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Definition of Supercharacter Theory
(See P. Diaconis and I.M. Isaacs, Supercharacters and Superclasses for Algebra Groups in
Transactions of the AMS, 2008)

Let G be a finite group.
Let Irr(G ) denote the irreducible characters of G .
Let Ch(G ) denote a set of characters of G .
Let κ(G ) denote a partition of the conjugacy classes of G .

A supercharacter theory for a group G is a pair (Ch(G ), κ(G ))
such that

1. 1G ∈ Ch(G ) and {1} ∈ κ(G ).

2. |Ch(G )| = |κ(G )|.
3. Each character in Ch(G ) is constant on each block of κ(G ).

4. Two distinct characters in Ch(G ) have distinct constituents.



Two Trivial Examples

Example 1: Take Ch(G ) = Irr(G ) and let κ(G ) have blocks equal
to the conjugacy classes. (The supercharacter theory table is then
the usual character table.)

Example 2: Take Ch(G ) = {1G ,
∑

χ∈Irr(G),χ 6=1G

χ(1)χ} and

κ(G ) = {{1},G − {1}}. Then we get the following supercharacter
theory table:

{1} {G − {1}}
1G 1 1
ρG |G | − 1 −1

where ρG denotes the regular character of G .



Constructing Supercharacter Theories

Let δ be a partitioning of Irr(G ) and let X ∈ δ. Let

σX =
∑
χ∈X

χ(1)χ.

Attempt to construct a partition, κ(G ), of the set up conjugacy
classes of G such that σX is constant on each block of κ(G ) for all
X ∈ δ.



Another Example

SL2(3) C1 C2 C3 C4 C5 C6 C7

χ0 1 1 1 1 1 1 1
χ1 1 1 ζ4 ζ2 1 ζ4 ζ2

χ2 1 1 ζ2 ζ4 1 ζ2 ζ4

χ3 2 −2 −1 −1 0 1 1
χ4 2 −2 ζ5 ζ 0 ζ2 ζ4

χ5 2 −2 ζ ζ5 0 ζ4 ζ2

χ6 3 3 0 0 −1 0 0

SL2(3) C1 C2 C5 K

χ0 1 1 1 1
ψ1 2 2 2 −1
ψ2 6 −6 0 0
ψ3 3 3 −1 0

where K = C3 ∪ C4 ∪ C6 ∪ C7 and ζ = e
πi
3



A Possible Supercharacter Theory

For i > 1, let
ψi =

∑
χ∈Irr(G),χ(1)=i

χ(1)χ

Let
ψ1 =

∑
χ∈Irr(G),χ(1)=1,χ 6=1G

χ

Let Ch(G ) = {1G , ψi}
Question: For which families of groups does there exist a
partitioning of the conjugacy classes κ(G ), such that
(Ch(G ), κ(G )) is a supercharacter theory?

If such a supercharacter theory exist for a given group G call it a
super degree character theory for G .



Note: This supercharacter theory applies for all abelian groups.

It also works for the group SL2(3), as above.

Proposition

If G does not have a super degree character theory then G
must have at least eight conjugacy classes.

Proof: Check all 36 groups which have at most seven conjugacy
classes. �

GL2(3) has eight conjugacy classes but does not have a super
degree character theory.



Example of a group that does not have a super degree
character theory

A7 C1 C2 C3 C4 C5 C6 C7 C8 C9

χ0 1 1 1 1 1 1 1 1 1
χ1 6 2 3 −1 0 0 1 −1 −1
χ2 10 −2 1 1 1 0 0 A B
χ3 10 −2 1 1 1 0 0 B A
χ4 14 2 2 2 −1 0 −1 0 0
χ5 14 2 −1 −1 2 0 −1 0 0
χ6 15 −1 3 −1 0 −1 0 1 1
χ7 21 1 −3 1 0 −1 1 0 0
χ8 35 −1 −1 −1 −1 1 0 0 0

where ζ = e
2πi

7 , A = ζ3 + ζ5 + ζ6 and B = ζ + ζ2 + ζ4



Example of a group that does not have a super degree
character theory

A7 C1 C2 C3 C4 C5 C6 C7 C8 C9

χ0 1 1 1 1 1 1 1 1 1
χ1 6 2 3 −1 0 0 1 −1 −1

χ2 + χ3 20 −4 2 2 2 0 0 −1 −1
χ4 + χ5 28 4 1 1 1 0 −2 0 0
χ6 15 −1 3 −1 0 −1 0 1 1
χ7 21 1 −3 1 0 −1 1 0 0
χ8 35 −1 −1 −1 −1 1 0 0 0



Families of groups that do not have a super degree
character theory when they are “large enough”.

