Diagrammatics for real supergroups

$$
a \bigcap=(-1)^{\bar{a}} \bigcap_{\emptyset} a^{\star}
$$

Alistair Savage
 University of Ottawa

Joint with Saima Samchuck-Schnarch
Slides: alistairsavage.ca/talks
Paper: arXiv:2301.01414

Outline

Goal: Develop a simple and intuitive graphical calculus for real representations of real supergroups

Overview:

(1) Background: oriented and unoriented Brauer categories
(2) Motivation: Schur's lemma and division superalgebras
(3) Superhermitian forms
(9) Real Lie superalgebras
(5) Graphical calculus

The oriented Brauer category

The oriented Brauer category $\mathcal{O B}(d)$ is the free rigid symmetric \mathbb{C}-linear monoidal category on a generating object \uparrow of dimension d.

Morphisms are linear combinations of oriented Brauer diagrams:

There is a full monoidal functor

$$
O \mathcal{B}(m) \rightarrow \mathrm{GL}(m, \mathbb{C})-\bmod , \quad \uparrow \mapsto V=\mathbb{C}^{m}
$$

In particular, there is a surjective algebra homomorphism (half of Schur-Weyl duality)

$$
\mathbb{C} \mathfrak{S}_{r} \cong \operatorname{End}_{\mathcal{O B}(m)}(\uparrow \otimes r) \rightarrow \operatorname{End}_{G L(m, \mathbb{C})}\left(V^{\otimes r}\right)
$$

The unoriented Brauer category

The unoriented Brauer category $\mathcal{B}(d)$ is the free rigid symmetric \mathbb{C}-linear monoidal category on a symmetrically self-dual object I of dimension d.

Morphisms are linear combinations of unoriented Brauer diagrams:

There are full monoidal functors

$$
\mathcal{B}(m) \rightarrow \mathrm{O}(m, \mathbb{C})-\bmod \quad \text { and } \quad \mathcal{B}(-2 m) \rightarrow \mathrm{Sp}(2 m, \mathbb{C})-\text { mod }
$$

Here the endomorphism algebras are Brauer algebras.

Observations

Super unifies

In fact, there are full functors

$$
\begin{aligned}
O \mathcal{B}(m-n) & \rightarrow \mathrm{GL}(m \mid n, \mathbb{C}) \text {-smod and } \\
\mathcal{B}(m-2 n) & \rightarrow \operatorname{OSp}(m \mid 2 n, \mathbb{C}) \text {-smod. }
\end{aligned}
$$

Trivial yet important observation

Functors induce isomorphisms

$$
\mathbb{C} \cong \operatorname{Span}_{\mathbb{C}}\{\uparrow\}=\operatorname{End}_{\mathcal{O B}(m-n)}(\uparrow) \stackrel{\cong}{\rightrightarrows} \operatorname{End}_{\mathrm{GL}(m \mid n, \mathbb{C})}(V)
$$

and

$$
\mathbb{C} \cong \operatorname{Span}_{\mathbb{C}}\{\mid\}=\operatorname{End}_{\mathcal{B}(m-2 n)}(\mathrm{I}) \xrightarrow{\cong} \operatorname{End}_{\mathrm{OSp}(m \mid 2 n, \mathbb{C})}(V)
$$

Schur's lemma

Fix a ground field \mathbb{k}. All supermodules are assumed to be finite dimensional over \mathbb{k}.

Let R be an associative superalgebra or Lie superalgebra over \mathbb{k}.

Schur's lemma

If V is a simple R-supermodule, then $\operatorname{End}_{R}(V)$ is a finite-dimensional division \mathbb{k}-superalgebra.

Non-super world

- There is one complex division algebra: \mathbb{C}.
- There are three real division algebras: \mathbb{R}, \mathbb{C}, and \mathbb{H}.

Complex division superalgebras

If $\mathbb{k}=\mathbb{C}$, then there are two complex division superalgebras:

- the complex numbers \mathbb{C},
- the complex Clifford superalgebra $\mathrm{Cl}(\mathbb{C}):=\mathbb{C} \oplus \varepsilon \mathbb{C}$, with $\bar{\varepsilon}=1$,

$$
\varepsilon^{2}=-1 \quad \text { and } \quad z \varepsilon=\varepsilon z \quad \forall z \in \mathbb{C} .
$$

Consequence

When $\mathbb{k}=\mathbb{C}$, there are two types of simple supermodule V over a superalgebra R :

- Type $M: \operatorname{End}_{R}(V)=\mathbb{C}$,
- Type $Q: \operatorname{End}_{R}(V)=\mathrm{Cl}(\mathbb{C})$.

