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Throughout:

e ∈ Z≥2;

F = a field of characteristic p (p = 0 or prime) with p - e or p = e;

q ∈ F: a primitive e-th root of 1F or q = 1F.
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Partitions and e-Abacus

A partition λ = (λ1, . . . , λ`) of n (denoted λ ` n) is a weakly decreasing
sequence of positive integers summing to n.

The James e-abacus has e vertical runners numbered 0 to e− 1 from left
to right, and the positions on the abacus are numbered from left to right
and down the rows, starting from 0.

To display λ = (λ1, λ2, . . . , λ`) on the e-abacus with s beads, where s ≥ `,

1 put s beads at the least s positions of the abacus, i.e. at positions 0
to s− 1,

2 move the bead at position s− 1 to s− 1 + λ1,

3 move the bead at position s− 2 to s− 2 + λ2,

4 etc.

In this talk, we shall always choose s so that e | s.
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From an e-abacus display, one can read off the partition µ as follows: µ1 is
the number of unoccupied positions before the last bead, µ2 is the number
of unoccupied positions before the second last bead, etc.

When all the beads in a given abacus display of λ are moved as high up
their respective runners as possible, we obtain the abacus display of its
e-core. The e-weight of λ is the total number of times the beads in the
abacus display move one position up their respective runners to obtain its
e-core. The e-quotient of λ is the e-tuple (λ(0), λ(1), . . . , λ(e−1)) where
λ(i) is the partition read off from runner i (treating runner i as a
‘1-abacus’) of the abacus display of λ.
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Removable, addable, normal and co-normal beads

Let λ be a partition and consider its e-abacus display with s beads, where
e | s. A bead in such a display is

an i-bead if it lies in runner i;

removable if its preceding position is vacant;

addable if its succeeding position is vacant;

Let i ∈ Z/eZ. Iteratively pair the removable i-beads (of λ) with the
addable (i− 1)-beads so that if a removable i-bead at position a is paired
with an addable (i− 1)-bead at position b, then a < b and there are no
unpaired removable i-beads or addable (i− 1)-beads between a and b.
The removable i-beads and the addable (i− 1)-beads that are left
unpaired are normal and co-normal respectively.
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Write:

εi(λ) = number of normal i-beads of λ;

ϕi(λ) = number of co-normal (i− 1)-beads of λ.

For k ∈ Z+,

ẽki λ = partition obtained from λ by moving its k least normal i-beads

to their respective preceding positions (when k ≤ εi(λ)),

f̃ki λ = partition obtained from λ by moving its k largest co-normal

(i− 1)-beads to their respective succeeding positions

(when k ≤ ϕi(λ)).
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Iwahori-Hecke Algebras and q-Schur algebras

The Iwahori-Hecke algebra H
p
n = HF,q(n), is the F-algebra generated by

{T1, . . . , Tn−1} subject to:

T 2
i = (q − 1)Ti + q;

TiTi+1Ti = Ti+1TiTi+1;

TiTj = TjTi (|j − i| ≥ 2).

The q-Schur algebra S
p
n = SF,q(n) is a quasi-hereditary cover of Hp

n .
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Specht modules and Weyl modules

For every λ ` n, we have the distinguished Weyl module ∆λ
p of Spn and the

distinguished Specht module Sλp of Hp
n .

The Weyl module ∆λ
p has a simple head Lλp and {Lλp : λ ` n} is a

complete set of non-isomorphic simple S
p
n-modules.

The Specht module Sλp has a simple head Dλ
p when λ is e-regular, and

{Dλ
p : λ `reg n} is a complete set of non-isomorphic simple H

p
n -modules.

The Schur functor f has the following effect on these modules:

f(∆λ
p) = Sλp ,

f(Lλp) =

{
Dλ
p , if λ is e-regular;

0, otherwise.
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Decomposition Matrices

Let d pλµ = [∆λ
p : Lµp ]. Then d pλµ = [Sλp : Dµ

p ] when µ is e-regular.

Collecting this integers in a matrix, we obtain the decomposition matrices

DS
p := (d pλµ)λ,µ`n, DH

p = (d pλµ)λ`n, µ`regn

for Sn and Hn respectively.

Some elementary properties of d pλµ:

d pλµ 6= 0 only if λ and µ have the same e-core, the same e-weight and
λE µ.

d pλλ = 1.
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Adjustment Matrices

There is a Z-module homomorphism dS
p : K(S0

n)→ K(Spn), satisfying

dS
p([∆λ

0 ]) = [∆λ
p ];

dS
p([Lλ0 ]) =

∑
µ`n

aSλµ[Lµp ]

with aSλµ ∈ Z≥0. The matrix AS
p = (aSλµ)λ,µ`n is the adjustment matrix

for Sn.