1. An, n ≥ 7

2. Sn, n ≥ 7

3. SLn(q), q ≥ 5, n ≥ 2

4. GLn(q), q ≥ 3, n ≥ 2

5. GUn(q), q ≥ 3, n ≥ 2

6. SUn(q), q ≥ 5, n ≥ 2

7. Spn(2)



Families of groups that do have a super degree character
theory:

1. Abelian Groups

2. Orthogonal Groups

3. Cm o Cn where either m or n is prime

4. Frobenius Groups



Generic Character Table of SO3(q), q even

I A Bj Ck

χ0 1 1 1 1
χq q 0 1 −1

χq−1,n q − 1 −1 0 −(ζknq+1 + ζknqq+1)

χq+1,m q + 1 1 ζ jmq−1 + ζ−jmq−1 0

for 1 ≤ m, j ≤ 1
2 (q − 2),

1 ≤ n, k ≤ q
2

ζn = e
2πi
n



SO3(q), q even

Lemma

For 1 ≤ j ≤ 1
2 (q − 2) and 1 ≤ k ≤ q

2

q−2
2∑

m=1

ζ jmq−1 + ζ−jmq−1 = −1

and
q
2∑

n=1

−(ζknq+1 + ζknqq+1) = 1



SO3(q), q even

I A Bj Ck

χ0 1 1 1 1
χq q 0 1 −1

χq−1,n q − 1 −1 0 −(ζknq+1 + ζknqq+1)

χq+1,m q + 1 1 ζ jmq−1 + ζ−jmq−1 0

So we have the supercharacter theory table is:

I A B C

χ0 1 1 1 1
χq q 0 1 −1

χq−1
q(q−1)

2 −q
2 0 1

χq+1
(q+1)(q−2)

2
q−2

2 −1 0

B = ∪Bj ,C = ∪Ck



Generic Character Table of SO3(q), q odd

I A Bj Ck

χ0 1 1 1 1
χ1 1 1 (−1)j (−1)k

χq,1 q 0 1 −1
χq,2 q 1 (−1)j (−1)k+1

χq−1,n q − 1 −1 0 −(ζknq+1 + ζknqq+1)

χq+1,m q + 1 1 ζ jmq−1 + ζ−jmq−1 0

for 1 ≤ m ≤ 1
2 (q − 3),

1 ≤ n, j ≤ 1
2 (q − 1),

1 ≤ k ≤ 1
2 (q + 1)



SO3(q), q odd

Lemma

Let 1 ≤ j ≤ q−1
2 and 1 ≤ k ≤ q+1

2 .

If j and k are odd then

q−3
2∑

m=1

ζ jmq−1 + ζ−jmq−1 = 0 and

q−1
2∑

n=1

−(ζknq+1 + ζknqq+1) = 0

If j and k are even then

q−3
2∑

m=1

ζ jmq−1 + ζ−jmq−1 = −2 and

q−1
2∑

n=1

−(ζknq+1 + ζknqq+1) = 2



SO3(q), q odd

I A Bj Ck

χ0 1 1 1 1
χ1 1 1 (−1)j (−1)k

χq,1 q 0 1 −1
χq,2 q 1 (−1)j (−1)k+1

χq−1,n q − 1 −1 0 −(ζknq+1 + ζknqq+1)

χq+1,m q + 1 1 ζ jmq−1 + ζ−jmq−1 0

I A
Bj

j odd
Bj

j even
Ck

k odd
Ck

k even
χ0 1 1 1 1 1 1
χ1 1 1 −1 1 −1 1
χq 2q 1 0 2 0 −2

χq−1
(q−1)2

2 − (q−1)
2 0 0 0 2

χq+1
(q+1)(q−3)

2
q−3

2 0 −2 0 0



SO3(q), q odd

So we have the supercharacter theory table is:

I A
Bj∪Ck

j ,k odd
Bj

j even
Ck

k even
χ0 1 1 1 1 1
χ1 1 1 −1 1 1
χq 2q 0 0 2 −2

χq−1
(q−1)2

2 − (q−1)
2 0 0 2

χq+1
(q+1)(q−3)

2
q−3

2 0 −2 0



Characters of Semidirect Products of Abelian Groups

Suppose G = Ao B where A and B are both abelian.
Let {αj | j = 0, . . . , n1 − 1} and {βk | k = 0, . . . , n2 − 1} denote
the irreducible characters of A and B respectively.

B acts on the irreducible characters of A by bαj(a) = αj(
ba). Let

αo
j denote the orbit containing αj of this irreducible characters of

A under this action. Let Bj be the subgroup of B that is the kernel
of the action of B on αo

j .



Characters of Semidirect Products of Abelian Groups

Given any pair (αo
j , χ) where χ is an irreducible character of Bj we

get an irreducible character π(αo
j ,χ) of G given by (for all

a ∈ A, b ∈ B):

π(αo
j ,χ)(ab) =


0 if b 6∈ Bj

χ(b)
∑
α∈α0

j

α(a) if b ∈ Bj .

This gives us all the irreducible characters of G .

π(αo
j ,χ) will be denoted by αo

j · χ within character tables



Characters of Semidirect Products of Abelian Groups
Example: C14 o C3

Let A = C14,B = C3

A = 〈a〉,B = 〈b〉

B acts on A by ba = a9.

We can take αj(a) = ζ j where ζ = e
2πi
14 for j = 0, 1, . . . , 13

and βk(b) = ηk where η = e
2πi

3 for k = 0, 1, 2



Characters of Semidirect Products
Example: C14 o C3

B acts on αj by bαj = α9j .