Real division superalgebras

Theorem (Wall 1964)

Every real division superalgebra is isomorphic to exactly one of the following, where $\bar{\varepsilon}=1$, and \star denotes complex conjugation:

- $\mathrm{Cl}_{0}(\mathbb{R})=\mathbb{R}$;
- $\mathrm{Cl}_{1}(\mathbb{R}):=\mathbb{R} \oplus \varepsilon \mathbb{R}$, with $\varepsilon^{2}=1$;
- $\mathrm{Cl}_{2}(\mathbb{R}):=\mathbb{C} \oplus \varepsilon \mathbb{C}$, with $\varepsilon^{2}=1$ and $z \varepsilon=\varepsilon z^{\star}$ for all $z \in \mathbb{C}$;
- $\mathrm{Cl}_{3}(\mathbb{R}):=\mathbb{H} \oplus \varepsilon \mathbb{H}$, with $\varepsilon^{2}=-1$ and $z \varepsilon=\varepsilon z$ for all $z \in \mathbb{H}$;
- $\mathrm{Cl}_{4}(\mathbb{R}):=\mathbb{H}$;
- $\mathrm{Cl}_{5}(\mathbb{R}):=\mathbb{H} \oplus \varepsilon \mathbb{H}$, with $\varepsilon^{2}=1$ and $z \varepsilon=\varepsilon z$ for all $z \in \mathbb{H}$;
- $\mathrm{Cl}_{6}(\mathbb{R}):=\mathbb{C} \oplus \varepsilon \mathbb{C}$, with $\varepsilon^{2}=-1$ and $z \varepsilon=\varepsilon z^{\star}$ for all $z \in \mathbb{C}$;
- $\mathrm{Cl}_{7}(\mathbb{R}):=\mathbb{R} \oplus \varepsilon \mathbb{R}$, with $\varepsilon^{2}=-1$;
- \mathbb{C};
- $\mathrm{Cl}(\mathbb{C})$.

Remarks

The $\mathrm{Cl}_{r}(\mathbb{R}), 0 \leq r \leq 7$, are real Clifford superalgebras. They are the only central real division superalgebras (i.e. with even center \mathbb{R}).

The notation $\mathrm{Cl}_{r}(\mathbb{R})$ is inspired by the fact that (subscripts $\bmod 8$)

$$
\mathrm{Cl}_{r}(\mathbb{R}) \otimes \mathrm{Cl}_{s}(\mathbb{R}) \quad \text { is Morita equivalent to } \quad \mathrm{Cl}_{r+s}(\mathbb{R})
$$

The opposite superalgebra of an associative superalgebra A is

$$
A^{\mathrm{op}}:=\left\{a^{\mathrm{op}}: a \in A\right\}
$$

with multiplication

$$
a^{\mathrm{op}} b^{\mathrm{op}}=(-1)^{\overline{\mathrm{a}} \bar{b}}(b a)^{\mathrm{op}} .
$$

We have

- $\mathrm{Cl}_{r}(\mathbb{R})^{\mathrm{op}} \cong \mathrm{Cl}_{-r}(\mathbb{R})$, with subscripts considered modulo 8 ,
- $\mathrm{Cl}(\mathbb{C})^{\text {op }} \cong \mathrm{Cl}(\mathbb{C}), \varepsilon \mapsto \varepsilon i$,
- $\mathbb{C}^{\mathrm{OP}} \cong \mathbb{C}$.

Motivating idea

The tenfold way
Suppose R is a real associative superalgebra or a real Lie superalgebra.
There are ten types of simple R-supermodule:

$$
\operatorname{End}_{R}(V) \in\left\{\mathrm{Cl}_{r}(\mathbb{R}), \mathbb{C}, \mathrm{Cl}(\mathbb{C}): 0 \leq r \leq 7\right\}
$$

We want to modify the oriented Brauer category so that

$$
\operatorname{End}(\uparrow) \text { is a division superalgebra } A
$$

This amounts to adding morphisms

$$
\hat{\phi} a, \quad a \in A
$$

For the unoriented Brauer category, we'll need an anti-involution on A corresponding to

$$
\phi a \mapsto(\Omega a .
$$

Real general linear Lie superalgebras

Let's look at $\mathfrak{g l}(m \mid n, \mathbb{D})$ for \mathbb{D} a real division superalgebra.

