# Non-commutative polynomials and Categorification 

Se-jin Oh

Department of Mathematics, Sungkyunkwan University, Suwon 16419, South Korea

Representation Theory of Hecke Algebras and Categorification

Joint works with almost all of my coworkers

## Recall the talk of Professor Kashiwara

Let $\mathfrak{g}$ be a finite dimensional simple Lie algebra and $\widehat{\mathfrak{g}}$ the untwisted affine Kac-Moody algebra corresponding to $\mathfrak{g}$ (ex. $\mathfrak{g}=A_{n} \leftrightarrow \widehat{\mathfrak{g}}=A_{n}^{(1)}$ ).

The category $R^{\mathfrak{g}}$-gmod of f.d (graded) modules over the quiver Hecke (KLR) algebra $R$ has similar properties with the category $\mathscr{C}^{\widehat{\mathrm{g}}}$ of f.d integrable modules over the quantum affine algebra $\mathcal{U}_{q}^{\prime}(\widehat{\mathbf{g}})$.

More precisely, those two categories are non-semisimple non-commutative monoidal categories and have R-matrices with $\mathbb{Z}$-invariants. However, $\mathscr{C}^{\widehat{\Omega}}$ has rigidity (module $M$ in $\mathscr{C}^{\widehat{\mathbf{g}}}$ has the right dual $\mathscr{D}(M)$ and left dual $\mathscr{D}^{-1}(M)$ ), while $R^{\mathfrak{g}}$-gmod has a natural $\mathbb{Z}\left[q^{ \pm 1}\right]$-action.

In this talk, we mainly consider the side of quantum affine algebras. We denote by $\mathscr{C}_{0}^{\widehat{g}}$ the "skeleton category" of $\mathscr{C}^{\widehat{\mathrm{g}}}$. Here the "skeleton category" means that every prime simple module in $\mathscr{C} \widehat{\mathbf{g}}$ is a parameter shift of a prime simple module in $\mathscr{C}_{0}^{\widehat{\mathbf{g}}}$.

## Notations

- For a statement $\mathrm{P}, \delta(\mathrm{P})=1$ if P is true, 0 otherwise.
- $I$ : the index set of the simple roots $\left\{\alpha_{i} \mid i \in I\right\}$ of $\mathfrak{g}$,
- $\triangle=\left(\triangle_{0}, \triangle_{1}\right)$ : the Dynkin diagram of $\mathfrak{g}$,
- $C$ : the Cartan matrix of $\mathfrak{g}$,
- $\Phi^{+}$: the set of positive roots of $\mathfrak{g}$,
- W: the Weyl group of $\mathfrak{g}, w_{0}$ : the longest element in W,
- (, ): the symmetric bilinear form on the root lattice $Q$ of $\mathfrak{g}$.

Example (Slightly different convention for $\triangle$ )

Here $\oplus_{k}$ means that $\left(\alpha_{k}, \alpha_{k}\right)=t$ and note that there exist(s) non-trivial Dynkin diagram automorphism(s) $\vee(\widetilde{V})$ on $\triangle$, when $\mathfrak{g}$ is simply-laced.

## Dynkin quivers

A Dynkin quiver $Q$ on $\triangle$ is a pair $(\triangle, \xi)$ consisting of $\triangle$ and a height function

$$
\xi: \triangle_{0} \rightarrow \mathbb{Z} \quad\left(i \longmapsto \xi_{i}\right)
$$

such that $\left|\xi_{i}-\xi_{j}\right|=1$ when $i$ and $j$ are adjacent vertices in $\triangle$.

Example


More precisely, $\xi_{1}=3, \xi_{2}=2, \xi_{3}=1$ and $i \rightarrow j$ means $\xi_{i}=\xi_{j}+1$.

