Using Degrees of Irreducible Characters to Construct a Supercharacter Theory

Julianne Rainbolt

Representation Theory of Hecke Algebras and Categorification Workshop
Okinawa Institute of Science and Technology

$$
\text { June 7, } 2023
$$

SAINT LOUIS UNIVERSITY...

Definition of Supercharacter Theory

(See P. Diaconis and I.M. Isaacs, Supercharacters and Superclasses for Algebra Groups in Transactions of the AMS, 2008)

Let G be a finite group.
Let $\operatorname{Irr}(G)$ denote the irreducible characters of G.
Let $\operatorname{Ch}(G)$ denote a set of characters of G.
Let $\kappa(G)$ denote a partition of the conjugacy classes of G.

A supercharacter theory for a group G is a pair $(\operatorname{Ch}(G), \kappa(G))$ such that

$$
\text { 1. } 1_{G} \in \operatorname{Ch}(G) \text { and }\{1\} \in \kappa(G) \text {. }
$$

2. $|C h(G)|=|\kappa(G)|$.
3. Each character in $\operatorname{Ch}(G)$ is constant on each block of $\kappa(G)$.
4. Two distinct characters in $\operatorname{Ch}(G)$ have distinct constituents.

Two Trivial Examples

Example 1: Take $\operatorname{Ch}(G)=\operatorname{Irr}(G)$ and let $\kappa(G)$ have blocks equal to the conjugacy classes. (The supercharacter theory table is then the usual character table.)

Example 2: Take $\operatorname{Ch}(G)=\left\{1_{G}, \sum_{\chi \in \operatorname{lrr}(G)} \chi(1) \chi\right\}$ and
$\kappa(G)=\{\{1\}, G-\{1\}\}$. Then we get the following supercharacter theory table:

	$\{1\}$	$\{G-\{1\}\}$
1_{G}	1	1
ρ_{G}	$\|G\|-1$	-1

where ρ_{G} denotes the regular character of G.

Constructing Supercharacter Theories

Let δ be a partitioning of $\operatorname{Irr}(G)$ and let $X \in \delta$. Let

$$
\sigma_{X}=\sum_{\chi \in X} \chi(1) \chi
$$

Attempt to construct a partition, $\kappa(G)$, of the set up conjugacy classes of G such that σ_{X} is constant on each block of $\kappa(G)$ for all $X \in \delta$.

Another Example

$S L_{2}(3)$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}
χ_{0}	1	1	1	1	1	1	1
χ_{1}	1	1	ζ^{4}	ζ^{2}	1	ζ^{4}	ζ^{2}
χ_{2}	1	1	ζ^{2}	ζ^{4}	1	ζ^{2}	ζ^{4}
χ_{3}	2	-2	-1	-1	0	1	1
χ_{4}	2	-2	ζ^{5}	ζ	0	ζ^{2}	ζ^{4}
χ_{5}	2	-2	ζ	ζ^{5}	0	ζ^{4}	ζ^{2}
χ_{6}	3	3	0	0	-1	0	0
	$S L_{2}(3)$	C_{1}	C_{2}	C_{5}	K		
χ_{0}	1	1	1	1			
	ψ_{1}	2	2	2	-1		
	ψ_{2}	6	-6	0	0		
	ψ_{3}	3	3	-1	0		

where $K=C_{3} \cup C_{4} \cup C_{6} \cup C_{7}$ and $\zeta=e^{\frac{\pi i}{3}}$

A Possible Supercharacter Theory

For $i>1$, let

$$
\psi_{i}=\sum_{\chi \in \operatorname{lrr}(G), \chi(1)=i} \chi(1) \chi
$$

Let

$$
\psi_{1}=\sum_{\chi \in \operatorname{lrr}(G), \chi(1)=1, \chi \neq 1_{G}} \chi
$$

Let $\operatorname{Ch}(G)=\left\{1_{G}, \psi_{i}\right\}$
Question: For which families of groups does there exist a partitioning of the conjugacy classes $\kappa(G)$, such that $(C h(G), \kappa(G))$ is a supercharacter theory?

If such a supercharacter theory exist for a given group G call it a super degree character theory for G.

Note: This supercharacter theory applies for all abelian groups. It also works for the group $S L_{2}(3)$, as above.

Proposition

If G does not have a super degree character theory then G must have at least eight conjugacy classes.

Proof: Check all 36 groups which have at most seven conjugacy classes.
$G L_{2}(3)$ has eight conjugacy classes but does not have a super degree character theory.