Simplification

- If $\mathbb{D}_{1} \neq 0$, then $\mathfrak{g l}(m \mid n, \mathbb{D}) \cong \mathfrak{g l}(m+n, \mathbb{D})$.
- We have $\mathfrak{g l}(m \mid n, \mathbb{D}) \cong \mathfrak{g l}\left(m \mid n, \mathbb{D}^{\text {op }}\right)$.

Thus, the general linear Lie superalgebras over real division superalgebras are:

- $\mathfrak{g l}\left(m, \mathrm{Cl}_{1}(\mathbb{R})\right)=\mathfrak{q}(m, \mathbb{R})$ is the split real isomeric Lie superalgebra (a.k.a. the split real queer Lie superalgebra),
- $\mathfrak{g l}(m, \mathrm{Cl}(\mathbb{C}))=\mathfrak{q}(m, \mathbb{C})$ is the complex isomeric Lie superalgebra,
- $\mathfrak{g l}\left(m, \mathrm{Cl}_{2}(\mathbb{R})\right)$,
- $\mathfrak{g l}\left(m, \mathrm{Cl}_{3}(\mathbb{R})\right)$,
- $\mathfrak{g l}(m \mid n, \mathbb{C})$,
- $\mathfrak{g l}(m \mid n, \mathbb{H})$.

Complexification of general linear Lie superalgebras

The complexifications of all central real division superalgebras are

$$
\begin{gathered}
\mathbb{R}^{\mathbb{C}} \cong \mathbb{C}, \quad \mathbb{H}^{\mathbb{C}} \cong \operatorname{Mat}_{2}(\mathbb{C}), \\
\mathrm{Cl}_{1}(\mathbb{R})^{\mathbb{C}} \cong \mathrm{Cl}_{7}(\mathbb{R})^{\mathbb{C}} \cong \mathrm{Cl}(\mathbb{C}), \\
\mathrm{Cl}_{2}(\mathbb{R})^{\mathbb{C}} \cong \mathrm{Cl}_{6}(\mathbb{R})^{\mathbb{C}} \cong \operatorname{Mat}_{1 \mid 1}(\mathbb{C}), \\
\mathrm{Cl}_{3}(\mathbb{R})^{\mathbb{C}} \cong \mathrm{Cl}_{5}(\mathbb{R})^{\mathbb{C}} \cong \operatorname{Mat}_{2}(\mathrm{Cl}(\mathbb{C})) .
\end{gathered}
$$

If \mathbb{D} is a real division superalgebra, we have

$$
\mathfrak{g l}(m \mid n, \mathbb{D})^{\mathbb{C}} \cong \mathfrak{g l}\left(m \mid n, \mathbb{D}^{\mathbb{C}}\right)
$$

Hence

- $\mathfrak{g l}(m \mid n, \mathbb{R})^{\mathbb{C}} \cong \mathfrak{g l}(m \mid n, \mathbb{C})$,
- $\mathfrak{g l}(m \mid n, \mathbb{H})^{\mathbb{C}} \cong \mathfrak{g l}(2 m \mid 2 n, \mathbb{C})$,
- $\mathfrak{g l}\left(m, \mathrm{Cl}_{1}(\mathbb{R})\right)^{\mathbb{C}} \cong \mathfrak{g l}\left(m, \mathrm{Cl}_{7}(\mathbb{R})\right)^{\mathbb{C}} \cong \mathfrak{g l}(m, \mathrm{Cl}(\mathbb{C}))=\mathfrak{q}(m, \mathbb{C})$,
- $\mathfrak{g l}\left(m, \mathrm{Cl}_{2}(\mathbb{R})\right)^{\mathbb{C}} \cong \mathfrak{g l}\left(m, \mathrm{Cl}_{6}(\mathbb{R})\right)^{\mathbb{C}} \cong \mathfrak{g l}(m \mid m, \mathbb{C})$,
- $\mathfrak{g l}\left(m, \mathrm{Cl}_{3}(\mathbb{R})\right)^{\mathbb{C}} \cong \mathfrak{g l}\left(m, \mathrm{Cl}_{5}(\mathbb{R})\right)^{\mathbb{C}} \cong \mathfrak{g l}(2 m, \mathrm{Cl}(\mathbb{C}))=\mathfrak{q}(2 m, \mathbb{C})$.

