Non-commutative polynomials and Categorification

Se-jin Oh

Department of Mathematics, Sungkyunkwan University, Suwon 16419, South Korea

Representation Theory of Hecke Algebras and Categorification

Joint works with almost all of my coworkers

<ロト < 部ト < 言ト < 言ト 言 の Q (や 1/24

Recall the talk of Professor Kashiwara

Let \mathfrak{g} be a finite dimensional simple Lie algebra and $\widehat{\mathfrak{g}}$ the untwisted affine Kac-Moody algebra corresponding to \mathfrak{g} (ex. $\mathfrak{g} = A_n \leftrightarrow \widehat{\mathfrak{g}} = A_n^{(1)}$).

The category $R^{\mathfrak{g}}$ -gmod of f.d (graded) modules over the quiver Hecke (KLR) algebra R has similar properties with the category $\mathscr{C}^{\widehat{\mathbf{g}}}$ of f.d integrable modules over the quantum affine algebra $\mathcal{U}'_{a}(\widehat{\mathbf{g}})$.

More precisely, those two categories are non-semisimple non-commutative monoidal categories and have R-matrices with \mathbb{Z} -invariants. However, $\mathscr{C}^{\widehat{\mathbf{g}}}$ has rigidity (module M in $\mathscr{C}^{\widehat{\mathbf{g}}}$ has the right dual $\mathscr{D}(M)$ and left dual $\mathscr{D}^{-1}(M)$), while $R^{\mathfrak{g}}$ -gmod has a natural $\mathbb{Z}[q^{\pm 1}]$ -action.

In this talk, we mainly consider the side of quantum affine algebras. We denote by $\mathscr{C}_0^{\widehat{\mathbf{g}}}$ the "skeleton category" of $\mathscr{C}^{\widehat{\mathbf{g}}}$. Here the "skeleton category" means that every prime simple module in $\mathscr{C}_0^{\widehat{\mathbf{g}}}$ is a parameter shift of a prime simple module in $\mathscr{C}_0^{\widehat{\mathbf{g}}}$.

Notations

- For a statement P, $\delta(\mathsf{P})=1$ if P is true, 0 otherwise.
- I: the index set of the simple roots $\{\alpha_i \mid i \in I\}$ of \mathfrak{g} ,
- $\triangle = (\triangle_0, \triangle_1)$: the Dynkin diagram of \mathfrak{g} ,
- $\bullet~$ C : the Cartan matrix of $\mathfrak{g},$
- $\Phi^+ :$ the set of positive roots of $\mathfrak{g},$
- W: the Weyl group of \mathfrak{g} , w_0 : the longest element in W,
- \bullet (,): the symmetric bilinear form on the root lattice Q of $\mathfrak{g}.$

Example (Slightly different convention for \triangle)

Here \mathbb{O}_k means that $(\alpha_k, \alpha_k) = t$ and note that there exist(s) non-trivial Dynkin diagram automorphism(s) $\vee (\widetilde{\vee})$ on \triangle , when \mathfrak{g} is simply-laced.

Dynkin quivers

A Dynkin quiver Q on riangle is a pair $(riangle,\xi)$ consisting of riangle and a height function

$$\xi: \triangle_0 \to \mathbb{Z} \qquad (i \longmapsto \xi_i)$$

such that $|\xi_i - \xi_j| = 1$ when *i* and *j* are adjacent vertices in \triangle .

Example

$$Q: \overset{3}{\textcircled{0}} \xrightarrow{2} \overset{2}{\textcircled{0}} \xrightarrow{1} \overset{1}{\textcircled{0}} \text{ of } A_3, \quad Q: \overset{3}{\textcircled{0}} \xrightarrow{2} \overset{2}{\textcircled{0}} \xrightarrow{1} \overset{1}{\textcircled{0}} \text{ of } B_3.$$

More precisely, $\xi_1 = 3$, $\xi_2 = 2$, $\xi_3 = 1$ and $i \rightarrow j$ means $\xi_i = \xi_j + 1$.

$\mathfrak{g}_{\mathrm{fin}}$ for $\mathscr{C}_{\widehat{\mathfrak{g}}}$

For each $\widehat{\mathfrak{g}},$ we assign the f.d simple Lie algebra $\mathfrak{g}_{\mathrm{fin}}$ of simply-laced type (unfolding of $\mathfrak{g})$ as follows:

 $\sigma = id$ $\widehat{\mathfrak{g}} = ADE_n^{(1)}$ $\mathfrak{g}_{fin} = ADE_n$ $\mathfrak{g} = ADE_n$ \leftrightarrow $\widehat{\mathfrak{g}} = B_r^{(1)}$ $\sigma = \vee$ $\mathfrak{a} = B_n$, $\mathfrak{q}_{\text{fin}} = A_{2n-1}$ \leftrightarrow \rightarrow $\xrightarrow{\sigma=\vee}{\sim}$ $\widehat{\mathfrak{a}} = C_r^{(1)}$ $\mathfrak{g}_{\text{fin}} = D_{n+1}$ $\mathfrak{a} = C_n$. \leftrightarrow $\widehat{\mathfrak{g}} = F_4^{(1)}$ $\xrightarrow{\sigma=\vee}{\sim}$ $\mathfrak{g}_{\text{fin}} = E_6$ $\mathfrak{g} = F_4$, \leftrightarrow $\sigma = \widetilde{\vee}$ $\widehat{\mathfrak{g}} = G_2^{(1)}$ $\mathfrak{g}_{\text{fin}} = D_4$ $\mathfrak{a} = G_2.$ \leftrightarrow

Here $\sigma = id$, \lor or $\widetilde{\lor}$ is the Dynkin diagram automorphism on $\triangle^{\mathfrak{g}_{fin}}$ yielding $\triangle^{\mathfrak{g}}$ via orbit.

5/24

Q-datum

Definition (Fujita-O)

The Q-datum for $\widehat{\mathfrak{g}}$ is a triple $\mathcal{Q} = (\triangle^{\mathfrak{g}_{\mathrm{fin}}}, \sigma, \xi)$ such that (i) σ is the Dynkin diagram automorphism on $\triangle^{\mathfrak{g}_{\mathrm{fin}}}$ yielding $\triangle^{\mathfrak{g}}$ via σ and (ii) ξ is a function from $\triangle_0^{\mathfrak{g}_{\mathrm{fin}}} \to \mathbb{Z}$ satisfying certain conditions.

When $\sigma = id$ and \triangle is simply-laced, Q coincides with the notion of Dynkin quiver $Q := (\triangle, \xi)$. In this case, we understand a Dynkin quiver as a Q-datum.

Example

For $B_3^{(1)}$, \lor is a non-trivial one on \bigtriangleup^{A_5} and $Q = \overset{\circ}{2} \overset{\vee}{\longrightarrow} \overset{\vee}{2} \overset{\vee}{2} \overset{\vee}{\longrightarrow} \overset{\vee}{2} \overset{\vee}$

Heart subcategories

Theorem (..., Happel, Hernandez-Leclerc, ..., Fujita-O)

For each Q-datum $Q = (\Delta, \sigma, \xi)$ of $\hat{\mathfrak{g}}$, there exist (i) the (combinatorial) AR-quiver $\Gamma^{Q} = (\Gamma_{0}^{Q}, \Gamma_{1}^{Q})$ and (ii) injective coordinate maps ϕ_{Q} and $\hat{\phi}_{Q}$ such that

Furthermore, the image $\widehat{\bigtriangleup}_0^{\sigma}$ of $\widehat{\phi}_{\mathcal{Q}}$ parameterizes the fundamental reps in $\mathscr{C}_0^{\widehat{\mathfrak{g}}}$.

Definition (Heart subcategories)

For each \mathcal{Q} of $\widehat{\mathfrak{g}}$, define $\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{g}}}$ the smallest full subcategory of $\mathscr{C}^{\widehat{\mathfrak{g}}}$ (i) stable by taking tensor products, subquotients and extensions, and (ii) containing the finite set of fundamental reps $\{L^{\mathcal{Q}}(\beta) \mid \beta \in \Phi^+_{\mathfrak{g}_{\mathrm{fin}}}\}$, where $L^{\mathcal{Q}}(\beta)$ is defined by the coordinate $\phi_{\mathcal{Q}}(\beta) = (i, p) \in I_{\mathfrak{g}_{\mathrm{fin}}} \times \mathbb{Z}$ of β via $\phi_{\mathcal{Q}}$.

Categorification

Theorem (Hernandez-Leclerc, Kang-Kashiwara-Kim, Kashiwara-O, Fujita, Scrimshaw-O)

Let ${\mathcal Q}$ be a Q-datum of $\widehat{{\mathfrak g}}.$

- Solution Each fundamental rep in $\mathscr{C}_0^{\widehat{\mathfrak{g}}}$ is the k-th dual of $L^{\mathcal{Q}}(\beta)$ for unique $k \in \mathbb{Z}$ and $\beta \in \Phi^+_{\mathfrak{g}_{\mathrm{fin}}}$.
- The Grothendieck ring $K(\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{g}}})$ of $\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{g}}}$ is isomorphic to $\mathcal{U}_{\mathbb{A}}^{-}(\mathfrak{g}_{\mathrm{fin}})^{\vee}|_{q=1} = \mathbb{C}[N]$.
- There exists a SW-duality functor \$\mathcal{F}_Q\$ from \$R^{\mathcal{g}_{fin}}-gmod to \$\mathcal{C}_Q^{\mathcal{g}}\$ categorifying the isomorphism in (b) and sending simples to simples bijectively.

Remark

For every $\hat{\mathfrak{g}}$, the Grothendieck ring of each heart subcategory is of simply-laced type, even when $\hat{\mathfrak{g}}$ is non simply-laced!

q-characters

For an untwisted affine $\widehat{\mathfrak{g}}$, let $\widehat{\bigtriangleup}_{0}^{\sigma} := \widehat{\phi}_{\mathcal{Q}}(\phi_{\mathfrak{g}_{\mathrm{fin}}}^{+} \times \mathbb{Z}) \subset I_{\mathfrak{g}_{\mathrm{fin}}} \times \mathbb{Z}$. and set $\mathcal{Y} := \mathbb{Z}[Y_{i,p}^{\pm 1} \mid (i,p) \in \widehat{\bigtriangleup}_{0}^{\sigma}].$

Theorem ((q-character homomorphism): Frenkel-Reshetikhin)

Solution There exists an injective algebra homomorphism $\chi_q: K(\mathscr{C}_0^{\widehat{\mathfrak{g}}}) \hookrightarrow \mathcal{Y}.$

• $K(\mathscr{C}_0^{\widehat{\mathfrak{g}}}) \simeq \mathbb{Z}[[L(Y_{i,p})] \mid (i,p) \in \widehat{\bigtriangleup}_0^{\sigma}].$ Here $L(Y_{i,p})$ denotes the fundamental rep. in $\mathscr{C}_0^{\widehat{\mathfrak{g}}}$, labelled by $(i,p) \in \widehat{\bigtriangleup}_0$.

Theorem (Chari-Pressley, Kashiwara, Varagnolo-Vasserot)

Every simple module in $\mathscr{C}_0^{\widehat{\mathfrak{g}}}$ appears as a head of certain ordered product fundamental reps. Hence every simple module in $\mathscr{C}_0^{\widehat{\mathfrak{g}}}$ is labeled by a unique (dominant) monomials in $Y_{i,p}$'s uniquely. Thus we can write a simple module as L(m) for some (dominant) monomials $m = \prod Y_{i,p}^{m_{i,p}} (m_{i,p} \in \mathbb{Z}_{\geq 0})$.

Non-commutative *t*-quantization

For $\widehat{\mathfrak{g}} = ADE_n^{(1)}$, Nakajima and Varagnolo-Vasserot constructed *t*-deformation $\mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$ of $\chi_q(K(\mathscr{C}_0^{\widehat{\mathfrak{g}}})) \simeq K(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$ from a geometric point of view, which is a non-commutative $\mathbb{Z}[t^{1/2}]$ -algebra. Then Hernandez constructed $\mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$ for all $\widehat{\mathfrak{g}}$ uniformly in a purely algebraic way.

$$\mathcal{Y}_t \longleftrightarrow \mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}}) \xrightarrow{t=1} \chi_q(K(\mathscr{C}_0^{\widehat{\mathfrak{g}}})) \hookrightarrow \mathcal{Y}$$

where \mathcal{Y}_t is a non-commutative Laurent polynomial ring over $\mathbb{Z}[t^{\pm 1/2}]$, also called quantum torus, generated by $\{\widetilde{Y}_{i,p}^{\pm} \mid (i,p) \in \widehat{\triangle}_0^{\sigma}\}$ subject to following relations:

$$\widetilde{Y}_{i,p}\widetilde{Y}_{i,p}^{-1} = \widetilde{Y}_{i,p}^{-1}\widetilde{Y}_{i,p} = 1, \quad \widetilde{Y}_{i,p}\widetilde{Y}_{j,s} = t^{\mathcal{N}(i,p;j,s)}\widetilde{Y}_{j,s}\widetilde{Y}_{i,p}$$

Here $\mathcal{N}(\ ;\)$ is an anti-symmetric form on $\widehat{\bigtriangleup}_0 \times \widehat{\bigtriangleup}_0$ determined by the inverse of the quantum Cartan matrix C(q) of C:

$$\mathsf{C}(q) = (\mathsf{c}_{ij}(q)) \quad \text{where } \mathsf{c}_{ij}(q) = \delta_{i,j}(q^{d_i} + q^{-d_i}) + (1 - \delta_{i,j})[\mathsf{c}_{i,j}]_q$$

10 / 24

Bases of Quantum Grothendieck ring

We call $\mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$ the <u>quantum Grothendieck ring</u> of $\widehat{\mathfrak{g}}$.

Theorem (Nakajima, Hernandez)

(a) For each fundamental rep $L(Y_{i,p}) \in K(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$, there exists $L_t(Y_{i,p}) \in \mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$ such that $L_t(Y_{i,p})|_{t=1} = \chi_q(L(Y_{i,p}))$. (b) $\mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$ has an basis

$$\mathbf{E}_t := \{ E_t(m) := \prod L_t(Y_{i,p})^{m_{i,p}} \mid m = \prod Y_{i,p}^{m_{i,p}}, \ m_{i,p} \in \mathbb{Z}_{\geq 0} \},$$

which is called the basis of (q,t) -characters of standard modules.
(c) There exists a unique "canonical" $\mathbb{Z}[q^{\pm 1/2}]$ -basis

 $\mathbf{L}_t = \{L_t(m) \mid \overline{L_t(m)} = L_t(m), m \text{ is a dominant monomial}\}$

such that

$$E_t(m) = L_t(m) + \sum_{m' < N^m} P_{m,m'}(t) L_t(m) \text{ for some } P_{m,m'}(t) \in t\mathbb{Z}[t].$$

L_t is called the canonical basis of simple (q, t) -characters $L_t(m)$'s.

Positivity conjectures and corresponding results

Conjecture (Analog of Kazhdan-Lusztig and Positivities)

- $L_t(m)$ recovers $\chi_q(L(m))$. That is, $L_t(m)|_{t=1} = \chi_q(L(m))$.
- Coefficients of $L_t(m)$ are contained in $\mathbb{Z}_{\geq 0}[t^{\pm 1/2}]$.
- $P_{m,m'}(t)$ is contained in $t\mathbb{Z}_{\geq 0}[t]$.
- **(**) The structure constants of \mathbf{L}_t are contained in $\mathbb{Z}_{\geq 0}[t^{\pm 1/2}]$.

Theorem (Nakajima, Varagnolo-Vasserot)

For $\widehat{\mathfrak{g}} = ADE_n^{(1)}$, we have

- The first, second and third conjectures hold (Nakajima).
- **(**) The fourth conjecture holds (Varagnolo-Vasserot).

Conjectures for heart subcategories (including $BCFG^{(1)}$)

Theorem (Hernandez-Leclerc,Hernandez-Oya,Fujita-Hernandez-O-Oya,+) For every $\hat{\mathfrak{g}}$ and a Q-datum \mathcal{Q} of $\hat{\mathfrak{g}}$, we have a \mathbb{Z} -algebra isomorphism

$$\Psi_{\mathcal{Q}}: \mathcal{U}_{\mathbb{A}}^{-}(\mathfrak{g}_{\mathrm{fin}})^{\vee} \xrightarrow{\sim} \mathcal{K}_{t}(\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{g}}}) \qquad (\mathbb{A}:=\mathbb{Z}[q^{\pm 1/2}])$$

sending

- () $q^{\pm 1/2}$ to $t^{\pm 1/2}$,
- $extsf{0}$ the dual-canonical/upper-global basis of $\mathcal{U}^{-}_{\mathbb{A}}(\mathfrak{g}_{\mathrm{fin}})^{\vee}$ to $\mathbf{L}_{t,\mathcal{Q}} := \mathbf{L}_{t} \cap \mathcal{K}_{t}(\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{g}}})$,
- ^(a) the dual PBW-basis associated with reduced expressions of $w_0 \in W_{g_{\text{fin}}}$ adapted to \underline{Q} to $\mathbf{E}_{t,Q} := \mathbf{E}_t \cap \mathcal{K}_t(\mathscr{C}_Q^{\widehat{\mathfrak{g}}})$ (up to $\mathbb{Z}[t^{\pm 1/2}]^{\times}$),

Hence the conjectures hold for $\mathscr{C}^{\widehat{\mathfrak{g}}}_{\mathcal{O}}$ including $BCFG^{(1)}$ with $\mathcal{F}_{\mathcal{Q}}$.

<ロト < 部ト < 書ト < 書ト 差 の Q で 13/24

Ending remark of the first half

As emphasized, the Grothendieck rings of heart subcategories are of simply-laced type, even in the non simply-laced affine type $\hat{\mathfrak{g}}$. For instance,

Question

- The conjectures for whole BCFG⁽¹⁾?
- Solution Non-commutative polynomial rings including $\mathcal{U}^{-}_{\mathbb{A}}(BCFG_n)^{\vee}$?

Note that quantum torus and positivity conjectures also appear in the (quantum) cluster algebra theory.

Presentation of $\mathcal{K}_t(\mathscr{C}_0^{\mathfrak{g}})$

Note that $\mathbb{K}_t(\mathscr{C}_Q^{\widehat{\mathfrak{g}}}) := \mathbb{Q}(t^{1/2}) \otimes_{\mathbb{Z}[t^{\pm 1/2}]} \mathcal{K}_t(\mathscr{C}_Q^{\widehat{\mathfrak{g}}}) \simeq \mathcal{U}_q^-(\mathfrak{g}_{\mathrm{fin}})$ and dual PBW-vectors adapted to \mathcal{Q} are categorified by fundamental reps $L^{\mathcal{Q}}(\beta)$ $(\beta \in \Phi_{\mathfrak{g}_{\mathrm{fin}}}^+)$. Thus the ring $\mathbb{K}_t(\mathscr{C}_Q^{\widehat{\mathfrak{g}}})$ is generated by $L_t^{\mathcal{Q}}(\alpha_i)$ $(i \in I)$ subject to the quantum Serre's relation.

Theorem (Hernandez-Leclerc $(ADE^{(1)})$, Fujita-Hernandez-O-Oya $(BCFG^{(1)})$)

For each $\widehat{\mathfrak{g}}$, $\mathbb{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}}) := \mathbb{Q}(t^{1/2}) \otimes_{\mathbb{Z}[t^{\pm 1/2}]} \mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$ is generated by $\{f_{i,p} \leftrightarrow \mathfrak{D}_t^p(L_t^{\mathcal{Q}}(\alpha_i)) \mid \forall (i,p) \in I_{\mathfrak{g}_{\mathrm{fin}}} \times \mathbb{Z}\}$

subject to following relations: (Choice of Q does not matter)

$$\sum_{s=0}^{1-\mathbf{c}_{i,j}} (-1)^s \begin{bmatrix} 1-\mathbf{c}_{i,j} \\ s \end{bmatrix}_t f_{i,k}^{1-\mathbf{c}_{i,j}-s} f_{j,k} f_{i,k}^s = 0,$$

$$f_{i,k} f_{j,k+1} = t^{-(\alpha_i,\alpha_j)} f_{j,k+1} f_{i,k} + (1-t^{-(\alpha_i,\alpha_i)}) \delta_{i,j},$$

$$f_{i,k} f_{j,l} = t^{(-1)^{k+l}(\alpha_i,\alpha_j)} f_{j,l} f_{i,k},$$

for $\mathbf{C} = (\mathbf{c}_{i,j})$ of type \mathfrak{g}_{fin} , $i, j \in I$ and $k, l \in \mathbb{Z}$ with l > k + 1.

Consequences

That means,

- even though $\widehat{\mathfrak{g}}^{(1)}$ and $\widehat{\mathfrak{g}}^{(2)}$ are different, $\mathbb{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}^{(i)}})$ are isomorphic if $\mathfrak{g}_{\mathrm{fin}}^{(1)} = \mathfrak{g}_{\mathrm{fin}}^{(2)}$.
- even though $\hat{\mathfrak{g}}$ is non-simply-laced, $\mathbb{K}_t(\mathscr{C}_0^{\hat{\mathfrak{g}}})$ is simply-laced.

To show the quantum Boson-relations, we have used the $\Lambda\text{-theory}$ for quantum affine algebras developed by Kashiwara-Kim-O-Park.

Theorem (Fujita-Hernandez-O-Oya)

For $\hat{\mathfrak{g}}^{(1)}, \hat{\mathfrak{g}}^{(2)}$ with $\mathfrak{g}_{\mathrm{fin}}^{(1)} = \mathfrak{g}_{\mathrm{fin}}^{(2)}$, there exist $\mathbb{Z}[t^{\pm 1/2}]$ -algebra isomorphisms

$$\Xi_{\mathcal{Q}^{(1)},\mathcal{Q}^{(2)}}:\mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}^{(1)}})\to\mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}^{(2)}})$$

sending $\mathbf{L}_t^{(1)}$ to $\mathbf{L}_t^{(2)}$ for any Q-data $\mathcal{Q}^{(i)}$ of $\hat{\mathfrak{g}}^{(i)}$. Thus the third and fourth conjectures hold for $BCFG^{(1)}$ also.

In particular, when $\widehat{\mathfrak{g}} = B_n^{(1)}$...

Theorem (Kashiwara-Kim-O)

There exists an exact monoidal functor

$$\Phi_{A,B}: \mathscr{C}_0^{A_{2n-1}^{(1)}} \to \mathscr{C}_0^{B_n^{(1)}}$$

sending simple modules to simple modules bijectively.

Theorem (Hernandez-Oya,Fujita-Hernandez-O-Oya)

There exist Q-data Q of $A_{2n-1}^{(1)}$ and ${\cal Q}$ of $B_n^{(1)}$ such that

$$[\Phi_{A,B}] = \Xi_{Q,\mathcal{Q}}|_{t=1}.$$

Thus the first and second conjectures also hold for $B_n^{(1)}$.

This technique is referred to as the propagation of positivities.

Monoidal categorification of cluster algebra

Hernandez-Leclerc proved that the Grothendieck ring $K(\mathscr{C}^{\widehat{\mathfrak{g}}}_{\leq 0})$ of "negative-half subcategory" $\mathscr{C}^{\widehat{\mathfrak{g}}}_{\leq 0}$ of $\mathscr{C}^{\widehat{\mathfrak{g}}}_{0}$ has a cluster algebra structure.

Theorem (Kashiwara-Kim-O-Park)

- **(a)** $K(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$ has a cluster algebra structure \mathscr{A} of skew-symmetric type.
- **2** Each cluster monomial of $K(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}})$ is categorified by a <u>real</u> simple module in $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$; that is, the category $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$ provides a monoidal categorification of \mathscr{A} .
- Various subcategories C, including $C = \mathscr{C}_{\leq 0}^{\hat{\mathfrak{g}}}, \mathscr{C}_{\leq \xi}^{\hat{\mathfrak{g}}}$ and $\mathscr{C}_{Q}^{\hat{\mathfrak{g}}}$, play the same roles.

Remark

Once it is proved that a category C provides a monoidal categorification of a cluster algebra \mathscr{A} , then the Laurent positivity and the Laurent independency hold for \mathscr{A} .

Almost all of remaining conjectures (for $CFG^{(1)}$)

Theorem (Fujita-Hernandez-O-Oya)

- $\mathcal{K}_t(\mathscr{C}_0^{\mathfrak{g}})$ has the <u>quantum</u> cluster algebra structure \mathscr{A}_t of skew-symmetric type.
- **(**) Each isomorphism $\Xi_{Q^{(1)},Q^{(2)}}$ can be interpreted as a sequence of mutations + permutations.

Thus we can conclude the followings:

- The second conjecture holds.
- The first conjecture holds for reachable modules L(m). Here L(m) is <u>reachable</u> if [L(m)] appears as a cluster monomial of A.

Remark

Still, every \mathcal{K}_t (or K) we dealt with is of simply-laced (or skew-symmetric).

Gap

Toward the second question (very briefly)

From the co-works with Kashiwara and Jang-Lee, we have constructed new quantum torus \mathcal{X}_q over $\mathbb{Z}[q^{\pm 1/2}]$ and its subalgebra $\mathfrak{K}_q(\mathfrak{g})$ for every \mathfrak{g} . In particular, it is isomorphic to $\mathcal{K}_t(\mathscr{C}_0^{\widehat{\mathfrak{g}}})$, when \mathfrak{g} is of type ADE. We call $\mathfrak{K}_q(\mathfrak{g})$ the quantum virtual Grothendieck ring of \mathfrak{g} .

The main ingredient of the construction is the *t*-quantized Cartan matrix $\underline{C}(t)$.

$$\mathsf{C}^{B_3}(q) = \begin{pmatrix} q^2 + \frac{1}{q^2} & -1 & 0\\ -1 & q^2 + \frac{1}{q^2} & -1\\ 0 & -q - \frac{1}{q} & q + \frac{1}{q} \end{pmatrix}, \quad \underline{\mathsf{C}}^{B_3}(t) = \begin{pmatrix} t + \frac{1}{t} & -1 & 0\\ -1 & t + \frac{1}{t} & -1\\ 0 & -2 & t + \frac{1}{t} \end{pmatrix}$$

Theorem (Kashiwara-O)

The Λ -invariants for the pairs of cuspidal modules $S_Q(\beta)$ and $S_Q(\gamma)$ over $R^{\mathfrak{g}}$ categorifying PBW-vectors adapted to Q in $\mathcal{U}^-_{\mathbb{A}}(\mathfrak{g})^{\vee}$ (including type BCFG) can be read from the inverse of $\underline{C}(t)$.

Quantum virtual Grothendieck ring (very briefly)

Theorem (Jang-Lee-O)

(a) $\Re_q(\mathfrak{g})$ has homogeneous bases $\mathsf{F}_q = \{F_q(m)\}$, $\mathsf{E}_q = \{E_q(m)\}$ and $\mathsf{L}_q = \{L_q(m)\}$ such that (i) F_q can be obtained by generalizing Frenkel-Mukhin-Hernandez algorithm via $\underline{\mathsf{C}}(t)$, (ii) E_q and L_q fits into the paradigm of Kazhdan-Lusztig theory:

$$E_q(m) = L_q(m) + \sum_{m'} P_{m,m'}(q) L_q(m')$$
 for some $P_{m,m'}(q) \in q\mathbb{Z}[q]$.

(b) $\mathfrak{K}_q(\mathfrak{g})$ has a quantum cluster algebra structure \mathscr{A}_q of skew-symmetrizable type depending on \mathfrak{g} .

The initial quantum cluster of $\Re_q(\mathfrak{g})$ consists of Kirillov-Reshetikhin(KR) polynomials and the quantum exchange relation we have applied corresponds to quantum folded *T*-system among KR-polynomials.

Quantum virtual Grothendieck ring 2 (very briefly)

Theorem (Kashiwara-O+Jang-Lee-O)

(c) For a Dynkin quiver $Q = (\blacktriangle, \xi)$, we can define the heart subalgebra $\mathfrak{K}_{q,Q}(\mathfrak{g})$ and have an $\mathbb{Z}[q^{\pm 1/2}]$ -algebra isomorphism

$$\Psi_Q: K(R^{\mathfrak{g}}\operatorname{-gmod}) \simeq \mathcal{U}^-_{\mathbb{A}}(\mathfrak{g})^{\vee} \xrightarrow{\sim} \mathfrak{K}_{q,Q}(\mathfrak{g}) \text{ sending}$$

-) the the dual-canonical/upper-global basis of $\mathcal{U}^-_{\mathbb{A}}(\mathfrak{g})^{\vee}$ to $\mathsf{L}_{q,Q} := \mathsf{L}_q \cap \mathfrak{K}_{q,Q}(\mathfrak{g})$,
- the dual PBW-basis associated with reduced expressions of w₀ adapted to Q to E_{t,Q} := E_t ∩ ℜ_{q,Q}(𝔅) (up to ℤ[q][×]),

(d) The $\mathbb{Q}(q^{1/2})$ -algebra $\mathbb{K}_q(\mathfrak{g}) := \mathbb{Q}(q^{1/2}) \otimes \mathfrak{K}_q(\mathfrak{g})$ has presentation as follows:

$$\begin{split} \sum_{s=0}^{1-\mathsf{c}_{i,j}} (-1)^s \begin{bmatrix} 1-\mathsf{c}_{i,j} \\ s \end{bmatrix}_{q_i} f_{i,k}^{1-\mathsf{c}_{i,j}-s} f_{j,k} f_{i,k}^s &= 0, \\ f_{i,k} f_{j,k+1} &= q^{-(\alpha_i,\alpha_j)} f_{j,k+1} f_{i,k} + (1-q^{-(\alpha_i,\alpha_i)}) \delta_{i,j}, \\ f_{i,k} f_{j,l} &= q^{(-1)^{k+l}(\alpha_i,\alpha_j)} f_{j,l} f_{i,k}, \\ \text{for } \mathsf{C} &= (\mathsf{c}_{i,j}) \text{ of type } \mathfrak{g}, \, i, j \in I \text{ and } k, l \in \mathbb{Z} \text{ with } l > k+1. \end{split}$$

23 / 24

THANK YOU