Example of a group that does not have a super degree character theory

A_{7}	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}
χ_{0}	1	1	1	1	1	1	1	1	1
χ_{1}	6	2	3	-1	0	0	1	-1	-1
χ_{2}	10	-2	1	1	1	0	0	A	B
χ_{3}	10	-2	1	1	1	0	0	B	A
χ_{4}	14	2	2	2	-1	0	-1	0	0
χ_{5}	14	2	-1	-1	2	0	-1	0	0
χ_{6}	15	-1	3	-1	0	-1	0	1	1
χ_{7}	21	1	-3	1	0	-1	1	0	0
χ_{8}	35	-1	-1	-1	-1	1	0	0	0

where $\zeta=e^{\frac{2 \pi i}{7}}, A=\zeta^{3}+\zeta^{5}+\zeta^{6}$ and $B=\zeta+\zeta^{2}+\zeta^{4}$

Example of a group that does not have a super degree character theory

A_{7}	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}
χ_{0}	1	1	1	1	1	1	1	1	1
χ_{1}	6	2	3	-1	0	0	1	-1	-1
$\chi_{2}+\chi_{3}$	20	-4	2	2	2	0	0	-1	-1
$\chi_{4}+\chi_{5}$	28	4	1	1	1	0	-2	0	0
χ_{6}	15	-1	3	-1	0	-1	0	1	1
χ_{7}	21	1	-3	1	0	-1	1	0	0
χ_{8}	35	-1	-1	-1	-1	1	0	0	0

Families of groups that do not have a super degree character theory when they are "large enough".

1. $A_{n}, n \geq 7$
2. $S_{n}, n \geq 7$
3. $S L_{n}(q), q \geq 5, n \geq 2$
4. $G L_{n}(q), q \geq 3, n \geq 2$
5. $G U_{n}(q), q \geq 3, n \geq 2$
6. $S U_{n}(q), q \geq 5, n \geq 2$
7. $S p_{n}(2)$

Families of groups that do have a super degree character theory:

1. Abelian Groups
2. Orthogonal Groups
3. $C_{m} \rtimes C_{n}$ where either m or n is prime
4. Frobenius Groups

Generic Character Table of $\mathrm{SO}_{3}(q), q$ even

for $1 \leq m, j \leq \frac{1}{2}(q-2)$,
$1 \leq n, k \leq \frac{q}{2}$
$\zeta_{n}=e^{\frac{2 \pi i}{n}}$
$\mathrm{SO}_{3}(q), q$ even

Lemma

For $1 \leq j \leq \frac{1}{2}(q-2)$ and $1 \leq k \leq \frac{q}{2}$

$$
\sum_{m=1}^{\frac{q-2}{2}} \zeta_{q-1}^{j m}+\zeta_{q-1}^{-j m}=-1
$$

and

$$
\sum_{n=1}^{\frac{q}{2}}-\left(\zeta_{q+1}^{k n}+\zeta_{q+1}^{k n q}\right)=1
$$

$\mathrm{SO}_{3}(q), q$ even

	I	A	B_{j}	C_{k}
χ_{0}	1	1	1	1
χ_{q}	q	0	1	-1
$\chi_{q-1, n}$	$q-1$	-1	0	$-\left(\zeta_{q+1}^{k n}+\zeta_{q+1}^{k n q}\right)$
$\chi_{q+1, m}$	$q+1$	1	$\zeta_{q-1}^{j m}+\zeta_{q-1}^{-j m}$	0

So we have the supercharacter theory table is:

	l	A	B	C
χ_{0}	1	1	1	1
χ_{q}	q	0	1	-1
χ_{q-1}	$\frac{q(q-1)}{2}$	$-\frac{q}{2}$	0	1
χ_{q+1}	$\frac{(q+1)(q-2)}{2}$	$\frac{q-2}{2}$	-1	0

$B=\cup B_{j}, C=\cup C_{k}$

Generic Character Table of $\mathrm{SO}_{3}(q)$, q odd

	I	A	B_{j}	C_{k}
χ_{0}	1	1	1	1
χ_{1}	1	1	$(-1)^{j}$	$(-1)^{k}$
$\chi_{q, 1}$	q	0	1	-1
$\chi_{q, 2}$	q	1	$(-1)^{j}$	$(-1)^{k+1}$
$\chi_{q-1, n}$	$q-1$	-1	0	$-\left(\zeta_{q+1}^{k n}+\zeta_{q+1}^{k n q}\right)$
$\chi_{q+1, m}$	$q+1$	1	$\zeta_{q-1}^{j m}+\zeta_{q-1}^{-j m}$	0

for $1 \leq m \leq \frac{1}{2}(q-3)$,
$1 \leq n, j \leq \frac{1}{2}(q-1)$,
$1 \leq k \leq \frac{1}{2}(q+1)$

$\mathrm{SO}_{3}(q), q$ odd

Lemma

Let $1 \leq j \leq \frac{q-1}{2}$ and $1 \leq k \leq \frac{q+1}{2}$.
If j and k are odd then

$$
\sum_{m=1}^{\frac{q-3}{2}} \zeta_{q-1}^{j m}+\zeta_{q-1}^{-j m}=0 \text { and } \sum_{n=1}^{\frac{q-1}{2}}-\left(\zeta_{q+1}^{k n}+\zeta_{q+1}^{k n q}\right)=0
$$

If j and k are even then

$$
\sum_{m=1}^{\frac{q-3}{2}} \zeta_{q-1}^{j m}+\zeta_{q-1}^{-j m}=-2 \text { and } \sum_{n=1}^{\frac{q-1}{2}}-\left(\zeta_{q+1}^{k n}+\zeta_{q+1}^{k n q}\right)=2
$$

$\mathrm{SO}_{3}(q), q$ odd

	I	A	B_{j}	C_{k}
χ_{0}	1	1	1	1
χ_{1}	1	1	$(-1)^{j}$	$(-1)^{k}$
$\chi_{q, 1}$	q	0	1	-1
$\chi_{q, 2}$	q	1	$(-1)^{j}$	$(-1)^{k+1}$
$\chi_{q-1, n}$	$q-1$	-1	0	$-\left(\zeta_{q+1}^{k n}+\zeta_{q+1}^{k n q}\right)$
$\chi_{q+1, m}$	$q+1$	1	$\zeta_{q-1}^{j m}+\zeta_{q-1}^{-j m}$	0

	l	A	B_{j} j odd	B_{j} j even	C_{k} k odd	C_{k} k even
χ_{0}	1	1	1	1	1	1
χ_{1}	1	1	-1	1	-1	1
χ_{q}	$2 q$	1	0	2	0	-2
χ_{q-1}	$\frac{(q-1)^{2}}{2}$	$-\frac{(q-1)}{2}$	0	0	0	2
χ_{q+1}	$\frac{(q+1)(q-3)}{2}$	$\frac{q-3}{2}$	0	-2	0	0

$\mathrm{SO}_{3}(q), q$ odd

So we have the supercharacter theory table is:

	l	A	$B_{j} \cup C_{k}$ j, k odd	B_{j} j even	C_{k} k even
χ_{0}	1	1	1	1	1
χ_{1}	1	1	-1	1	1
χ_{q}	$2 q$	0	0	2	-2
χ_{q-1}	$\frac{(q-1)^{2}}{2}$	$-\frac{(q-1)}{2}$	0	0	2
χ_{q+1}	$\frac{(q+1)^{(q-3)}}{2}$	$\frac{q-3}{2}$	0	-2	0

Characters of Semidirect Products of Abelian Groups

Suppose $G=A \rtimes B$ where A and B are both abelian.
Let $\left\{\alpha_{j} \mid j=0, \ldots, n_{1}-1\right\}$ and $\left\{\beta_{k} \mid k=0, \ldots, n_{2}-1\right\}$ denote the irreducible characters of A and B respectively.
B acts on the irreducible characters of A by ${ }^{b} \alpha_{j}(a)=\alpha_{j}\left({ }^{b} a\right)$. Let α_{j}^{o} denote the orbit containing α_{j} of this irreducible characters of A under this action. Let B_{j} be the subgroup of B that is the kernel of the action of B on α_{j}^{o}.

Characters of Semidirect Products of Abelian Groups

Given any pair $\left(\alpha_{j}^{o}, \chi\right)$ where χ is an irreducible character of B_{j} we get an irreducible character $\pi_{\left(\alpha_{j}^{\circ}, \chi\right)}$ of G given by (for all $a \in A, b \in B)$:

$$
\pi_{\left(\alpha_{j}^{o}, \chi\right)}(a b)= \begin{cases}0 & \text { if } b \notin B_{j} \\ \chi(b) \sum_{\alpha \in \alpha_{j}^{0}} \alpha(a) & \text { if } b \in B_{j}\end{cases}
$$

This gives us all the irreducible characters of G.
$\pi_{\left(\alpha_{j}^{\circ}, \chi\right)}$ will be denoted by $\alpha_{j}^{o} \cdot \chi$ within character tables

Characters of Semidirect Products of Abelian Groups

Example: $C_{14} \rtimes C_{3}$

Let $A=C_{14}, B=C_{3}$
$A=\langle a\rangle, B=\langle b\rangle$
B acts on A by ${ }^{b} a=a^{9}$.
We can take $\alpha_{j}(a)=\zeta^{j}$ where $\zeta=e^{\frac{2 \pi i}{14}}$ for $j=0,1, \ldots, 13$
and $\beta_{k}(b)=\eta^{k}$ where $\eta=e^{\frac{2 \pi i}{3}}$ for $k=0,1,2$

Characters of Semidirect Products

Example: $C_{14} \rtimes C_{3}$

B acts on α_{j} by ${ }^{b} \alpha_{j}=\alpha_{9 j}$.
So ${ }^{b} \alpha_{1}=\alpha_{9},{ }^{b} \alpha_{9}=\alpha_{9^{2}}, \ldots$
But $\zeta^{9^{2}}=\zeta^{11}$ and $\zeta^{9^{3}}=\zeta$.
So this action creates the following orbit of irreducible characters of A : $\left\{\alpha_{1}, \alpha_{9}, \alpha_{11}\right\}$

Similarly ${ }^{b} \alpha_{2}=\alpha_{2.9},{ }^{b} \alpha_{2.9}=\alpha_{2.9^{2}}, \ldots$
But $\zeta^{2 \cdot 9}=\zeta^{4}, \zeta^{2 \cdot 9^{2}}=\zeta^{8}, \zeta^{2 \cdot 9^{3}}=\zeta^{2}$
So we have the orbit $\left\{\alpha_{2}, \alpha_{4}, \alpha_{8}\right\}$
Similarly we have the orbits:
$\left\{\alpha_{3}, \alpha_{13}, \alpha_{5}\right\}$
$\left\{\alpha_{6}, \alpha_{12}, \alpha_{10}\right\}$
$\left\{\alpha_{7}\right\} \quad\left({ }^{b} \alpha_{7}=\alpha_{7.9}=\alpha_{7}\right)$
$\left\{\alpha_{0}\right\}$

Characters of Semidirect Products

Example: $C_{14} \rtimes C_{3}$

	1	$\left[a^{2} b\right]$	$\left[a^{2} b^{2}\right]$	$[a b]$	$\left[a b^{2}\right]$	$\left[a^{7}\right]$	$[a]$	$\left[a^{2}\right]$	$\left[a^{3}\right]$	$\left[a^{6}\right]$
$\alpha_{0}^{o} \cdot \beta_{0}$	1	1	1	1	1	1	1	1	1	1
$\alpha_{0}^{o} \cdot \beta_{1}$	1	η	η^{2}	η	η^{2}	1	1	1	1	1
$\alpha_{0}^{0} \cdot \beta_{2}$	1	η^{2}	η	η^{2}	η	1	1	1	1	1
$\alpha_{7}^{0} \cdot \beta_{0}$	1	1	1	-1	-1	-1	-1	1	-1	1
$\alpha_{7}^{o} \cdot \beta_{1}$	1	η	η^{2}	$-\eta$	$-\eta^{2}$	-1	-1	1	-1	1
$\alpha_{7}^{o} \cdot \beta_{2}$	1	η^{2}	η	$-\eta^{2}$	$-\eta$	-1	-1	1	-1	1
$\alpha_{1}^{o} \cdot \beta_{0}$	3	0	0	0	0	-3	$[\zeta]$	$\left[\zeta^{2}\right]$	$\left[\zeta^{3}\right]$	$\left[\zeta^{6}\right]$
$\alpha_{2}^{o} \cdot \beta_{0}$	3	0	0	0	0	3	$\left[\zeta^{2}\right]$	$\left[\zeta^{2}\right]$	$\left[\zeta^{6}\right]$	$\left[\zeta^{6}\right]$
$\alpha_{3}^{0} \cdot \beta_{0}$	3	0	0	0	0	-3	$\left[\zeta^{3}\right]$	$\left[\zeta^{6}\right]$	$[\zeta]$	$\left[\zeta^{2}\right]$
$\alpha_{6}^{0} \cdot \beta_{0}$	3	0	0	0	0	3	$\left[\zeta^{6}\right]$	$\left[\zeta^{6}\right]$	$\left[\zeta^{2}\right]$	$\left[\zeta^{2}\right]$

$$
\begin{aligned}
& {[\zeta]=\zeta+\zeta^{9}+\zeta^{11}\left[\zeta^{2}\right]=\zeta^{2}+\zeta^{4}+\zeta^{8}\left[\zeta^{3}\right]=\zeta^{3}+\zeta^{5}+\zeta^{13}} \\
& {\left[\zeta^{6}\right]=\zeta^{6}+\zeta^{10}+\zeta^{12}}
\end{aligned}
$$