Motivation for anti-involutions

Fix an associative \mathbb{R}-superalgebra A and a right A-supermodule V.
Then the dual $V^{*}=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R})$ is a left A-supermodule, with action

$$
(a f)(v)=(-1)^{\bar{a} \bar{f}+\bar{a} \bar{v}} f(v a), \quad a \in A, f \in V^{*}, v \in V
$$

We want to examine the situation where V is self dual:

$$
V \cong V^{*} \quad \text { as right } A \text {-supermodules. }
$$

In order for this to make sense, we need to turn V^{*} into a right A-supermodule.

Recall that a right A-supermodule is the same as a left $A^{\text {op }}$-supermodule.
So, if we have an isomorphism $A^{\mathrm{op}} \cong A$, we can convert left A-supermodules into right A-supermodules.

Involutive superalgebras

Definition

An involutive superalegbra is a pair (A, \star), where

- A is an associative superalgebra, and
- $\star: A \rightarrow A, a \mapsto a^{\star}$, is an anti-involution:

$$
\left(a^{\star}\right)^{\star}=a, \quad(a b)^{\star}=(-1)^{\bar{a} \bar{b}} b^{\star} a^{\star} .
$$

An anti-involution \star gives an isomorphism $A^{\mathrm{op}} \cong A$.
So, if V is a right supermodule over an involutive superalgebra (A, \star), then V^{*} is a right A-supermodule via

$$
(f a)(v)=(-1)^{\bar{a} \bar{v}} f\left(v a^{\star}\right), \quad a \in A, f \in V^{*}, v \in V
$$

Involutive real division superalgebras

Recall that

$$
\mathbb{C}^{\mathrm{op}} \cong \mathbb{C}, \quad \mathrm{Cl}(\mathbb{C})^{\mathrm{op}} \cong \mathrm{Cl}(\mathbb{C}), \quad \mathrm{Cl}_{r}(\mathbb{R})^{\mathrm{op}} \cong \mathrm{Cl}_{-r}(\mathbb{R})
$$

So the real division superalgebras admitting anti-involutions are $\mathbb{R}, \mathbb{C}, \mathbb{H}$, and $\mathrm{Cl}(\mathbb{C})$.

In particular, we have

- (\mathbb{R}, id),
- (\mathbb{C}, id),
- (\mathbb{C}, \star), where \star is complex conjugation,
- ($\mathbb{H}, \star)$, where \star is quaternionic conjugation,
- $(\mathrm{Cl}(\mathbb{C}), \star)$, where

$$
(a+\varepsilon b i)^{\star}=a^{\star}+\varepsilon b^{\star} i, \quad a, b \in \mathbb{C} .
$$

Superhermitian forms

Let V be a right supermodule over an involutive real division superalgebra (\mathbb{D}, \star).

Definition

Let $\nu \in\{ \pm 1\}$. A (ν, \star)-superhermitian form on V is a homogeneous \mathbb{R}-bilinear map

$$
\varphi: V \times V \rightarrow \mathbb{D}
$$

such that

- $\varphi(v a, w b)=(-1)^{\bar{a}(\bar{\varphi}+\bar{v})} a^{\star} \varphi(v, w) b$ for all $a, b \in A, v, w \in V$,
- $\varphi(v, w)=\nu(-1)^{\bar{v}} \bar{w} \varphi(w, v)^{\star}$ for all $v, w \in V$.

Remarks

- A superhermitian form gives an isomorphism $V \cong V^{*}$.
- A superhermitian form can be even $(\bar{\varphi}=0)$ or odd $(\bar{\varphi}=1)$.

Examples

Assume everything is even (i.e., all odd parts are zero).

Example

If $(\mathbb{D}, \star)=(\mathbb{C}, \mathrm{id})$, then

- an (1, id)-superhermitian form is a symmetric form,
- an (-1, id)-superhermitian form is skew-symmetric form.

Example

If $(\mathbb{D}, \star)=(\mathbb{C}, \star)$, where \star is complex conjugation, then

- a $(1, \star)$-superhermitian form is a hermitian form in the usual sense,
- a $(-1, \star)$-superhermitian form is a skew-hermitian form.

