Some representation theory of KMY algebras

Alison Parker
University of Leeds

6th June 2023

Co-authors and References

This is joint work with Nouf Alraddadi, my PhD student (graduated 2022). Some of this work appears in her PhD thesis.
$[K M Y]=$ "On the geometrically defined extensions of the Temperley-Lieb category in the Brauer category", Kadar-Martin-Yu. Math Z. 2019.

Brauer algebras and Brauer diagrams

A Brauer diagram is a picture/diagram of a pair partition of

$$
\{1,2, \ldots, n\} \cup\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}
$$

E.g. $n=5$: $\left\{\{1,2\},\left\{2^{\prime}, 3\right\},\{1,4\},\left\{4^{\prime}, 5\right\},\left\{3^{\prime}, 5^{\prime}\right\}\right\}$

Can be viewed as a diagram, where all lines can be deformed isotopically.

Brauer algebras and Brauer diagrams cont.

We fix n and use all possible diagrams as a basis for a vector space over a field (or ring) K.

To make an algebra we stack diagrams on top of each other to multiply:
E.g.

Brauer algebras and Brauer diagrams cont.

Might get loops:

The power of the parameter $\delta \in K$ records the number of loops removed.

A twist gets untwisted - we don't record untangling of twists.

Brauer algebras and the Symmetric group

The Brauer algebra has the symmetric group algebra as a sub-algebra via permutation diagrams.
e.g. for $n=5$:

With this diagram realisation we have

$$
K \mathfrak{S}_{n} \hookrightarrow \mathrm{Br}_{n}
$$

where \mathfrak{S}_{n} is the symmetric group on $\{1,2, \ldots, n\}$ and Br_{n} is the Brauer algebra on n.

The representation theory of Br_{n} is at least as complicated as that for $K \mathfrak{S}_{n}$ and indeed it's unknown for char $K=p<n$.

Brauer algebras and the Temperley-Lieb algebra

There is another algebra inside Br_{n}, namely the Temperley-Lieb algebra, TL_{n}.

Take a planar representation of a diagram.
If this can be deformed in the plane to have no crossings then it's a Temperley-Lieb diagram.
e.g.

The representation theory of $T L_{n}$ is very well understood. (Analogous to $q-\mathrm{GL}_{2}$.)

Brauer algebra generators

The Brauer algebra is generated by the Temperley-Lieb generators, $1 \leq i \leq n-1$,

and the $K \mathfrak{S}_{n}$ generators $1 \leq i \leq n-1$,

Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.
e.g. a diagram of height 2 :

Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.
e.g. a diagram of height 2 :

Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.
e.g. a diagram of height 2 :

Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.
e.g. a diagram of height 2 :

Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.
e.g. a diagram of height 2 :

Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.
e.g. a diagram of height 2 :

Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.
e.g. a diagram of height 2 :

Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.
e.g. a diagram of height 2 :

The KMY algebra

Temperley-Lieb diagrams have height -1 (no crossings).
Let $h(d)$ be the height of a diagram d. KMY prove:

$$
h\left(d_{1} d_{2}\right) \leq \max \left\{h\left(d_{1}\right), h\left(d_{2}\right)\right\}
$$

where d_{1} and d_{s} are Brauer diagrams.
I.e. height can go down but never go up when we multiply.

Thus diagrams of height at most / give a basis for a subalgebra, $J_{l, n}(\delta)$, of Br_{n}.

This algebra was first defined in [KMY] and I will henceforth call it the KMY-algebra.

The KMY algebra has known generators

Theorem (Alraddadi)

$J_{l, n}(\delta)$ is generated by the Temperley-Lieb generators, $1 \leq i \leq n-1$,

and some of the $K \mathfrak{S}_{n}$ generators $1 \leq i \leq I+1$,

Note: s_{I+1} has height I.

Structure of the KMY algebra

We've already seen

$$
\begin{aligned}
& J_{-1, n}(\delta)=\mathrm{TL}_{n} \\
& J_{n-2, n}(\delta)=\mathrm{Br}_{n}
\end{aligned}
$$

as Brauer diagrams have max height $n-2$.
Many of the properties of Br_{n} are also true for $J_{l, n}(\delta)$.
Let $\#(d)$ be the number of propagating lines in d.
Then: $\#\left(d_{1} d_{2}\right) \leq \min \left\{\#\left(d_{1}\right), \#\left(d_{2}\right)\right\}$.
Let $I_{m}=\langle d \mid \#(d) \leq m\rangle \subseteq J_{l, n}(\delta)$.
These ideals filter the algebra.
n even: $I_{0} \leq I_{2} \leq \cdots \leq I_{n-2} \leq I_{n}=J_{l, n}(\delta)$.
n odd: $I_{1} \leq I_{3} \leq \cdots \leq I_{n-2} \leq I_{n}=J_{l, n}(\delta)$.

The KMY algebra is cellular

$J_{l, n}(\delta)$ is cellular with a similar cell basis for Br_{n}. (Indeed, the algebra $J_{l, n}(\delta)$ is an iterated inflation of group algebras of symmetric groups.)

This uses half diagrams and bases for Specht modules for $K \mathfrak{S}_{r}, r \leq n$. Half diagrams are formed from cutting the propagating lines.

Cell modules for the KMY algebra

We ignore crossings in the propagating lines:

Let S^{λ} be a Specht module for $K \mathfrak{S}_{m}$, with $\lambda \vdash m$.
We form a basis for the cell module $\Delta_{l, n}(r, \lambda)$ by taking half diagrams with r propagating lines, $\lambda \vdash \min \{r, l+2\}$ and a basis for S^{λ}.

Let v be in a basis for S^{λ}. Elements look like:

The half diagram has to have height at most /

The KMY algebra cell modules cont.

We get an action of $J_{l, n}(\delta)$ like so:

where $s_{1} s_{2}=(1,2)(2,3)$ is a permutation.

The KMY algebra cell modules example

e.g. $n=4, I=0$ we get

$$
\begin{aligned}
& \Delta_{0,4}(0, \emptyset)=\langle\cup \cup, \mho, W\rangle
\end{aligned}
$$

$\lambda \vdash 2$ and $S^{\lambda}=\operatorname{Span}\{v\}$.

$$
\Delta_{0,4}(4, \lambda)=\left\langle\begin{array}{c}
\downarrow 1 \\
+1 \\
1+1
\end{array}\right||,\rangle
$$

$\lambda \vdash 2$ and $S^{\lambda}=\operatorname{Span}\{v\}$.
We may use these bases to define Gram matrices and determinants.

The KMY algebra satisfies the CMPX axioms

If char $K>n$, the $J_{l, n}(\delta)$ satisfy the CMPX axioms and have nice localisation and globalisation functors.

This also shows that they are quasihereditary in this case.

On semisimplicity for the KMY algebra

KMY show that $J_{l, n}(\delta)$ is generically semisimple for $K=\mathbb{C}$.
Alraddadi shows that $J_{l, n}(\delta)$ is semisimple if $K=\mathbb{C}, I=0$ and $\delta \notin \mathbb{R}$.
We have now removed the restriction on I to give:

Theorem (Alraddadi-Parker)

$J_{l, n}(\delta)$ is semisimple if $K=\mathbb{C}$ and $\delta \notin \mathbb{R}$.

About the proof

Let

$$
\begin{gathered}
\Lambda_{n}^{n}=\{(n, \lambda) \mid \lambda \vdash I+2\} \\
\Lambda_{n}^{n-2}=\{(n-2, \lambda) \mid \lambda \vdash \min \{n-2, I+2\}\}
\end{gathered}
$$

We use the following:
Theorem (CMPX)
(Applied to $J_{l, n}(\delta)$.) Suppose that for all $n \geq 0$ and pairs of labels $(n, \lambda) \in \Lambda_{n}^{n}$ and $(n-2, \mu) \in \Lambda_{n}^{n-2}$ we have

$$
\operatorname{Hom}\left(\Delta_{n}(n, \lambda), \Delta_{n}(n-2, \mu)\right)=0 .
$$

Then each of the algebras $J_{l, n}(\delta)$ is semisimple.

Comparison to other algebras

How does this match up with known results for TL_{n} and Br_{n} ?
For char $K=0$ (\mathfrak{S}_{r} always semisimple.)

- TL_{n} semisimple if $\delta=q+q^{-1}, q \in \mathbb{C}$ and q not a root of unity.
- Br_{n} is semisimple if $\delta \notin \mathbb{Z}$.

But $J_{l, n}(\delta)$ can be non-semisimple for $\delta \notin \mathbb{Z}$ and non-semisimple for δ not corresponding to singular Temperley-Lieb values.
e.g. in $n=4$ case. We get zero Gram determinants if $\delta=\frac{-1 \pm \sqrt{17}}{2}$.

Example for $n=4$

Take $n=4$ and consider the cell module $\Delta_{I, 4}(2,(2))$.
This module has basis where $S^{(2)}=\operatorname{Span}\{v\}$.

And Gram matrix:

$$
\left(\begin{array}{lll|l|ll}
\delta & 1 & 0 & 1 & 1 & 1 \\
1 & \delta & 1 & 1 & 1 & 0 \\
0 & 1 & \delta & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & \delta & 0 & 1 \\
\hline 1 & 1 & 1 & 0 & \delta & 1 \\
1 & 0 & 1 & 1 & 1 & \delta
\end{array}\right)
$$

Example for $n=4$

The roots of the Gram determinant are given by

$$
\delta=\left\{\begin{array}{lll}
0, \pm \sqrt{2} & \text { if } & I=-1 \\
0,1, \frac{-1 \pm \sqrt{17}}{2} & \text { if } & I=0 \\
0,0,0,-4,2,2 & \text { if } & I \geq 1
\end{array}\right.
$$