Similarly, we also have dH
p : K(H0

n)→ K(Hp
n) satisfying dH

p ([Sλ0 ]) = [Sλp ]

and dH
p ([Dλ

0 ]) =
∑

µ`n a
H
λµ[Dµ

p ] with aSλµ ∈ Z≥0, giving rise to the

adjustment matrix AH
p = (aHλµ)λ,µ`reg n for Hn.

By considering the Schur functor, we have aSλµ = aHλµ when λ and µ are

e-regular, so that AH
p is a submatrix of AS

p and we may write aλµ without
ambiguity.
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Relationship between Decomposition and Adjustment
Matrices

The decomposition matrix and the adjustment matrix are related as
follows:

Dp = D0Ap.

Immediate consequence:

aλµ 6= 0 only if λ and µ has the same e-core, the same e-weight and
λE µ.

aλλ = 1 for all λ ` n.

If d pλµ = d 0
λµ, then aνµ = 0 for all ν 6= µ with d 0

λν 6= 0; in particular,
aλµ = δλµ.
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i-Restriction and i-Induction Functors

Let i ∈ Z/eZ and k ∈ Z+. We have induction and restriction functors

E
(k)
i , F

(k)
i :

⊕
n mod-Spn →

⊕
n mod-Spn satisfying:

[E
(k)
i (∆λ

p)] =
∑
λ̌

[∆λ̌
p ];

[F
(k)
i (∆λ

p)] =
∑
λ̂

[∆λ̂
p ].

where the sums run over all partitions λ̌ and λ̂ obtained from λ by moving
k removable i-beads to their respective vacant preceding positions and k
addable (i− 1)-beads to their respective vacant succeeding positions
respectively.
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Furthermore,

E
(k)
i (Lλp) has a simple head and a simple socle both isomorphic to

L
ẽki λ
p if εi(λ) ≥ k;

E
(k)
i (Lλp) = L

ẽki λ
p if εi(λ) = k;

E
(k)
i (Lλp) = 0 if εi(λ) < k.

Similarly,

F
(k)
i (Lλp) has a simple head and a simple socle both isomorphic to

L
f̃ki λ
p if ϕi(λ) ≥ k;

F
(k)
i (Lλp) = L

f̃ki λ
p if ϕi(λ) = k;

F
(k)
i (Lλp) = 0 if ϕi(λ) < k.
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Rules for aλµ: I

Theorem (Row removal (Fayers, Low))

If λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) with λ1 = µ1. Then

aλµ = aλ≥2µ≥2 ,

where λ≥2 = (λ2, λ3, . . . ) and µ≥2 = (µ2, µ3, . . . ).

Theorem (Column removal (Low))

If λ = (λ1, . . . , λ`) and µ = (µ1, . . . , µ`) (with λ`, µ` > 0). Then

aλµ = aλ̃µ̃,

where λ̃ = (λ1 − 1, . . . , λ` − 1) and µ̃ = (µ1 − 1, . . . , µ` − 1).
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Rules for aλµ: II

Theorem (Fayers)

aλµ = am(λ)m(µ) when λ and µ are e-regular.

Here, Dm(ν) is the dual of Dν induced by the algebra involution on Hn
defined by Ti 7→ −Ti + q − 1 for all i.
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Rules for aλµ: III

Theorem (Fayers)

Let λ be a partition with e-weight w. If

w < p,

aνµ = 0 for all λC ν C µ,

dλµ(q) ∈ {0, q},
then aλµ = 0.
Here dλµ(q) is the q-decomposition number arising from the Fock space

representation of Uq(ŝle).
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Rules for aλµ: IV

Theorem (Fayers-T., Low)

aλµ 6= 0 only if εi(λ) ≥ εi(µ) (equivalently, ϕi(λ) ≥ ϕi(µ)) for all
i ∈ Z/eZ.
If εi(λ) = εi(µ) (equivalently, ϕi(λ) = ϕi(µ)), then

aλµ = aẽki λ,ẽki µ
= af̃ liλ,f̃ liµ

,

where k = εi(λ) = εi(µ) and l = ϕi(λ) = ϕi(µ).
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From now on, we fix an e-core partition κ. We consider only partitions
with this e-core, and we display all such partitions with s beads, for
sufficiently large s such that e | s.

Denote by ri the largest occupied position in runner i of κ.
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Computed aλµ: Rouquier blocks
Theorem

Let λ and µ be partitions with e-core κ and e-weight w, and e-quotients
(λ(0), . . . , λ(e−1)) and (µ(0), . . . , µ(e−1)) respectively.
Suppose that |ri − rj | > (w − 1)e for all i, j ∈ Z/eZ with i 6= j.