Lie superalgebras associated to a superhermitian form

Suppose

- (\mathbb{D}, \star) is an involutive real division superalgebra,
- φ is a (ν, \star)-superhermitian form.

Let

$$
\mathfrak{g}(\varphi)=\left\{X \in \mathfrak{g l}(V): \varphi(X v, w)=-(-1)^{\bar{X} \bar{v}} \varphi(v, X w) \forall v, w \in V\right\} .
$$

be the Lie sub-superalgebra of $\mathfrak{g l}(V)$ preserving φ.

Let $G(\varphi)$ be the supergroup preserving φ.

Real forms

A real Lie algebra \mathfrak{g} is a real form of the complex Lie algebra $\mathfrak{g}^{\mathbb{C}}$.

Example ($k=\mathbb{C}$)

The Lie superalgebras of the form $\mathfrak{g}(\varphi)$ are:

- the orthosymplectic Lie superalgebras $\mathfrak{o s p}(m \mid 2 n, \mathbb{C})$ (when φ is even),
- the periplectic Lie superalgebras $\mathfrak{p}(m, \mathbb{C})$ (when φ is odd).

Now suppose $\mathbb{k}=\mathbb{R}$. We have

- the Lie superalgebras $\mathfrak{g l}(m \mid n, \mathbb{D})$ for a real division superalgebra \mathbb{D},
- the Lie superalgebras $\mathfrak{g}(\varphi)$ for φ a (ν, \star)-superhermitian form for an involutive real division superalgebra (\mathbb{D}, \star).
These correspond to all real forms of the complex Lie superalgebras

$$
\mathfrak{g l}(m \mid n, \mathbb{C}), \quad \mathfrak{o s p}(m \mid 2 n, \mathbb{C}), \quad \mathfrak{p}(m, \mathbb{C}), \quad \mathfrak{q}(m, \mathbb{C})
$$

String diagrams for monoidal supercategories

Composition is vertical stacking and tensor product is horizontal juxtaposition:

$$
\stackrel{f}{f}=\stackrel{f}{9} \quad \stackrel{f}{f} \otimes \stackrel{1}{9}=\stackrel{f}{9}(g)
$$

The super interchange law is:

A morphism $f: A_{1} \otimes A_{2} \rightarrow B_{1} \otimes B_{2}$ can be depicted:

The oriented supercategory

For an associative superalgebra A, we define $O \mathcal{B}_{\mathrm{kk}}(A)$ to be the strict monoidal supercategory generated by objects \uparrow and \downarrow and morphisms

$$
\begin{aligned}
K \backslash \uparrow \otimes \uparrow \rightarrow \uparrow \otimes \uparrow, & \quad \hat{\phi} a: \uparrow \rightarrow \uparrow, a \in A, \\
\curvearrowleft: \downarrow \otimes \uparrow \rightarrow \mathbb{1}, \quad \cup: \mathbb{1} \rightarrow \uparrow \otimes \downarrow, & \curvearrowright: \uparrow \otimes \downarrow \rightarrow \mathbb{1}, \quad \cup: \mathbb{1} \rightarrow \downarrow \otimes \uparrow,
\end{aligned}
$$

subject to the relations

$$
\begin{aligned}
& K=\uparrow \uparrow, \quad X=X, \\
& \bigotimes_{1}=\downarrow \uparrow, \quad \swarrow=\uparrow \downarrow, \quad \uparrow=\uparrow=\uparrow, \quad \curvearrowleft=\downarrow, \quad \uparrow=\uparrow,
\end{aligned}
$$

for all $a, b \in A$ and $\lambda, \mu \in \mathbb{k}$. In the above, the left and right crossings are defined by

The parity of $\hat{\phi} a$ is \bar{a}, and all the other generating morphisms are even.

The oriented supercategory

Morphisms in $O \mathcal{B}_{\mathbb{k}}(A)$ are \mathbb{k}-linear combinations of diagrams such as

Composition is vertical stacking; tensor product is horizontal juxtaposition.

Example

- $O \mathcal{B}_{\mathbb{k}}(\mathbb{k})$ is the oriented Brauer category.
- $O \mathcal{B}_{\mathbb{C}}(\mathrm{Cl}(\mathbb{C}))$ is the oriented Brauer-Clifford supercategory (Brundan-Comes-Kujawa).

