Yiirai)e(v) = { Xi—Xi+2

0

if vj = viyo,
otherwise.
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Quiver Hecke algebras

The quiver Hecke algebra R(n) associated with (Q;j(u,v))ijer is
the K-algebra generated by

{e() |v=(vi,va,...,vp) € 1"} {xi |1 <i<n},{¢j|1<j<n—1},
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Cyclotomic quiver Hecke algebras

Fix A € P*. The cyclotomic quiver Hecke algebra R (n) w.r.t. Ais
defined as the quotient of R(n) modulo the relation

xl(h"l’Me(u) =0.
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Cyclotomic quiver Hecke algebras

Fix A € P*. The cyclotomic quiver Hecke algebra R(n) w.r.t. Ais
defined as the quotient of R(n) modulo the relation

xfhyl’A)e(u) = 0.

Here, RN(n) is a finite-dimensional symmetric algebra proved by
Shan-Varagnolo-Vasserot in 2017.



KLR algebras
0000850000000

Cyclotomic quiver Hecke algebras

Fix A € P*. The cyclotomic quiver Hecke algebra R(n) w.r.t. Ais
defined as the quotient of R(n) modulo the relation

xfhyl’/\)e(u) = 0.

Here, RN(n) is a finite-dimensional symmetric algebra proved by
Shan-Varagnolo-Vasserot in 2017.

Let Qy = ) ¢y Z>oc;. For each g € Q4 with || = n, we define
RN(B) = e(B)R"(n)e(B),

where e(8) = 3" e(v) with 1# — {V (e o) E P 1 iy = ﬁ}.
i=1

velb
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An example
Set A = kAo, ¢ =2. Then, | ={0,1,2} and R(3) is generated by

{8(000), °o0 o 8(012), °oo o E‘(212)7 ©oo }, {Xl,XQ,X3}7 {’lﬁl,i/)g},

subject to the relations.
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An example
Set A = kAo, ¢ = 2. Then, | ={0,1,2} and R(3) is generated by

{6(000)7 Ty, 6(012)., ey, 6(212)7 e }, {Xl,XQ,X?,}7 {1[11,1/)2},

subject to the relations.

Set B = ag + a1 + ap. Then, RN(B) is generated by
{e(012), e(021), e(102), e(120), e(201), (210)}, {x1, X2, x3 }, {1, 2},

subject to
® ¢(102) = ¢(120) = e(201) = e(210) = 0, xfe(012) = xfe(021) = 0;
® 11e(012) = 91e(021) = 0, 12e(012) = e(021)1fy;
® x2e(012) = —x1€(012), x2e(021) = —tx1e(021);
® x2e(012) = tx?e(012) + (1 — t)x1x3e(012), etc.
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Known results on cyclotomic KLR algebras

We know the representation type of cyclotomic KLR algebras in the
following cases.

e RN(3) in type A( ), see [Ariki-Park, 2014].

e RN(B) in type A§ ), see [Ariki-lijima-Park, 2015].
e RMN(B) in type Cg(l), see [Ariki-Park, 2015].

o RMN(B) in type C(l) see [Chung-Hudak, 2023].

* RM(B) in type D7), see [Ariki-Park, 2016].

e RMNHAs(3) in type A see [Ariki, 2017].

In this talk, we explain the representation type of R(f3) in type
Agl), for arbitrary A € PT.
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Representation type of R"(3)

® Rickard's result tells us that two symmetric algebras have the
same representation type if they are derived equivalent.
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Representation type of R"(3)

® Rickard's result tells us that two symmetric algebras have the
same representation type if they are derived equivalent.

e Chuang and Rouquier's result tells us that R(3) and RN(B')
are derived equivalent if A — 3 and A — /3’ lie in the same
W-orbit of the set P(A) of weights of V(A), where W is the
affine symmetric group generated by (for i € /)

s,-2 = 1,s;s; = sjs; if |i—j| Zot1 1, sisjsi = sjsisj if |i—j| =41 1.
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Representation type of R"(3)