## $\mathfrak{g}_{\text {fin }}$ for $\mathscr{C}_{\widehat{\mathfrak{g}}}$

For each $\widehat{\mathfrak{g}}$, we assign the f .d simple Lie algebra $\mathfrak{g}_{\mathrm{fin}}$ of simply-laced type (unfolding of $\mathfrak{g}$ ) as follows:

$$
\begin{array}{lllll}
\widehat{\mathfrak{g}}=A D E_{n}^{(1)} & \leftrightarrow & \mathfrak{g}_{\mathrm{fin}}=A D E_{n} & \substack{\sigma=\mathrm{id} \\
\sim} & \mathfrak{g}=A D E_{n} \\
\widehat{\mathfrak{g}}=B_{n}^{(1)} & \leftrightarrow & \mathfrak{g}_{\mathrm{fin}}=A_{2 n-1} & \substack{\sigma=\vee \\
\sim \sim} & \mathfrak{g}=B_{n}, \\
\widehat{\mathfrak{g}}=C_{n}^{(1)} & \leftrightarrow & \mathfrak{g}_{\text {fin }}=D_{n+1} & \substack{\sigma=\vee \\
\sim} & \mathfrak{g}=C_{n}, \\
\widehat{\mathfrak{g}}=F_{4}^{(1)} & \leftrightarrow & \mathfrak{g}_{\text {fin }}=E_{6} & \substack{\sigma=\vee \\
\sim} & \mathfrak{g}=F_{4}, \\
\widehat{\mathfrak{g}}=G_{2}^{(1)} & \leftrightarrow & \mathfrak{g}_{\text {fin }}=D_{4} & \sigma=\widetilde{\sim} & \mathfrak{g}=G_{2} .
\end{array}
$$

Here $\sigma=\mathrm{id}, \vee$ or $\widetilde{\vee}$ is the Dynkin diagram automorphism on $\triangle^{\mathfrak{g} \text { fin }}$ yielding $\triangle^{\mathfrak{g}}$ via orbit.

Example

$$
B_{3}^{(1)}
$$


$\leadsto \stackrel{B}{3}_{\boldsymbol{\Delta}}^{\boldsymbol{\Delta}} \mathbf{4} \longrightarrow \mathbf{4} \longrightarrow$ (2)

## Q-datum

## Definition (Fujita-O)

The Q -datum for $\hat{\mathfrak{g}}$ is a triple $\mathcal{Q}=\left(\triangle^{\mathfrak{g} \text { fin }}, \sigma, \xi\right)$ such that (i) $\sigma$ is the Dynkin diagram automorphism on $\triangle^{\mathfrak{g}_{\text {fin }}}$ yielding $\triangle^{\mathfrak{g}}$ via $\sigma$ and (ii) $\xi$ is a function from $\triangle_{0}^{\mathfrak{g} \text { fin }} \rightarrow \mathbb{Z}$ satisfying certain conditions.

When $\sigma=\mathrm{id}$ and $\triangle$ is simply-laced, $\mathcal{Q}$ coincides with the notion of Dynkin quiver $Q:=(\triangle, \xi)$. In this case, we understand a Dynkin quiver as a Q-datum.

## Example

For $B_{3}^{(1)}, V$ is a non-trivial one on $\triangle^{A_{5}}$ and


For $C_{4}^{(1)}, \vee$ is a non-trivial one on $\triangle^{D_{5}}$ and


## Heart subcategories

Theorem (...,Happel,Hernandez-Leclerc,..., Fujita-O)
For each Q-datum $\mathcal{Q}=(\triangle, \sigma, \xi)$ of $\widehat{\mathfrak{g}}$, there exist (i) the (combinatorial) AR-quiver $\Gamma^{\mathcal{Q}}=\left(\Gamma_{0}^{\mathcal{Q}}, \Gamma_{1}^{\mathcal{Q}}\right)$ and (ii) injective coordinate maps $\phi_{\mathcal{Q}}$ and $\widehat{\phi}_{\mathcal{Q}}$ such that

$$
\Gamma_{0}^{\mathcal{Q}} \stackrel{1-1}{\longrightarrow} \Phi_{\mathfrak{g}_{\text {fin }}}^{+} \stackrel{\phi_{\mathcal{Q}}}{\stackrel{\widehat{\phi}_{\mathfrak{Q}}}{\longrightarrow}} \mathrm{I}_{\mathrm{g}_{\text {fin }}} \times \mathbb{Z}
$$

Furthermore, the image $\widehat{\triangle}_{0}^{\sigma}$ of $\widehat{\phi}_{\mathcal{Q}}$ parameterizes the fundamental reps in $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$.