The oriented incarnation superfunctor

Suppose that \mathbb{D} is a real division superalgebra. Let $V=\mathbb{D}^{m \mid n}$.
Theorem (Samchuck-Schnarch-S.)
There exists a unique monoidal superfunctor

$$
\mathrm{G}: O \mathcal{B}_{\mathbb{R}}\left(\mathbb{D}^{\circ \mathrm{p}}\right) \rightarrow \mathfrak{g l}(m \mid n, \mathbb{D}) \text {-smod }
$$

such that $\mathrm{G}(\uparrow)=V, \mathrm{G}(\downarrow)=V^{*}$, and

$$
\begin{aligned}
\mathrm{G}\left(\nwarrow^{\chi}\right): V \otimes V \rightarrow V \otimes V, & v \otimes w & \mapsto(-1)^{\bar{v} \bar{w}} w \otimes v, \\
\mathrm{G}(\curvearrowleft): V^{*} \otimes V \rightarrow \mathbb{R}, & f \otimes v & \mapsto f(v), \\
\left(\oint_{a^{\circ \rho}}\right): V \rightarrow V, & v & \mapsto(-1)^{\bar{a} \bar{v}} v a .
\end{aligned}
$$

The superfunctor G is full.

Remark

When $\mathbb{k}=\mathbb{C}$, the analogous theorem was known.

The unoriented supercategory

Let (\mathbb{D}, \star) be an involutive division superalgebra over \mathbb{k}, and let $\sigma \in \mathbb{Z}_{2}$.
We define $\mathcal{B}_{\mathbb{k}}^{\sigma}(\mathbb{D}, \star)$ to be the strict monoidal supercategory generated by one object I and morphisms

$$
X: \mathbf{I}^{\otimes 2} \rightarrow \mathbf{I}^{\otimes 2}, \quad \cap: \mathbf{I}^{\otimes 2} \rightarrow \mathbb{1}, \quad \cup: \mathbb{1} \rightarrow \mathbf{I}^{\otimes 2}, \quad \phi a: \mathbf{I} \rightarrow \mathbf{I}, \quad a \in A
$$

subject to the relations

$$
\begin{aligned}
& 1 \emptyset=\mid, \quad \lambda \emptyset a+\mu \emptyset b=\emptyset \lambda a+\mu b, \quad \begin{array}{l}
a \emptyset \\
b
\end{array}=\emptyset a b, \\
& X=|, \quad X=X, \quad \Omega=|=(-1)^{\sigma} \cap,
\end{aligned}
$$

for all $a, b \in A$ and $\lambda, \mu \in \mathbb{k}$. The parity of ϕa is \bar{a}, the morphisms \cup and \cap both have parity σ, and X is even.

The unoriented supercategory

Morphisms in $\mathcal{B}_{\mathbb{k}}^{\sigma}(A, \star)$ are \mathbb{k}-linear combinations of diagrams such as

Composition is vertical stacking; tensor product is horizontal juxtaposition.

Example

- $\mathcal{B}_{\mathrm{k}}^{0}(\mathbb{k}, \mathrm{id})$ is the Brauer category (Lehrer-Zhang).
- $\mathcal{B}_{\mathbb{k}}^{1}(\mathbb{k}, \mathrm{id})$ is the periplectic Brauer supercategory (Kujawa-Tharp).

The unoriented incarnation superfunctor

Let (\mathbb{D}, \star) be an involutive real division superalgebra, let $V=\mathbb{D}^{m \mid n}$, and let φ be a nondegenerate (ν, \star)-superhermitian form of parity σ on V.

Theorem (Samchuck-Schnarch-S.)

There exists a unique monoidal superfunctor

$$
\mathrm{F}_{\varphi}: \mathcal{B}_{\mathbb{R}}^{\sigma}(\mathbb{D}, \star) \rightarrow G(\varphi)-\operatorname{smod}
$$

such that $\mathrm{F}_{\varphi}(\mathrm{I})=V$ and

$$
\begin{aligned}
\mathrm{F}_{\varphi}(X) & : V \otimes V \rightarrow V \otimes V, & v \otimes w & \mapsto(-1)^{\bar{v} \bar{w}} w \otimes v, \\
\mathrm{~F}_{\varphi}(\cap) & : V \otimes V \rightarrow \mathbb{R}, & v \otimes w & \mapsto \operatorname{Re}_{0}(\varphi(v, w)), \\
\mathrm{F}_{\varphi}\left(\phi^{a}\right) & : V \rightarrow V, & v & \mapsto(-1)^{\bar{a} \bar{v}} v a^{\star},
\end{aligned}
$$

where $\operatorname{Re}_{0}(a)$ is the real part of the even part of $a \in \mathbb{D}$.
The superfunctor F_{φ} is full.