® Rickard's result tells us that two symmetric algebras have the
same representation type if they are derived equivalent.

e Chuang and Rouquier's result tells us that R(3) and RN(B)
are derived equivalent if A — 8 and A — 3’ lie in the same
W-orbit of the set P(A) of weights of V(A), where W is the

affine symmetric group generated by (for i € /)
s? = 1,sisp = sjs; if |i—j| Zeg1 1, sisjsi = sjsis; if |i—j| =p41 1.

e Kac's result tells us that the representatives of W-orbits in
P(A) are given by {i — mé | u € max™(A), m € Z>o}, where

max " (A) := {u € P | u is maximal}.

A weight p € P(A) is maximal if 1+ 8 ¢ P(A).
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max™(A)

We briefly recall the construction in [Kim-Oh-Oh, 2020] as follows.
Set A = a;, Ay + apN\j, + -+ + a;,\;, € PT. We define

le(A\)=> a; and ev(A)=i+i2+- -+ in
Suppose le(A) = k. Then,

’D:?,k(/\) = {/\' € P | le(A) = le(N), ev(A) =p41 ev(N) } .
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max™(A)

We briefly recall the construction in [Kim-Oh-Oh, 2020] as follows.
Set A = a; Ny + apNi, + -+ a;, N\, € PT. We define
le(A\)=> a; and ev(A)=i1+i2+--+in
Suppose le(A) = k. Then,
P,;k(/\) = {N € P" | le(A) = le(N'),ev(A) =11 ev(N) }.
eg. P;7’3(/\0 + A3 + Ng) with £ = 6 consists of Ag + Az + A,

A1+ No+ N6, N1+ A3+ Ns, Ao+ Ag+Ns, Ao+ A3+ Ay, 2Ag + Ny,
Ng + 2Ng, 2\5 + Ng, No + 2A1, 2Ao + A5, A1 + 2A4, 2N\g + Ao, 3A3.
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Theorem (Kim-Oh-Oh 2020)
For any A € 'D:?,k’ there is a bijection ¢p : max™(A) — P:?,k(/\)'
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Theorem (Kim-Oh-Oh 2020)
For any A € P:I_,k' there is a bijection ¢p : max™(A) — P:Zk(/\).

Remaining: to obtain the inverse ¢X1.
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Theorem (Kim-Oh-Oh 2020)
For any A € P;Zk, there is a bijection ¢p : max™(A) — 'D:?,k(/\)'

Remaining: to obtain the inverse ¢R1.

Recall that <h,’,/\j> = 5,J We define y; := <h,‘,/\ = /\/> and

Y/\/ =S (yo,yl, Ce ,yg) S Z”l.
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Theorem (Kim-Oh-Oh 2020)
For any A € P;Zk, there is a bijection ¢p : max™(A) — 'D:?,k(/\)'

Remaining: to obtain the inverse ¢X1.

Recall that <h,’,/\j> = 6’] We define y; := <h,‘,/\ - /\/> and
= (yo,yl, . ,yg) S ZZJrl.

Then, we consider the linear equation AX® = Y},.
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Proposition (Ariki-Song-W. 2023)

® The linear equation AX® = Y/, has a unique solution
X = (xo,. .., x¢) satisfying

X e Zé‘%l and min{x;} = 0.



KLR algebras
0000000000800

References

Proposition (Ariki-Song-W. 2023)

® The linear equation AX* = Y/, has a unique solution
X = (xo,. .., x¢) satisfying

X e Z“l and min{x;} = 0.
® The inverse map gbx PC, «(A) = maxt(A) of ¢ is given by
Xl(/\/) =N=> e X,

where X is the unique solution of AX* = Y}, as above.
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Proposition (Ariki-Song-W. 2023)

® The linear equation AX® = Y}, has a unique solution
X = (xo,. .., x¢) satisfying

X e ng)l and min{x;} = 0.
® The inverse map gZ)Xl . P:?,k(/\) — maxT(A) of ¢, is given by
¢Xl(/\/) =N=> 5 Xxia,
where X is the unique solution of AX* = Y}, as above.

Set B = Zielx,'a,-. Then,

max™(A) = {/\ _ By |Ne Pjvk(/\)} .
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Strategy to prove the results

If A — (3 lies in the W-orbit of P(A), then
N=Be{N=pBy—md|N e Pj (N),me Zxo}.

Thus, we only need to consider RM(3) for 8 = B + md with
N e Pj,’k(/\) and m € Z>o.
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Strategy to prove the results

If A— 3 lies in the W-orbit of P(A), then
AN=Be{N=Pn—ms|NePj (N, me Zso}.

Thus, we only need to consider RM(3) for 8 = fBpr + md with
N e Pj,’k(/\) and m € Z>o.

Step 1: We show that RNy + mé) is wild for all m > 1 if
Bar # 0 and RN(mé) is wild for all m > 2, by using some new
reduction theorems.

(If RM(7) is not wild, we set v € NW(A) U {5}.)
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Step 2: We determine the representation type of R"(7) for
~v € T(N)U{d}, via case-by-case consideration.

(A systematic approach developed by Ariki and his collaborators is
well applied to find the quiver presentation of R(7).)
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Step 2: We determine the representation type of R"(~) for
~v € T(N)U{d}, via case-by-case consideration.

(A systematic approach developed by Ariki and his collaborators is
well applied to find the quiver presentation of R(7).)

Step 3: We show that
NW(A) C T(N)

via case-by-case consideration on small k (i.e., k =3,4,5,6) and
via induction on k > 7.
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Structure of P (A)

(in type Agl))



Maximal weights
0@000000000

Recall that
max™(A) = {/\ _Bn|Ne PC+,7,<(/\)} .

e.g., P:73(/\0 + A3 + Ng) with £ = 6 consists of Ag + A3 + Ag,
N+ Ao+ Ne, A1 + A3+ A, Ag+ Aa + As, Ao + A3 + A4, etc.

For any A" € P} (A) with k > 2, we can write A = A; + A; + A
for some i,j €/ and A € P . 5. Then, we define

Nij =Ny & A A.

Note that A} ; = A if and only if j =. i — 1.
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Definition 3.1
Let C(A) be an undirected graph, where we draw an edge between

N and A" if N =N, ; for some i,j € | with j # i —1.

e.g., C(Ao + A3 + Ng) with ¢ = 6 is displayed as follows.

Mo+ As + As }—‘ /\1+2/\4‘

‘/\0+/\3+/\5 }—{ A+ As+As }—{ Ao+ As+ g

A+ A2+ A }—‘ 2/\2+/\5‘
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Definition 3.1
Let C(A) be an undirected graph, where we draw an edge between
N and A" if N = N, ; for some i,j € | with j # i —1.

e.g., C(Ao + A3 + Ng) with ¢ = 6 is displayed as follows.

Mo+ As + As }—‘ /\1+2/\4‘
(Mot st e f——J Mths s [T Hhath+he

Q.4)

A1+ A2+ A }—‘ 2/\2+/\5‘
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We define

(Oi’lj_H-l’Oﬁ—J') Iflé_/a

Bid = (U, 0L 1Y) if s,

The unique solution of AX* = Yy, is given by min(Xy + A; ;) = 0.
e.g.,

B4

+80.3)

803

(2,1,0%,1,2)

= (3,2,1,0,1,2,3)

B

(2,1,0,1,2)

+A
)

+82,0)
(0%,1%)
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Definition 3.2
Let C(A) be the quiver where we set A" — A" if Xpv = Xp + A .