## Definition (Heart subcategories)

For each $\mathcal{Q}$ of $\widehat{\mathfrak{g}}$, define $\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{Q}}}$ the smallest full subcategory of $\mathscr{C} \widehat{\mathfrak{g}}$ (i) stable by taking tensor products, subquotients and extensions, and (ii) containing the finite set of fundamental reps $\left\{L^{\mathcal{Q}}(\beta) \mid \beta \in \Phi_{\mathfrak{g}_{\text {fin }}}^{+}\right\}$, where $L^{\mathcal{Q}}(\beta)$ is defined by the coordinate $\phi_{\mathcal{Q}}(\beta)=(i, p) \in I_{\mathfrak{g}_{\text {fin }}} \times \mathbb{Z}$ of $\beta$ via $\phi_{\mathcal{Q}}$.

## Categorification

Theorem (Hernandez-Leclerc,Kang-Kashiwara-Kim,Kashiwara-O, Fujita,Scrimshaw-O)
Let $\mathcal{Q}$ be a Q -datum of $\widehat{\mathfrak{g}}$.
(3) Each fundamental rep in $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$ is the $k$-th dual of $L^{\mathcal{Q}}(\beta)$ for unique $k \in \mathbb{Z}$ and $\beta \in \Phi_{\text {gfin }^{+}}^{+}$.
(- The Grothendieck ring $K\left(\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{g}}}\right)$ of $\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{g}}}$ is isomorphic to $\left.\mathcal{U}_{\mathbb{A}}^{-}\left(\mathfrak{g}_{\text {fin }}\right)^{\vee}\right|_{q=1}=\mathbb{C}[N]$.
(0) There exists a $S W$-duality functor $\mathcal{F}_{\mathcal{Q}}$ from $R^{\mathrm{g}_{\mathrm{fin}}}$ _gmod to $\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{g}}}$ categorifying the isomorphism in (b) and sending simples to simples bijectively.

## Remark

For every $\widehat{\mathfrak{g}}$, the Grothendieck ring of each heart subcategory is of simply-laced type, even when $\widehat{\mathfrak{g}}$ is non simply-laced!

## $q$-characters

For an untwisted affine $\widehat{\mathfrak{g}}$, let $\widehat{\triangle}_{0}^{\sigma}:=\widehat{\phi}_{\mathcal{Q}}\left(\phi_{\mathfrak{g}_{\text {fin }}}^{+} \times \mathbb{Z}\right) \subset I_{\mathfrak{g}_{\text {fin }}} \times \mathbb{Z}$. and set

$$
\mathcal{Y}:=\mathbb{Z}\left[Y_{i, p}^{ \pm 1} \mid(i, p) \in \widehat{\triangle}_{0}^{\sigma}\right] .
$$

Theorem (( $q$-character homomorphism): Frenkel-Reshetikhin)
(0) There exists an injective algebra homomorphism $\chi_{q}: K\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right) \hookrightarrow \mathcal{Y}$.
(1) $K\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right) \simeq \mathbb{Z}\left[\left[L\left(Y_{i, p}\right)\right] \mid(i, p) \in \widehat{\triangle}_{0}^{\sigma}\right]$. Here $L\left(Y_{i, p}\right)$ denotes the fundamental rep. in $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$, labelled by $(i, p) \in \widehat{\triangle}_{0}$.

Theorem (Chari-Pressley, Kashiwara, Varagnolo-Vasserot)
Every simple module in $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$ appears as a head of certain ordered product fundamental reps. Hence every simple module in $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$ is labeled by a unique (dominant) monomials in $Y_{i, p}$ 's uniquely. Thus we can write a simple module as $L(m)$ for some (dominant) monomials $m=\prod Y_{i, p}^{m_{i, p}}\left(m_{i, p} \in \mathbb{Z}_{\geq 0}\right)$.

## Non-commutative $t$-quantization

For $\widehat{\mathfrak{g}}=A D E_{n}^{(1)}$, Nakajima and Varagnolo-Vasserot constructed $t$-deformation $\mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ of $\chi_{q}\left(K\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)\right) \simeq K\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ from a geometric point of view, which is a non-commutative $\mathbb{Z}\left[t^{1 / 2}\right]$-algebra. Then Hernandez constructed $\mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ for all $\widehat{\mathfrak{g}}$ uniformly in a purely algebraic way.

$$
\mathcal{Y}_{t} \longleftrightarrow \mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right) \xrightarrow{t=1} \chi_{q}\left(K\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)\right) \longleftrightarrow \mathcal{Y}
$$

where $\mathcal{Y}_{t}$ is a non-commutative Laurent polynomial ring over $\mathbb{Z}\left[t^{ \pm 1 / 2}\right]$, also called quantum torus, generated by $\left\{\widetilde{Y}_{i, p}^{ \pm} \mid(i, p) \in \widehat{\triangle}_{0}^{\sigma}\right\}$ subject to following relations:

$$
\tilde{Y}_{i, p} \tilde{Y}_{i, p}^{-1}=\tilde{Y}_{i, p}^{-1} \tilde{Y}_{i, p}=1, \quad \tilde{Y}_{i, p} \tilde{Y}_{j, s}=t^{\mathcal{N}(i, p ; j, s)} \tilde{Y}_{j, s} \tilde{Y}_{i, p}
$$

Here $\mathcal{N}(;)$ is an anti-symmetric form on $\widehat{\triangle}_{0} \times \widehat{\triangle}_{0}$ determined by the inverse of the quantum Cartan matrix $\mathrm{C}(q)$ of C :

$$
\mathrm{C}(q)=\left(\mathrm{c}_{i j}(q)\right) \quad \text { where } \mathrm{c}_{i j}(q)=\delta_{i, j}\left(q^{d_{i}}+q^{-d_{i}}\right)+\left(1-\delta_{i, j}\right)\left[\mathrm{c}_{i, j}\right]_{q}
$$

## Bases of Quantum Grothendieck ring

We call $\mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ the quantum Grothendieck ring of $\widehat{\mathfrak{g}}$.
Theorem (Nakajima, Hernandez)
(a) For each fundamental rep $L\left(Y_{i, p}\right) \in K\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$, there exists $L_{t}\left(Y_{i, p}\right) \in \mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ such that $\left.L_{t}\left(Y_{i, p}\right)\right|_{t=1}=\chi_{q}\left(L\left(Y_{i, p}\right)\right)$.
(b) $\mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ has an basis

$$
\mathbf{E}_{t}:=\left\{E_{t}(m):=\prod L_{t}\left(Y_{i, p}\right)^{m_{i, p}} \mid m=\prod Y_{i, p}^{m_{i, p}}, m_{i, p} \in \mathbb{Z}_{\geq 0}\right\},
$$

which is called the basis of $(q, t)$-characters of standard modules.
(c) There exists a unique "canonical" $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$-basis

$$
\mathbf{L}_{t}=\left\{L_{t}(m) \mid \overline{L_{t}(m)}=L_{t}(m), m \text { is a dominant monomial } /\right\}
$$

such that

$$
E_{t}(m)=L_{t}(m)+\sum_{m^{\prime}<N m} P_{m, m^{\prime}}(t) L_{t}(m) \text { for some } P_{m, m^{\prime}}(t) \in t \mathbb{Z}[t] .
$$

$\mathbf{L}_{t}$ is called the canonical basis of simple $(q, t)$-characters $L_{t}(m)$ 's.

## Positivity conjectures and corresponding results

Conjecture (Analog of Kazhdan-Lusztig and Positivities)
(a) $L_{t}(m)$ recovers $\chi_{q}(L(m))$. That is, $\left.L_{t}(m)\right|_{t=1}=\chi_{q}(L(m))$.
(6) Coefficients of $L_{t}(m)$ are contained in $\mathbb{Z}_{\geq 0}\left[t^{ \pm 1 / 2}\right]$.
(0) $P_{m, m^{\prime}}(t)$ is contained in $t \mathbb{Z}_{\geq 0}[t]$.
(a) The structure constants of $\mathbf{L}_{t}$ are contained in $\mathbb{Z}_{\geq 0}\left[t^{ \pm 1 / 2}\right]$.

Theorem (Nakajima, Varagnolo-Vasserot)
For $\widehat{\mathfrak{g}}=A D E_{n}^{(1)}$, we have
(1) The first, second and third conjectures hold (Nakajima).
(1) The fourth conjecture holds (Varagnolo-Vasserot).

## Conjectures for heart subcategories (including $B C F G^{(1)}$ )

Theorem (Hernandez-Leclerc,Hernandez-Oya,Fujita-Hernandez-O-Oya,+)
For every $\widehat{\mathfrak{g}}$ and a Q -datum $\mathcal{Q}$ of $\widehat{\mathfrak{g}}$, we have a $\mathbb{Z}$-algebra isomorphism

$$
\Psi_{\mathcal{Q}}: \mathcal{U}_{\mathbb{A}}^{-}\left(\mathfrak{g}_{\mathrm{fin}}\right)^{\vee} \xrightarrow{\sim} \mathcal{K}_{t}\left(\mathscr{C}_{\mathfrak{Q}}^{\widehat{\mathfrak{g}}}\right) \quad\left(\mathbb{A}:=\mathbb{Z}\left[q^{ \pm 1 / 2}\right]\right)
$$

sending
(1) $q^{ \pm 1 / 2}$ to $t^{ \pm 1 / 2}$,
(1) the dual-canonical/upper-global basis of $\mathcal{U}_{\mathbb{A}}^{-}\left(\mathfrak{g}_{\mathrm{fin}}\right)^{\vee}$ to $\mathbf{L}_{t, \mathcal{Q}}:=\mathbf{L}_{t} \cap \mathcal{K}_{t}\left(\mathscr{C}_{\mathfrak{Q}}^{\widehat{\mathfrak{g}}}\right)$,
(1) the dual PBW-basis associated with reduced expressions of $w_{0} \in \mathrm{~W}_{\text {gfin }}$ adapted to $\mathcal{Q}$ to $\mathbf{E}_{t, \mathcal{Q}}:=\mathbf{E}_{t} \cap \mathcal{K}_{t}\left(\mathscr{C}_{\mathfrak{Q}}^{\widehat{\mathfrak{g}}}\right)$ (up to $\left.\mathbb{Z}\left[t^{ \pm 1 / 2}\right]^{\times}\right)$,
Hence the conjectures hold for $\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{g}}}$ including $B C F G^{(1)}$ with $\mathcal{F}_{\mathcal{Q}}$.

## Ending remark of the first half

As emphasized, the Grothendieck rings of heart subcategories are of simply-laced type, even in the non simply-laced affine type $\widehat{\mathfrak{g}}$. For instance,


Question
© The conjectures for whole $B C F G^{(1)}$ ?
(1) Non-commutative polynomial rings including $\mathcal{U}_{\mathbb{A}}^{-}\left(B C F G_{n}\right)^{\vee}$ ?

Note that quantum torus and positivity conjectures also appear in the (quantum) cluster algebra theory.

## Presentation of $\mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$

Note that $\mathbb{K}_{t}\left(\mathscr{C}_{\mathfrak{Q}}^{\widehat{\mathfrak{g}}}\right):=\mathbb{Q}\left(t^{1 / 2}\right) \otimes_{\mathbb{Z}\left[t^{ \pm 1 / 2}\right]} \mathcal{K}_{t}\left(\mathscr{C}_{\mathfrak{Q}}^{\widehat{\mathfrak{g}}}\right) \simeq \mathcal{U}_{q}^{-}\left(\mathfrak{g}_{\mathrm{fin}}\right)$ and dual PBW-vectors adapted to $\mathcal{Q}$ are categorified by fundamental reps $L^{\mathcal{Q}}(\beta)\left(\beta \in \Phi_{\mathfrak{g}_{\text {fin }}}^{+}\right)$. Thus the ring $\mathbb{K}_{t}\left(\mathscr{C}_{\mathfrak{Q}}^{\widehat{\mathfrak{g}}}\right)$ is generated by $L_{t}^{\mathcal{Q}}\left(\alpha_{i}\right)(i \in I)$ subject to the quantum Serre's relation.
Theorem (Hernandez-Leclerc ( $A D E^{(1)}$ ), Fujita-Hernandez-O-Oya $\left(B C F G^{(1)}\right)$ )
For each $\widehat{\mathfrak{g}}, \mathbb{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right):=\mathbb{Q}\left(t^{1 / 2}\right) \otimes_{\mathbb{Z}\left[t^{ \pm 1 / 2}\right]} \mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ is generated by

$$
\left\{f_{i, p} \leftrightarrow \mathfrak{D}_{t}^{p}\left(L_{t}^{\mathcal{Q}}\left(\alpha_{i}\right)\right) \mid \forall(i, p) \in I_{\mathfrak{g}_{\mathrm{fin}}} \times \mathbb{Z}\right\}
$$

subject to following relations: (Choice of $\mathcal{Q}$ does not matter)

$$
\begin{aligned}
& \sum_{s=0}^{1-\mathbf{c}_{i, j}}(-1)^{s}\left[\begin{array}{c}
1-\mathbf{c}_{i, j} \\
s
\end{array}\right]_{t} f_{i, k}^{1-\mathbf{c}_{i, j}-s} f_{j, k} f_{i, k}^{s}=0 \\
& f_{i, k} f_{j, k+1}=t^{-\left(\alpha_{i}, \alpha_{j}\right)} f_{j, k+1} f_{i, k}+\left(1-t^{-\left(\alpha_{i}, \alpha_{i}\right)}\right) \delta_{i, j} \\
& f_{i, k} f_{j, l}=t^{(-1)^{k+l}\left(\alpha_{i}, \alpha_{j}\right)} f_{j, l} f_{i, k}
\end{aligned}
$$

for $\mathbf{C}=\left(\mathbf{c}_{i, j}\right)$ of type $\mathfrak{g}_{\mathrm{fin}}, i, j \in I$ and $k, l \in \mathbb{Z}$ with $l>k+1$.

## Consequences

That means,
© even though $\widehat{\mathfrak{g}}^{(1)}$ and $\widehat{\mathfrak{g}}^{(2)}$ are different, $\mathbb{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathbf{g}}^{(i)}}\right)$ are isomorphic if

$$
\mathfrak{g}_{\mathrm{fin}}^{(1)}=\mathfrak{g}_{\mathrm{fin}}^{(2)} .
$$

(- even though $\widehat{\mathfrak{g}}$ is non-simply-laced, $\mathbb{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ is simply-laced.
To show the quantum Boson-relations, we have used the $\Lambda$-theory for quantum affine algebras developed by Kashiwara-Kim-O-Park.

Theorem (Fujita-Hernandez-O-Oya)
For $\widehat{\mathfrak{g}}^{(1)}, \widehat{\mathfrak{g}}^{(2)}$ with $\mathfrak{g}_{\mathrm{fin}}^{(1)}=\mathfrak{g}_{\mathrm{fin}}^{(2)}$, there exist $\mathbb{Z}\left[t^{ \pm 1 / 2}\right]$-algebra isomorphisms

$$
\Xi_{\mathcal{Q}^{(1)}, \mathcal{Q}^{(2)}}: \mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}^{(1)}}\right) \rightarrow \mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}^{(2)}}\right)
$$

sending $\mathbf{L}_{t}^{(1)}$ to $\mathbf{L}_{t}^{(2)}$ for any Q-data $\mathcal{Q}^{(i)}$ of $\widehat{\mathfrak{g}}^{(i)}$. Thus the third and fourth conjectures hold for $B C F G^{(1)}$ also.

In particular, when $\widehat{\mathfrak{g}}=B_{n}^{(1)} \ldots$

Theorem (Kashiwara-Kim-O)
There exists an exact monoidal functor

$$
\Phi_{A, B}: \mathscr{C}_{0}^{A_{2 n-1}^{(1)}} \rightarrow \mathscr{C}_{0}^{B_{n}^{(1)}}
$$

sending simple modules to simple modules bijectively.

Theorem (Hernandez-Oya,Fujita-Hernandez-O-Oya)
There exist Q -data $Q$ of $A_{2 n-1}^{(1)}$ and $\mathcal{Q}$ of $B_{n}^{(1)}$ such that

$$
\left[\Phi_{A, B}\right]=\left.\Xi_{Q, \mathcal{Q}}\right|_{t=1} .
$$

Thus the first and second conjectures also hold for $B_{n}^{(1)}$.
This technique is referred to as the propagation of positivities.

## Monoidal categorification of cluster algebra

Hernandez-Leclerc proved that the Grothendieck ring $K\left(\mathscr{C}_{\leq 0}^{\widehat{\mathfrak{g}}}\right)$ of "negative-half subcategory" $\mathscr{C}_{\leq 0}^{\widehat{\mathfrak{g}}}$ of $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$ has a cluster algebra structure.

Theorem (Kashiwara-Kim-O-Park)
(a) $K\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ has a cluster algebra structure $\mathscr{A}$ of skew-symmetric type.

- Each cluster monomial of $K\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$ is categorified by a real simple module in $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$; that is, the category $\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}$ provides a monoidal categorification of $\mathscr{A}$.
(๑) Various subcategories $\mathcal{C}$, including $\mathcal{C}=\mathscr{C}_{\leq 0}^{\widehat{9}}, \mathscr{C}_{\leq \xi}^{\widehat{9}}$ and $\mathscr{C}_{\mathcal{Q}}^{\widehat{\mathfrak{Q}}}$, play the same roles.


## Remark

Once it is proved that a category $\mathcal{C}$ provides a monoidal categorification of a cluster algebra $\mathscr{A}$, then the Laurent positivity and the Laurent independency hold for $\mathscr{A}$.

## Almost all of remaining conjectures (for $C F G^{(1)}$ )

Theorem (Fujita-Hernandez-O-Oya)
(0) $\mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathbf{g}}}\right)$ has the quantum cluster algebra structure $\mathscr{A}_{t}$ of skew-symmetric type.

- Each isomorphism $\Xi_{\mathcal{Q}^{(1)}, \mathcal{Q}^{(2)}}$ can be interpreted as a sequence of mutations + permutations.
Thus we can conclude the followings:
(1) The second conjecture holds.
(2) The first conjecture holds for reachable modules $L(m)$. Here $L(m)$ is reachable if $[L(m)]$ appears as a cluster monomial of $\mathscr{A}$.


## Remark

Still, every $\mathcal{K}_{t}$ (or $K$ ) we dealt with is of simply-laced (or skew-symmetric).

Gap


## Toward the second question (very briefly)

From the co-works with Kashiwara and Jang-Lee, we have constructed new quantum torus $\mathcal{X}_{q}$ over $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$ and its subalgebra $\mathfrak{K}_{q}(\mathfrak{g})$ for every $\mathfrak{g}$. In particular, it is isomorphic to $\mathcal{K}_{t}\left(\mathscr{C}_{0}^{\widehat{\mathfrak{g}}}\right)$, when $\mathfrak{g}$ is of type $A D E$. We call $\mathfrak{K}_{q}(\mathfrak{g})$ the quantum virtual Grothendieck ring of $\mathfrak{g}$.

The main ingredient of the construction is the $t$-quantized Cartan matrix $\underline{\mathrm{C}}(t)$.
$\mathbf{C}^{B_{3}}(q)=\left(\begin{array}{rrr}q^{2}+\frac{1}{q^{2}} & -1 & 0 \\ -1 & q^{2}+\frac{1}{q^{2}} & -1 \\ 0 & -q-\frac{1}{q} & q+\frac{1}{q}\end{array}\right), \quad \underline{C}^{B_{3}}(t)=\left(\begin{array}{rrr}t+\frac{1}{t} & -1 & 0 \\ -1 & t+\frac{1}{t} & -1 \\ 0 & -2 & t+\frac{1}{t}\end{array}\right)$

Theorem (Kashiwara-O)
The $\Lambda$-invariants for the pairs of cuspidal modules $S_{Q}(\beta)$ and $S_{Q}(\gamma)$ over $R^{\mathfrak{g}}$ categorifying PBW-vectors adapted to $Q$ in $\mathcal{U}_{\mathbb{A}}^{-}(\mathfrak{g})^{\vee}$ (including type $B C F G$ ) can be read from the inverse of $\underline{C}(t)$.

## Quantum virtual Grothendieck ring (very briefly)

Theorem (Jang-Lee-O)
(a) $\mathfrak{K}_{q}(\mathfrak{g})$ has homogeneous bases $\mathrm{F}_{q}=\left\{F_{q}(m)\right\}, \mathrm{E}_{q}=\left\{E_{q}(m)\right\}$ and $\mathrm{L}_{q}=\left\{L_{q}(m)\right\}$ such that (i) $\mathrm{F}_{q}$ can be obtained by generalizing Frenkel-Mukhin-Hernandez algorithm via $\underline{\mathrm{C}}(t)$, (ii) $\mathrm{E}_{q}$ and $\mathrm{L}_{q}$ fits into the paradigm of Kazhdan-Lusztig theory:

$$
E_{q}(m)=L_{q}(m)+\sum_{m^{\prime}} P_{m, m^{\prime}}(q) L_{q}\left(m^{\prime}\right) \text { for some } P_{m, m^{\prime}}(q) \in q \mathbb{Z}[q] .
$$

(b) $\mathfrak{K}_{q}(\mathfrak{g})$ has a quantum cluster algebra structure $\mathscr{A}_{q}$ of skew-symmetrizable type depending on $\mathfrak{g}$.

The initial quantum cluster of $\mathfrak{K}_{q}(\mathfrak{g})$ consists of Kirillov-Reshetikhin(KR) polynomials and the quantum exchange relation we have applied corresponds to quantum folded $T$-system among KR-polynomials.

## Quantum virtual Grothendieck ring 2 (very briefly)

Theorem (Kashiwara-O+Jang-Lee-O)
(c) For a Dynkin quiver $Q=(\mathbf{\Delta}, \xi)$, we can define the heart subalgebra $\mathfrak{K}_{q, Q}(\mathfrak{g})$ and have an $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$-algebra isomorphism

$$
\Psi_{Q}: K\left(R^{\mathfrak{g}}-\mathrm{gmod}\right) \simeq \mathcal{U}_{\mathbb{A}}^{-}(\mathfrak{g})^{\vee} \xrightarrow{\sim} \mathfrak{K}_{q, Q}(\mathfrak{g}) \text { sending }
$$

(1) the the dual-canonical/upper-global basis of $\mathcal{U}_{\mathbb{A}}^{-}(\mathfrak{g})^{\vee}$ to $\mathrm{L}_{q, Q}:=\mathrm{L}_{q} \cap \mathfrak{K}_{q, Q}(\mathfrak{g})$,
(1) the dual PBW-basis associated with reduced expressions of $w_{0}$ adapted to $Q$ to $\mathrm{E}_{t, \mathcal{Q}}:=\mathrm{E}_{t} \cap \mathfrak{K}_{q, Q}(\mathfrak{g})\left(\right.$ up to $\left.\mathbb{Z}[q]^{\times}\right)$,
(d) The $\mathbb{Q}\left(q^{1 / 2}\right)$-algebra $\mathbb{K}_{q}(\mathfrak{g}):=\mathbb{Q}\left(q^{1 / 2}\right) \otimes \mathfrak{K}_{q}(\mathfrak{g})$ has presentation as follows:

$$
\begin{aligned}
& \sum_{s=0}^{1-c_{i, j}}(-1)^{s}\left[\begin{array}{c}
1-\mathrm{c}_{i, j} \\
s
\end{array}\right]_{q_{i}} f_{i, k}^{1-c_{i, j}-s} f_{j, k} f_{i, k}^{s}=0, \\
& f_{i, k} f_{j, k+1}=q^{-\left(\alpha_{i}, \alpha_{j}\right)} f_{j, k+1} f_{i, k}+\left(1-q^{-\left(\alpha_{i}, \alpha_{i}\right)}\right) \delta_{i, j}, \\
& f_{i, k} f_{j, l}=q^{(-1)^{k+l}\left(\alpha_{i}, \alpha_{j}\right)} f_{j, l} f_{i, k},
\end{aligned}
$$

for $\mathrm{C}=\left(\mathrm{c}_{i, j}\right)$ of type $\mathfrak{g}, i, j \in I$ and $k, l \in \mathbb{Z}$ with $l>k+1$.

## THANK YOU