The unoriented incarnation superfunctor

Previous results $(\mathbb{k}=\mathbb{C})$

- When $\sigma=0$, so $G(\varphi)=\operatorname{OSp}(m \mid 2 n, \mathbb{C})$, the result is due to Lehrer-Zhang, Deligne-Lehrer-Zhang.
- When $\sigma=1$, so $G(\varphi)=\mathrm{P}(m, \mathbb{C})$, the result is due to Coulembier-Ehrig, with key step by Deligne-Lehrer-Zhang.

Over \mathbb{R}, the proof of fullness is split into cases and involves mapping the complexification $\mathcal{B}_{\mathbb{R}}^{\sigma}(\mathbb{D}, \star)^{\mathbb{C}}$ into other supercategories:

- For $(\mathbb{D}, \star)=(\mathbb{R}, \mathrm{id}), \mathcal{B}_{\mathbb{R}}^{\sigma}(\mathbb{R}, \mathrm{id})^{\mathbb{C}} \cong \mathcal{B}_{\mathbb{C}}^{\sigma}(\mathbb{C}, \mathrm{id})$,
- For $(\mathbb{D}, \star) \in\{(\mathbb{C}, \star),(\operatorname{Cl}(\mathbb{C}), \star)\}$, we embed $\mathcal{B}_{\mathbb{R}}^{\sigma}(\mathbb{D}, \star)^{\mathbb{C}}$ in the superadditive envelope of $O \mathcal{B}_{\mathbb{C}}(\mathbb{D})$.
- For $(\mathbb{D}, \star)=(\mathbb{H}, \star)$, we embed $\mathfrak{B}_{\mathbb{R}}^{\sigma}(\mathbb{H}, \star)^{\mathbb{C}}$ in the superadditive envelope of $\mathcal{B}_{\mathbb{C}}^{\sigma}(\mathbb{C}, \mathrm{id})$.
Then we use the known fullness results in the $\mathbb{k}=\mathbb{C}$ cases.

Corollary

Corollary of incarnation theorems

If $p, p^{\prime}, q, q^{\prime} \in \mathbb{N}$ satisfy $p+q=p^{\prime}+q^{\prime}$, then we have equivalences of monoidal categories

$$
\begin{aligned}
\mathrm{O}(p, q)-\operatorname{tmod}_{\mathbb{R}} & \simeq \mathrm{O}\left(p^{\prime}, q^{\prime}\right)-\operatorname{tmod}_{\mathbb{R}} \\
\mathrm{U}(p, q)-\operatorname{tmod}_{\mathbb{R}} & \simeq \mathrm{U}\left(p^{\prime}, q^{\prime}\right)-\operatorname{tmod}_{\mathbb{R}} \\
\mathrm{Sp}(p, q)-\operatorname{tmod}_{\mathbb{R}} & \simeq \operatorname{Sp}\left(p^{\prime}, q^{\prime}\right)-\operatorname{tmod}_{\mathbb{R}}
\end{aligned}
$$

sending the natural supermodule to the natural supermodule, where tmod denotes the category of tensor modules.

Above corollary is false if we replace O by SO or U by SU . E.g.

$$
\mathrm{SU}(1,1)-\operatorname{tmod}_{\mathbb{R}} \quad \text { and } \quad \mathrm{SU}(2)-\operatorname{tmod}_{\mathbb{R}}
$$

are not equivalent.

Final remarks

Non-super cases

We obtain a diagrammatic calculus for real forms (including the compact forms) of the classical Lie groups $\mathrm{GL}_{m}(\mathbb{C}), \mathrm{O}_{m}(\mathbb{C})$, and $\mathrm{Sp}_{2 m}(\mathbb{C})$.

Schur-Weyl type duality

We obtain Schur-Weyl-type duality statements for real Lie superalgebras/supergroups.

Quantum versions

There exist quantum versions of the diagrammatic categories introduced here.

These should provide a diagrammatic calculus for real quantum groups analogous to the existing diagrammatics for complex quantum groups.

