Using Degrees of Irreducible Characters to Construct a Supercharacter Theory

Julianne Rainbolt

Representation Theory of Hecke Algebras and Categorification Workshop Okinawa Institute of Science and Technology

June 7, 2023

Definition of Supercharacter Theory

(See P. Diaconis and I.M. Isaacs, Supercharacters and Superclasses for Algebra Groups in Transactions of the AMS, 2008)

Let G be a finite group. Let Irr(G) denote the irreducible characters of G. Let Ch(G) denote a set of characters of G. Let $\kappa(G)$ denote a partition of the conjugacy classes of G.

A supercharacter theory for a group G is a pair $(Ch(G), \kappa(G))$ such that

- 1. $1_G \in Ch(G)$ and $\{1\} \in \kappa(G)$.
- 2. $|Ch(G)| = |\kappa(G)|$.
- 3. Each character in Ch(G) is constant on each block of $\kappa(G)$.
- 4. Two distinct characters in Ch(G) have distinct constituents.

Two Trivial Examples

Example 1: Take Ch(G) = Irr(G) and let $\kappa(G)$ have blocks equal to the conjugacy classes. (The supercharacter theory table is then the usual character table.)

Example 2: Take
$$Ch(G) = \{1_G, \sum_{\chi \in Irr(G), \chi \neq 1_G} \chi(1)\chi\}$$
 and $\kappa(G) = \{\{1\}, G - \{1\}\}$. Then we get the following supercharacter theory table:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where ρ_G denotes the regular character of G.

Constructing Supercharacter Theories

Let δ be a partitioning of Irr(G) and let $X \in \delta$. Let

$$\sigma_X = \sum_{\chi \in X} \chi(1) \chi.$$

Attempt to construct a partition, $\kappa(G)$, of the set up conjugacy classes of G such that σ_X is constant on each block of $\kappa(G)$ for all $X \in \delta$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Another Example

where $K = C_3 \cup C_4 \cup C_6 \cup C_7$ and $\zeta = e^{\frac{\pi i}{3}}$

A Possible Supercharacter Theory

For i>1, let $\psi_i = \sum_{\chi\in \mathit{Irr}(G), \chi(1)=i} \chi(1)\chi$

Let

$$\psi_1 = \sum_{\chi \in \mathit{Irr}(G), \chi(1) = 1, \chi \neq 1_G} \chi$$

Let $Ch(G) = \{1_G, \psi_i\}$ **Question:** For which families of groups does there exist a partitioning of the conjugacy classes $\kappa(G)$, such that $(Ch(G), \kappa(G))$ is a supercharacter theory?

If such a supercharacter theory exist for a given group G call it a super degree character theory for G.

Note: This supercharacter theory applies for all abelian groups. It also works for the group $SL_2(3)$, as above.

Proposition

If G does not have a super degree character theory then G must have at least eight conjugacy classes.

Proof: Check all 36 groups which have at most seven conjugacy classes.

 $GL_2(3)$ has eight conjugacy classes but does not have a super degree character theory.

Example of a group that does not have a super degree character theory

	A ₇	C_1	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	C_5	C_6	<i>C</i> ₇	<i>C</i> ₈	C_9
	χ0	1	1	1	1	1	1	1	1	1
	χ_1	6	2	3	-1	0	0	1	-1	-1
	χ2	10	-2	1	1	1	0	0	Α	В
	χз	10	-2	1	1	1	0	0	В	Α
	χ_4	14	2	2	2	-1	0	-1	0	0
	χ_5	14	2	-1	-1	2	0	-1	0	0
	χ_6	15	-1	3	$^{-1}$	0	-1	0	1	1
	χ7	21	1	-3	1	0	-1	1	0	0
	<i>χ</i> 8	35	-1	-1	-1	-1	1	0	0	0
where $\zeta = e^{rac{2\pi i}{7}}$, $A = \zeta^3 + \zeta^5 + \zeta^6$ and $B = \zeta + \zeta^2 + \zeta^4$										

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example of a group that does not have a super degree character theory

