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Brauer algebras and Brauer diagrams

A Brauer diagram is a picture/diagram of a pair partition of

{1, 2, . . . , n} ∪ {1′, 2′, . . . , n′}

E.g. n = 5: {{1, 2}, {2′, 3}, {1, 4}, {4′, 5}, {3′, 5′}}

Can be viewed as a diagram, where all lines can be deformed isotopically.
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Brauer algebras and Brauer diagrams cont.

We fix n and use all possible diagrams as a basis for a vector space over a
field (or ring) K .

To make an algebra we stack diagrams on top of each other to multiply:

E.g.

=



Brauer algebras and Brauer diagrams cont.

Might get loops:

=  δ

The power of the parameter δ ∈ K records the number of loops removed.

 δ2  δ2

A twist gets untwisted — we don’t record untangling of twists.



Brauer algebras and the Symmetric group

The Brauer algebra has the symmetric group algebra as a sub-algebra via
permutation diagrams.

e.g. for n=5:

↔
(
1 2 3 4 5
2 4 1 5 3

)

With this diagram realisation we have

KSn →֒ Brn

where Sn is the symmetric group on {1, 2, . . . , n} and Brn is the Brauer
algebra on n.

The representation theory of Brn is at least as complicated as that for
KSn and indeed it’s unknown for charK = p < n.



Brauer algebras and the Temperley-Lieb algebra

There is another algebra inside Brn, namely the Temperley-Lieb algebra,
TLn.

Take a planar representation of a diagram.

If this can be deformed in the plane to have no crossings then it’s a
Temperley-Lieb diagram.

e.g.

or

The representation theory of TLn is very well understood. (Analogous to
q-GL2.)



Brauer algebra generators

The Brauer algebra is generated by the Temperley-Lieb generators,
1 ≤ i ≤ n − 1,

ui =

i’

i

,

and the KSn generators 1 ≤ i ≤ n − 1,

si =

i’

i

,



Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.

e.g. a diagram of height 2:



Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.

e.g. a diagram of height 2:

0



Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.

e.g. a diagram of height 2:

0

1

1

1

1



Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.

e.g. a diagram of height 2:

0

1

1

1

1

2

2

2 2



Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.

e.g. a diagram of height 2:

0

1

1

1

1

2

2

2 2

3

33

3

3



Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.

e.g. a diagram of height 2:

0

1

1

1

1

2

2

2 2

3

33

3

3
4



Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.

e.g. a diagram of height 2:

0

1

1

1

1

2

2

2 2

3

33

3

3
4



Brauer algebras and other algebras?

Are there algebras in between that might be easier to understand?

YES!!

Take a Brauer diagram. Define height as follows.

e.g. a diagram of height 2:

0

1

1

1

1

2

2

2 2

3

33

3

3
4

0

2

1
0

0

1
1

2



The KMY algebra

Temperley-Lieb diagrams have height −1 (no crossings).

Let h(d) be the height of a diagram d . KMY prove:

h(d1d2) ≤ max{h(d1), h(d2)}

where d1 and ds are Brauer diagrams.

I.e. height can go down but never go up when we multiply.

Thus diagrams of height at most l give a basis for a subalgebra, Jl,n(δ),
of Brn.

This algebra was first defined in [KMY] and I will henceforth call it the
KMY-algebra.



The KMY algebra has known generators

Theorem (Alraddadi)

Jl,n(δ) is generated by the Temperley-Lieb generators, 1 ≤ i ≤ n − 1,

ui =

i’

i

,

and some of the KSn generators 1 ≤ i ≤ l + 1,

si =

i’

i

,

Note: sl+1 has height l .



Structure of the KMY algebra

We’ve already seen
J−1,n(δ) = TLn

Jn−2,n(δ) = Brn

as Brauer diagrams have max height n − 2.

Many of the properties of Brn are also true for Jl,n(δ).

Let #(d) be the number of propagating lines in d .

Then: #(d1d2) ≤ min{#(d1),#(d2)}.

Let Im = 〈d | #(d) ≤ m〉 ⊆ Jl,n(δ).