So bα1 = α9, bα9 = α92 , . . .
But ζ92

= ζ11 and ζ93
= ζ.

So this action creates the following orbit of irreducible characters
of A: {α1, α9, α11}

Similarly bα2 = α2·9, bα2·9 = α2·92 , . . .
But ζ2·9 = ζ4, ζ2·92

= ζ8, ζ2·93
= ζ2

So we have the orbit {α2, α4, α8}

Similarly we have the orbits:
{α3, α13, α5}
{α6, α12, α10}
{α7} (bα7 = α7·9 = α7)
{α0}



Characters of Semidirect Products
Example: C14 o C3

1 [a2b] [a2b2] [ab] [ab2] [a7] [a] [a2] [a3] [a6]

αo
0 · β0 1 1 1 1 1 1 1 1 1 1
αo

0 · β1 1 η η2 η η2 1 1 1 1 1
αo

0 · β2 1 η2 η η2 η 1 1 1 1 1
αo

7 · β0 1 1 1 −1 −1 −1 −1 1 −1 1
αo

7 · β1 1 η η2 −η −η2 −1 −1 1 −1 1
αo

7 · β2 1 η2 η −η2 −η −1 −1 1 −1 1
αo

1 · β0 3 0 0 0 0 −3 [ζ] [ζ2] [ζ3] [ζ6]
αo

2 · β0 3 0 0 0 0 3 [ζ2] [ζ2] [ζ6] [ζ6]
αo

3 · β0 3 0 0 0 0 −3 [ζ3] [ζ6] [ζ] [ζ2]
αo

6 · β0 3 0 0 0 0 3 [ζ6] [ζ6] [ζ2] [ζ2]

[ζ] = ζ + ζ9 + ζ11 [ζ2] = ζ2 + ζ4 + ζ8 [ζ3] = ζ3 + ζ5 + ζ13

[ζ6] = ζ6 + ζ10 + ζ12



Characters of Semidirect Products
Example: C14 o C3

1 [a2b] [a2b2] [ab] [ab2] [a7] [a] [a2] [a3] [a6]

χ0 1 1 1 1 1 1 1 1 1 1
χ1 5 −1 −1 −1 −1 −1 −1 5 −1 5
χ3 12 0 0 0 0 0 0 −2 0 −2

So the supercharacter table is:

1 [a2b] ∪ [a2b2] ∪ [ab] ∪ [ab2] ∪ [a7] ∪ [a] ∪ [a3] [a2] ∪ [a6]

χ0 1 1 1
χ1 5 −1 5
χ3 12 0 −2



Semidirect Products and Super Degree Character Theory

Proposition

Let G = Cm o Cn where either m or n is a prime.
For i > 1, let

ψi =
∑

χ∈Irr(G),χ(1)=i

χ(1)χ.

Let
ψ1 =

∑
χ∈Irr(G),χ(1)=1,χ 6=1G

χ.

Let Ch(G ) = {1G , ψi}.
There exist a partitioning of the conjugacy classes κ(G ), such
that (Ch(G ), κ(G )) is a supercharacter theory.



Semidirect Products and Super Degree Character Theory
Case: Cm o Cp

Proposition

Let G = Cm o Cp where p is a prime. Then G has a super
degree character theory with the following supercharacter ta-
ble.

1 K2 K3

χ0 1 1 1
χ1 n1p − 1 −1 n1p − 1
χp m − n1 0 −n1

where n1 is the number of orbits of irreducible characters of
Cm of length 1.



Semidirect Products and Super Degree Character Theory
Case: Cm o Cp

Corollary

Let G = D2n = 〈r , s | rn = s2 = 1, srs = r−1〉 then G has a
super degree character theory with the following superchar-
acter table.

n odd 1 {s, sr i} {r i}
χ0 1 1 1
χ1 1 −1 1
χ2 n − 1 0 −1

or
n even 1 {s, sr i , rodd} {r even}
χ0 1 1 1
χ1 3 −1 3
χ2 n − 2 0 −2

(i = 1, . . . , n − 1)



Semidirect Products and Super Degree Character Theory
Case: Cp o Cn

Proposition

Let G = Cp o Cn where p is a prime. Then G has a super
degree character theory with the following supercharacter ta-
ble.

1 K2 K3

χ0 1 1 1
χ1 n − 1 −1 n − 1

χn1

n(p−1)
n1

0 − n
n1

where n1 is the order of the action of Cn on Cp.



Frobenius Groups and Super Degree Character Theory

Proposition

Let G be a Frobenius group (so G = Fq o F∗q where q is a
power of a prime) then G has a super degree character theory
with the following supercharacter table.

1 A B

χ0 1 1 1
χ1 q − 2 −1 q − 2
χq−1 q − 1 0 −1



Frobenius Groups and Super Degree Character Theory

Generic character table of Fq o F∗q

1 Aj B

χ0 1 1 1
χ1,j 1 βj(aj) 1
χq−1 q − 1 0 −1

Where j = 1, . . . , q − 2, the βj are the nontrivial irreducible
characters of F∗q and aj is an element in the conjugacy class Aj

that is also in the group F∗q .



Thank you!