A_7	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄	C_5	C_6	<i>C</i> ₇	C_8	C9
χ0	1	1	1	1	1	1	1	1	1
χ_1	6	2	3	-1	0	0	1	-1	-1
$\chi_2 + \chi_3$	20	-4	2	2	2	0	0	-1	-1
$\chi_4 + \chi_5$	28	4	1	1	1	0	-2	0	0
χ_{6}	15	$^{-1}$	3	-1	0	-1	0	1	1
χ_7	21	1	-3	1	0	-1	1	0	0
χ_{8}	35	-1	-1	-1	-1	1	0	0	0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Families of groups that do not have a super degree character theory when they are "large enough".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. $A_n, n \ge 7$
- 2. $S_n, n \ge 7$
- 3. $SL_n(q), q \ge 5, n \ge 2$
- 4. $GL_n(q), q \ge 3, n \ge 2$
- 5. $GU_n(q), q \ge 3, n \ge 2$
- 6. $SU_n(q), q \ge 5, n \ge 2$
- 7. $Sp_n(2)$

Families of groups that do have a super degree character theory:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 1. Abelian Groups
- 2. Orthogonal Groups
- 3. $C_m \rtimes C_n$ where either *m* or *n* is prime
- 4. Frobenius Groups

Generic Character Table of $SO_3(q)$, q even

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\zeta_n = e^{\frac{2\pi i}{n}}$

$SO_3(q)$, q even

Lemma

For
$$1 \le j \le \frac{1}{2}(q-2)$$
 and $1 \le k \le \frac{q}{2}$
$$\sum_{m=1}^{\frac{q-2}{2}} \zeta_{q-1}^{jm} + \zeta_{q-1}^{-jm} = -1$$
and
$$\sum_{n=1}^{\frac{q}{2}} -(\zeta_{q+1}^{kn} + \zeta_{q+1}^{knq}) = 1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

$SO_3(q)$, q even

So we have the supercharacter theory table is:

 $B = \cup B_j, C = \cup C_k$

Generic Character Table of $SO_3(q)$, q odd

 $1 \leq k \leq \frac{1}{2}(q+1)$

$SO_3(q)$, q odd

Lemma

Let
$$1\leq j\leq rac{q-1}{2}$$
 and $1\leq k\leq rac{q+1}{2}.$

If j and k are odd then

$$\sum_{m=1}^{\frac{q-3}{2}} \zeta_{q-1}^{jm} + \zeta_{q-1}^{-jm} = 0 \text{ and } \sum_{n=1}^{\frac{q-1}{2}} -(\zeta_{q+1}^{kn} + \zeta_{q+1}^{knq}) = 0$$

If j and k are even then
$$\sum_{m=1}^{\frac{q-3}{2}} \zeta_{q-1}^{jm} + \zeta_{q-1}^{-jm} = -2 \text{ and } \sum_{n=1}^{\frac{q-1}{2}} -(\zeta_{q+1}^{kn} + \zeta_{q+1}^{knq}) = 2$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

$SO_3(q)$, q odd

		1	A	B_j		C _k	
	χ0	1	1	1		1	
	χ_1	1	1	$(-1)^{j}$		$(-1)^{k}$	
2	$\chi_{q,1}$	q	0	1		-1	
2	$\chi_{q,2}$	q	1	$(-1)^{j}$		$(-1)^{k+1}$	
χ	q-1,n	q-1	-1	0	$-(\zeta$	$\zeta_{a+1}^{kn} + \zeta_a^{k}$	$\binom{knq}{n+1}$
χ_{a}	$\chi_{q+1,m} = q+1 - 1 - \zeta_{q-1}^{jm} + \zeta_{q-1}^{-jm} = 0$						
				, ,			
		1	A	_{Bj} j odd	<i>B_j</i> j even	C _k k odd	C _k k even
χ0	1	1	1	1	1	1	1
χ_1	1	L	1	-1	1	-1	1
χ_{q}	2	q	1	0	2	0	-2
χ_{q-1}	<u>(q-</u>	$\frac{(-1)^2}{2}$	$-\frac{(q-1)}{2}$	0	0	0	2
χ_{q+1}	$\left \begin{array}{c} \underline{(q+1)} \\ 2 \end{array} \right $	(q-3) 2	$\frac{q-3}{2}$	0	-2	0	0

$SO_3(q)$, q odd

So we have the supercharacter theory table is:

	Ι	A	$B_j \cup C_k$ j,k odd	<i>B_j</i> j even	C_k k even
χ0	1	1	1	1	1
χ_1	1	1	-1	1	1
χ_q	2q	0	0	2	-2
χ_{q-1}	$\frac{(q-1)^2}{2}$	$-\frac{(q-1)}{2}$	0	0	2
χ_{q+1}	$\frac{(q+1)(q-3)}{2}$	$\frac{q-3}{2}$	0	-2	0

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Characters of Semidirect Products of Abelian Groups

Suppose $G = A \rtimes B$ where A and B are both abelian. Let $\{\alpha_j \mid j = 0, ..., n_1 - 1\}$ and $\{\beta_k \mid k = 0, ..., n_2 - 1\}$ denote the irreducible characters of A and B respectively.

B acts on the irreducible characters of *A* by ${}^{b}\alpha_{j}(a) = \alpha_{j}({}^{b}a)$. Let α_{j}^{o} denote the orbit containing α_{j} of this irreducible characters of *A* under this action. Let B_{j} be the subgroup of *B* that is the kernel of the action of B on α_{j}^{o} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Characters of Semidirect Products of Abelian Groups

Given any pair (α_j^o, χ) where χ is an irreducible character of B_j we get an irreducible character $\pi_{(\alpha_j^o, \chi)}$ of G given by (for all $a \in A, b \in B$):

$$\pi_{(\alpha_j^o,\chi)}(ab) = \begin{cases} 0 & \text{if } b \notin B_j \\ \chi(b) \sum_{lpha \in lpha_j^0} lpha(a) & \text{if } b \in B_j \end{cases}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

This gives us all the irreducible characters of G.

 $\pi_{(\alpha_i^o,\chi)}$ will be denoted by $\alpha_j^o\cdot\chi$ within character tables

Characters of Semidirect Products of Abelian Groups Example: $C_{14} \rtimes C_3$

Let $A = C_{14}, B = C_3$ $A = \langle a \rangle, B = \langle b \rangle$ B acts on A by ${}^b a = a^9$. We can take $\alpha_j(a) = \zeta^j$ where $\zeta = e^{\frac{2\pi i}{14}}$ for j = 0, 1, ..., 13and $\beta_k(b) = \eta^k$ where $\eta = e^{\frac{2\pi i}{3}}$ for k = 0, 1, 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Characters of Semidirect Products

Example: $C_{14} \rtimes C_3$

B acts on α_j by ${}^b\alpha_j = \alpha_{9j}$. So ${}^b\alpha_1 = \alpha_9$, ${}^b\alpha_9 = \alpha_{9^2}$, ... But $\zeta^{9^2} = \zeta^{11}$ and $\zeta^{9^3} = \zeta$.

So this action creates the following orbit of irreducible characters of A: $\{\alpha_1, \alpha_9, \alpha_{11}\}$

(日) (日) (日) (日) (日) (日) (日) (日)

Similarly
$${}^{b}\alpha_{2} = \alpha_{2.9}$$
, ${}^{b}\alpha_{2.9} = \alpha_{2.9^{2}}$, ...
But $\zeta^{2.9} = \zeta^{4}$, $\zeta^{2.9^{2}} = \zeta^{8}$, $\zeta^{2.9^{3}} = \zeta^{2}$
So we have the orbit $\{\alpha_{2}, \alpha_{4}, \alpha_{8}\}$

Similarly we have the orbits:

 $\begin{cases} \alpha_{3}, \alpha_{13}, \alpha_{5} \\ \{\alpha_{6}, \alpha_{12}, \alpha_{10} \} \\ \{\alpha_{7} \} \qquad (^{b}\alpha_{7} = \alpha_{7.9} = \alpha_{7}) \\ \{\alpha_{0} \} \end{cases}$