These ideals filter the algebra.

n even: I0 ≤ I2 ≤ · · · ≤ In−2 ≤ In = Jl,n(δ).

n odd: I1 ≤ I3 ≤ · · · ≤ In−2 ≤ In = Jl,n(δ).



The KMY algebra is cellular

Jl,n(δ) is cellular with a similar cell basis for Brn. (Indeed, the algebra
Jl,n(δ) is an iterated inflation of group algebras of symmetric groups.)

This uses half diagrams and bases for Specht modules for KSr , r ≤ n.

Half diagrams are formed from cutting the propagating lines.



Cell modules for the KMY algebra

We ignore crossings in the propagating lines:

Let Sλ be a Specht module for KSm, with λ ⊢ m.

We form a basis for the cell module ∆l,n(r , λ) by taking half diagrams
with r propagating lines, λ ⊢ min{r , l + 2} and a basis for Sλ.

Let v be in a basis for Sλ. Elements look like:

v

The half diagram has to have height at most l



The KMY algebra cell modules cont.

We get an action of Jl,n(δ) like so:

v

1  2

=

=

v

s s v

where s1s2 = (1, 2)(2, 3) is a permutation.

An arc acts as zero: v = 0. (Kills off propagating lines.)



The KMY algebra cell modules example

e.g. n = 4, l = 0 we get

∆0,4(0, ∅) =
〈

, ,
〉

∆0,4(2, λ) =

〈

v , v , v , v

〉

λ ⊢ 2 and Sλ = Span{v}.

∆0,4(4, λ) =

〈

v ,

〉

λ ⊢ 2 and Sλ = Span{v}.

We may use these bases to define Gram matrices and determinants.



The KMY algebra satisfies the CMPX axioms

If charK > n, the Jl,n(δ) satisfy the CMPX axioms and have nice
localisation and globalisation functors.

This also shows that they are quasihereditary in this case.



On semisimplicity for the KMY algebra

KMY show that Jl,n(δ) is generically semisimple for K = C.

Alraddadi shows that Jl,n(δ) is semisimple if K = C, l = 0 and δ 6∈ R.

We have now removed the restriction on l to give:

Theorem (Alraddadi-Parker)

Jl,n(δ) is semisimple if K = C and δ 6∈ R.



About the proof

Let
Λn

n
= {(n, λ) | λ ⊢ l + 2}

Λn−2
n = {(n− 2, λ) | λ ⊢ min{n− 2, l + 2}}

We use the following:

Theorem (CMPX)

(Applied to Jl,n(δ).) Suppose that for all n ≥ 0 and pairs of labels
(n, λ) ∈ Λn

n
and (n − 2, µ) ∈ Λn−2

n
we have

Hom(∆n(n, λ),∆n(n − 2, µ)) = 0.

Then each of the algebras Jl,n(δ) is semisimple.



Comparison to other algebras

How does this match up with known results for TLn and Brn?

For charK = 0 (Sr always semisimple.)

• TLn semisimple if δ = q + q−1, q ∈ C and q not a root of unity.

• Brn is semisimple if δ 6∈ Z.

But Jl,n(δ) can be non-semisimple for δ 6∈ Z and non-semisimple for δ
not corresponding to singular Temperley-Lieb values.

e.g. in n = 4 case. We get zero Gram determinants if δ = −1±
√
17

2 .



Example for n = 4

Take n = 4 and consider the cell module ∆l,4(2, (2)).

This module has basis where S (2) = Span {v}.

v , v , v

︸ ︷︷ ︸

height = −1

, v

︸ ︷︷ ︸

0

, v , v

︸ ︷︷ ︸

1

.

And Gram matrix: 









δ 1 0 1 1 1
1 δ 1 1 1 0
0 1 δ 1 1 1
1 1 1 δ 0 1
1 1 1 0 δ 1
1 0 1 1 1 δ













Example for n = 4

The roots of the Gram determinant are given by

δ =







0,±
√
2 if l = −1

0, 1, −1±
√
17

2 if l = 0
0, 0, 0,−4, 2, 2 if l ≥ 1