Characters of Semidirect Products

Example: $C_{14} \rtimes C_{3}$

	1	$\left[a^{2} b\right]$	$\left[a^{2} b^{2}\right]$	$[a b]$	$\left[a b^{2}\right]$	$\left[a^{7}\right]$	$[a]$	$\left[a^{2}\right]$	$\left[a^{3}\right]$	$\left[a^{6}\right]$
χ_{0}	1	1	1	1	1	1	1	1	1	1
χ_{1}	5	-1	-1	-1	-1	-1	-1	5	-1	5
χ_{3}	12	0	0	0	0	0	0	-2	0	-2

So the supercharacter table is:

	1	$\left[a^{2} b\right] \cup\left[a^{2} b^{2}\right] \cup[a b] \cup\left[a b^{2}\right] \cup\left[a^{7}\right] \cup[a] \cup\left[a^{3}\right]$	$\left[a^{2}\right] \cup\left[a^{6}\right]$
χ_{0}	1	1	1
χ_{1}	5	-1	5
χ_{3}	12	0	-2

Semidirect Products and Super Degree Character Theory

Proposition

Let $G=C_{m} \rtimes C_{n}$ where either m or n is a prime.
For $i>1$, let

$$
\psi_{i}=\sum_{\chi \in \operatorname{lrr}(G), \chi(1)=i} \chi(1) \chi .
$$

Let

$$
\psi_{1}=\sum_{\chi \in \operatorname{Irr}(G), \chi(1)=1, \chi \neq 1_{G}} \chi .
$$

Let $C h(G)=\left\{1_{G}, \psi_{i}\right\}$.
There exist a partitioning of the conjugacy classes $\kappa(G)$, such that $(\operatorname{Ch}(G), \kappa(G))$ is a supercharacter theory.

Semidirect Products and Super Degree Character Theory

 Case: $C_{m} \rtimes C_{p}$
Proposition

Let $G=C_{m} \rtimes C_{p}$ where p is a prime. Then G has a super degree character theory with the following supercharacter table.

	1	K_{2}	K_{3}
χ_{0}	1	1	1
χ_{1}	$n_{1} p-1$	-1	$n_{1} p-1$
χ_{p}	$m-n_{1}$	0	$-n_{1}$

where n_{1} is the number of orbits of irreducible characters of C_{m} of length 1 .

Semidirect Products and Super Degree Character Theory

Case: $C_{m} \rtimes C_{p}$

Corollary

Let $G=D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s r s=r^{-1}\right\rangle$ then G has a super degree character theory with the following supercharacter table.

n odd	1	$\left\{s, s r^{i}\right\}$	$\left\{r^{i}\right\}$
χ_{0}	1	1	1
χ_{1}	1	-1	1
χ_{2}	$n-1$	0	-1

or

n even	1	$\left\{s, s r^{i}, r^{\text {odd }}\right\}$	$\left\{r^{\text {even }}\right\}$
χ_{0}	1	1	1
χ_{1}	3	-1	3
χ_{2}	$n-2$	0	-2

$(i=1, \ldots, n-1)$

Semidirect Products and Super Degree Character Theory

 Case: $C_{p} \rtimes C_{n}$
Proposition

Let $G=C_{p} \rtimes C_{n}$ where p is a prime. Then G has a super degree character theory with the following supercharacter table.

	1	K_{2}	K_{3}
χ_{0}	1	1	1
χ_{1}	$n-1$	-1	$n-1$
$\chi_{n_{1}}$	$\frac{n(p-1)}{n_{1}}$	0	$-\frac{n}{n_{1}}$

where n_{1} is the order of the action of C_{n} on C_{p}.

Frobenius Groups and Super Degree Character Theory

Proposition

Let G be a Frobenius group (so $G=\mathbf{F}_{q} \rtimes \mathbf{F}_{q}^{*}$ where q is a power of a prime) then G has a super degree character theory with the following supercharacter table.

	1	A	B
χ_{0}	1	1	1
χ_{1}	$q-2$	-1	$q-2$
χ_{q-1}	$q-1$	0	-1

Frobenius Groups and Super Degree Character Theory

Generic character table of $\mathbf{F}_{q} \rtimes \mathbf{F}_{q}^{*}$

	1	A_{j}	B
χ_{0}	1	1	1
$\chi_{1, j}$	1	$\beta_{j}\left(a_{j}\right)$	1
χ_{q-1}	$q-1$	0	-1

Where $j=1, \ldots, q-2$, the β_{j} are the nontrivial irreducible characters of \mathbf{F}_{q}^{*} and a_{j} is an element in the conjugacy class A_{j} that is also in the group \mathbf{F}_{q}^{*}.

Thank you!