1 [Chuang-T., Miyachi, Turner, James-Lyle-Mathas] If p > w, then

aλµ = δλµ.

2 [James-Lyle-Mathas] If p ≤ w, then aλµ 6= 0 only if |λ(i)| = |µ(i)| for
all i ∈ Z/eZ.

3 [Turner] If e = p ≤ w, and λ and µ are e-regular, then

aλµ =
e−1∏
i=0

dλ(i)µ(i) .
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(λ(0), . . . , λ(e−1)) and (µ(0), . . . , µ(e−1)) respectively.
Suppose that |ri − rj | > (w − 1)e for all i, j ∈ Z/eZ with i 6= j.

1 [Chuang-T., Miyachi, Turner, James-Lyle-Mathas] If p > w, then

aλµ = δλµ.

2 [James-Lyle-Mathas] If p ≤ w, then aλµ 6= 0 only if |λ(i)| = |µ(i)| for
all i ∈ Z/eZ.

3 [Turner] If e = p ≤ w, and λ and µ are e-regular, then

aλµ =
e−1∏
i=0

dλ(i)µ(i) .

Kai Meng Tan (NUS) Adjustment Matrices 5 June 2023 19 / 25



Computed aλµ: Rouquier blocks
Theorem

Let λ and µ be partitions with e-core κ and e-weight w, and e-quotients
(λ(0), . . . , λ(e−1)) and (µ(0), . . . , µ(e−1)) respectively.
Suppose that |ri − rj | > (w − 1)e for all i, j ∈ Z/eZ with i 6= j.

1 [Chuang-T., Miyachi, Turner, James-Lyle-Mathas] If p > w, then

aλµ = δλµ.

2 [James-Lyle-Mathas] If p ≤ w, then aλµ 6= 0 only if |λ(i)| = |µ(i)| for
all i ∈ Z/eZ.

3 [Turner] If e = p ≤ w, and λ and µ are e-regular, then

aλµ =

e−1∏
i=0

dλ(i)µ(i) .

Kai Meng Tan (NUS) Adjustment Matrices 5 June 2023 19 / 25



Computed aλµ: Beyond Rouquier blocks
Define a total order � on Z/eZ by i � j if and only if ri ≤ rj .

For each i ∈ Z/eZ, let i+ and i− be respectively the succeeding and
preceding elements of i in Z/eZ with respect to � (if they exist).

Theorem (T.)

Let µ be a partition, with e-core κ and e-quotient (µ(0), . . . , µ(e−1)).
Suppose that:

|µ(i−)|+ |µ(i)|+ |µ(i+)| ≤
⌈
ri−ri−

e

⌉
for all i ∈ Z/eZ;

whenever i ≺ j satisfy |µ(i−)|+ |µ(i)| =
⌈
ri−ri−

e

⌉
and

|µ(j)|+ |µ(j+1)| =
⌈
rj−rj−

e

⌉
, there exists k with i ≺ k ≺ j such that

rk − rk− > e;

|µ(i)| < p for all i ∈ Z/eZ.

Then d pλµ = d 0
λµ for all λ. In particular, aλµ = δλµ.
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Computed aλµ: Small e-weights

Theorem (Richards, Fayers, Schroll-T., Low)

Let λ be a partition of e-weight w, with w ≤ 4 and w < p. Then

aλµ = δλµ,

Theorem (Fayers, Fayers-T., Low-T.)

Let λ be a partition of e-weight w, with w ∈ {2, 3} and w ≥ p. Then

aλµ = δλµ,

except for those ‘coming from’ the Rouquier blocks.
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Theorem (Low)

Let λ, µ be e-regular partitions with empty e-core and e-weight 5, and
assume that e 6= 4 and p ≥ 5. Then

aλµ = δλµ.
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Computed dλµ

Theorem (Kleshchev, T.-Teo, Chuang-T.)

Let λ be a partition and let µ be a partition obtained from λ by moving
some removable beads to their respective vacant preceding positions and
some addable beads to their respective vacant succeeding positions.
Assume that the removable beads moved do not lie in adjacent runners,
and that e = p. Then

d pλµ = d 0
λµ.

In particular, aλµ = δλµ.
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Conjecture

Let λ be a partition, with e-core κ and e-quotient (λ(0), . . . , λ(e−1)). If

|λ(i)| ≤ 1 for all i ∈ Z/eZ;
whenever λ(i) and λ(j) are nonempty (and i 6= j), there exists
k ∈ Z/eZ such that rk is between ri and rj ,

then
aλµ = δλµ.
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Thank you for your attention!
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