We label this arrow by (i, ).

e.g., 5(/\0 + A3 + Ng) with £ =6 is displayed as

ﬁﬁ 0.4,
of ( (04
/ /}‘ Mo+ /\4+/\5 so)—x{ A+ 20 ‘

(1 3) (5.3) (23)

‘/\o+/\3+/\5 Feo—{n+ /\3+/\5 o re+ s+ }—(42)—-

(3. 5) (3.1) (3l4)
\){Al /\2+A5 61— 20 + s |
(3.6)
(U 0) (26)
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Proposition 3.3
For any A\ € P, (A) with N # A, there is a directed path from A
to A’ in C(A). In particular, C(A) is a finite-connected quiver.
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Proposition 3.3
For any A" € P, (A) with A’ # A, there is a directed path from A
to A’ in C(A). In particular, C(A) is a finite-connected quiver.

Proposition 3.4
Suppose A = A + A. Then, there is a directed path

A ) ey GeR) o (i) am) e C(A)

if and only if there is a directed path

A | A (i141) A® 4R (i2.)2) (im—14m-1) A LR E C(/\)
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Key Lemmas

Lemma 3.5 N
Suppose that there is an arrow A’ M A in 6(/\) If RMNBn) is
representation-infinite (resp. wild), then so is RM(Ban).
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Key Lemmas

Lemma 3.5 N
Suppose that there is an arrow A’ M N in 6(/\) If RMNBa) is
representation-infinite (resp. wild), then so is RM(Ban).

Lemma 3.6 _
Write A = A + A. If RN(B) is representation-infinite (resp. wild),
then R7\(f) is representation-infinite (resp. wild).
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Rep-finite and tame sets

Set ip := ip, ipr1 = i1 and write

/\:mu/\,l—i—~+m,]/\,]+m,l+1/\ +"'+mih/\ih

i1
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Rep-finite and tame sets

Set iy := ip, Iht1 =0 and write

N= mf1Af1 +et mij/\ij + m’}‘+1/\'

li+1

+"'+mfh/\ih

For any 1 < j < h, we define

F(A)o :={Aji | mj =2}

F(M = {/\’j‘r’j+l | mi; =1, mj,, = 1}

TNy = {Nijor | miy =1,mj,, >Lormy >1,m;,, =1}

T(A)2 := {(Ni)i—vi+1 | miy = 2,ij-1 Fe ij — 1,141 Fe iy + 1} if char K #2
T(N)s = {(Nji)iit or i—1 | i = 3,041 Ze ij + 1 or fj_1 Ze i; — 1} if charK #3
T(AN)a ={(Ni.i))ii | mj; =4}if char K #2

T(A)s == {(A’plj)’pq’p ‘ mj; = mj, =2, ip Feljx1l,j# P}
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Set
F(A) = {Bn | N € {A}UF(A)o U F(A)1},

T(A) = {Bn | N € U1<j<s T(N);}.

Theorem 3.7 (Ariki-Song-W. 2023)

Suppose le(A) > 3. Then, R/\(ﬁ) is representation-finite if
B € F(N), tame if one of the following holds:

® 3=0,N=kA;, £ =1 with t # +2,
® 3=4,N=kA;, £>2with t # (-1)1,
e 3 T(N).

Otherwise, it is wild.
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e.g., rep-type of 6(/\0 + A3 + Ng) with £ = 6 is displayed as

(0,4)

of (6.6)
(1, 3) (2 3)

(5.3)

(3:5) (3.1) ‘

[ho+ A5+ s %(e oA+ /\3 s | At /\3 A f—ea—f 3]
\ \

(3:4)
(3.,6)
(0.0) (2,6)
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e.g., rep-type of 6(2/\0 + Ap) is displayed as

)0,h+15 (£,0)

(£,0), (L,A+1)

/
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Thank you! Any questions?

Symmetric groups and Hecke algebras;

Bound quiver algebras;

Tools ] . .
Representation type: rep-finite, tame, wild;

Brauer tree/graph algebras.

(Lie theoretic data;

Quiver Hecke algebras;

Objects ¢ Cyclotomic KLR algebras; @ e
max*(A) and PJ, (A);
| Rep-finite and tame sets.