Characters of Semidirect Products Example: $C_{14} \rtimes C_3$

	1	[a ² b]	$[a^2b^2]$	[ab]	[<i>ab</i> ²]	[a ⁷]	[a]	[a ²]	[a ³]	[a ⁶]
$\alpha_0^o \cdot \beta_0$	1	1	1	1	1	1	1	1	1	1
$\alpha_0^o \cdot \beta_1$	1	η	η^2	η	η^2	1	1	1	1	1
$\alpha_0^o \cdot \beta_2$	1	η^2	η	η^2	η	1	1	1	1	1
$\alpha_7^o \cdot \beta_0$	1	1	1	-1	-1	-1	-1	1	-1	1
$\alpha_7^o \cdot \beta_1$	1	η	η^2	$-\eta$	$-\eta^2$	-1	-1	1	-1	1
$\alpha_7^o \cdot \beta_2$	1	η^2	η	$-\eta^2$	$-\eta$	-1	-1	1	-1	1
$\alpha_1^o \cdot \beta_0$	3	0	0	0	0	-3	$[\zeta]$	$[\zeta^2]$	$[\zeta^3]$	$[\zeta^6]$
$\alpha_2^o \cdot \beta_0$	3	0	0	0	0	3	$[\zeta^2]$	$[\zeta^2]$	$[\zeta^6]$	$[\zeta^6]$
$\alpha_3^o \cdot \beta_0$	3	0	0	0	0	-3	$[\zeta^3]$	$[\zeta^6]$	$[\zeta]$	$[\zeta^2]$
$\alpha_6^o \cdot \beta_0$	3	0	0	0	0	3	$[\zeta^6]$	$[\zeta^6]$	$[\zeta^2]$	$[\zeta^2]$
$\begin{split} [\zeta] &= \zeta + \zeta^9 + \zeta^{11} \ [\zeta^2] = \zeta^2 + \zeta^4 + \zeta^8 \ [\zeta^3] = \zeta^3 + \zeta^5 + \zeta^{13} \\ [\zeta^6] &= \zeta^6 + \zeta^{10} + \zeta^{12} \end{split}$										

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Characters of Semidirect Products Example: $C_{14} \rtimes C_3$

So the supercharacter table is:

	1	$[a^2b] \cup [a^2b^2] \cup [ab] \cup [ab^2] \cup [a^7] \cup [a] \cup [a^3]$	$[a^2] \cup [a^6]$
χo	1	1	1
χ_1	5	-1	5
χ_{3}	12	0	-2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semidirect Products and Super Degree Character Theory

Proposition

Let $G = C_m \rtimes C_n$ where either *m* or *n* is a prime. For i > 1, let

$$\psi_i = \sum_{\chi \in Irr(G), \chi(1) = i} \chi(1)\chi.$$

Let

$$\psi_1 = \sum_{\chi \in Irr(G), \chi(1) = 1, \chi \neq 1_G} \chi.$$

Let $Ch(G) = \{1_G, \psi_i\}.$

There exist a partitioning of the conjugacy classes $\kappa(G)$, such that $(Ch(G), \kappa(G))$ is a supercharacter theory.

Semidirect Products and Super Degree Character Theory Case: $C_m \rtimes C_p$

Proposition

Let $G = C_m \rtimes C_p$ where p is a prime. Then G has a super degree character theory with the following supercharacter table.

where n_1 is the number of orbits of irreducible characters of C_m of length 1.

Semidirect Products and Super Degree Character Theory

Case: $C_m \rtimes C_p$

Corollary

Let $G = D_{2n} = \langle r, s | r^n = s^2 = 1, srs = r^{-1} \rangle$ then G has a super degree character theory with the following supercharacter table.

n odd	1	$\{s, sr^i\}$	$\{r^i\}$
χ o	1	1	1
χ_1	1	$^{-1}$	1
χ_2	n-1	0	-1

or

(i

Semidirect Products and Super Degree Character Theory Case: $C_p \rtimes C_n$

Proposition

Let $G = C_p \rtimes C_n$ where p is a prime. Then G has a super degree character theory with the following supercharacter table.

(日) (四) (日) (日) (日)

where n_1 is the order of the action of C_n on C_p .

Frobenius Groups and Super Degree Character Theory

Proposition

Let G be a Frobenius group (so $G = \mathbf{F}_q \rtimes \mathbf{F}_q^*$ where q is a power of a prime) then G has a super degree character theory with the following supercharacter table.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

Frobenius Groups and Super Degree Character Theory

Generic character table of $\mathbf{F}_q \rtimes \mathbf{F}_q^*$

Where j = 1, ..., q - 2, the β_j are the nontrivial irreducible characters of \mathbf{F}_q^* and a_j is an element in the conjugacy class A_j that is also in the group \mathbf{F}_q^* .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thank you!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @