Plethysm and the partition algebra

Rowena Paget

Based on joint work with Chris Bowman arXiv: 1809.08128, and joint work with Chris Bowman & Mark Wildon (in progress).

What is plethysm?

The partition algebra

Translating plethysm to the partition algebra

Let m and n be positive integers and consider the set of all set partitions of a set of size mn into n sets each of size m.

Let m and n be positive integers and consider the set of all set partitions of a set of size mn into n sets each of size m.

E.g. if m = 2 and n = 3, there are 15 possible set partitions including

$$P = \{\{1,2\}, \{3,4\}, \{5,6\}\}.$$

Let m and n be positive integers and consider the set of all set partitions of a set of size mn into n sets each of size m.

E.g. if m = 2 and n = 3, there are 15 possible set partitions including

$$P = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}.$$

The symmetric group S_{mn} acts naturally on this set.

E.g.
$$(26).P = \{\{1,6\}, \{2,5\}, \{3,4\}\}.$$

Let m and n be positive integers and consider the set of all set partitions of a set of size mn into n sets each of size m.

E.g. if m = 2 and n = 3, there are 15 possible set partitions including

$$P = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}.$$

The symmetric group S_{mn} acts naturally on this set.

E.g.
$$(26).P = \{\{1,6\}, \{2,5\}, \{3,4\}\}.$$

The resulting transitive permutation module for $\mathbb{C}S_{mn}$ is called the Foulkes module.

Foulkes module

The set partition

$$\{\{1,2,\ldots,m\},\{m+1,\ldots,2m\},\ldots,\{(n-1)m+1,\ldots,nm\}\}$$

generates the Foulkes module,

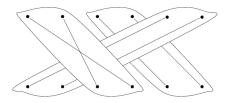
Foulkes module

The set partition

$$\{\{1,2,\ldots,m\},\{m+1,\ldots,2m\},\ldots,\{(n-1)m+1,\ldots,nm\}\}$$

generates the Foulkes module, and the stabiliser of this set partition is $S_m \wr S_n \subset S_{mn}$.

E.g. if m = 2, n = 3, then $\{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$ is fixed by



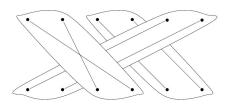
Foulkes module

The set partition

$$\{\{1,2,\ldots,m\},\{m+1,\ldots,2m\},\ldots,\{(n-1)m+1,\ldots,nm\}\}$$

generates the Foulkes module, and the stabiliser of this set partition is $S_m \wr S_n \subset S_{mn}$.

E.g. if
$$m = 2$$
, $n = 3$, then $\{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$ is fixed by



So the Foulkes module is just $1 \uparrow_{S_m \wr S_n}^{S_{mn}}$.

Foulkes' Conjecture

In 1950, H.O. Foulkes made the following conjecture:

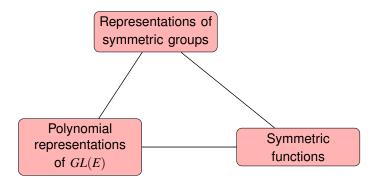
If m < n then $1 \uparrow_{S_n \wr S_m}^{S_{mn}}$ is a $\mathbb{C}S_{mn}$ -submodule of $1 \uparrow_{S_m \wr S_n}^{S_{mn}}$.

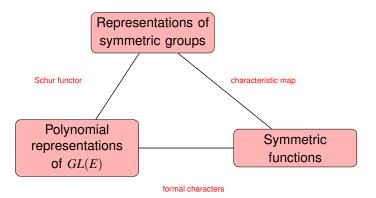
Foulkes' Conjecture

In 1950, H.O. Foulkes made the following conjecture:

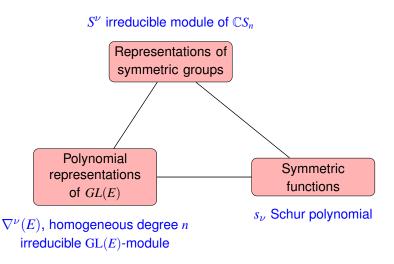
If m < n then $1 \uparrow_{S_n \wr S_m}^{S_{mn}}$ is a $\mathbb{C}S_{mn}$ -submodule of $1 \uparrow_{S_m \wr S_n}^{S_{mn}}$.

Foulkes' Conjecture holds for m=2 (Thrall, 1942), m=3 (Dent & Siemons, 2000), m=4 (McKay, 2008), m=5 (Cheung, Ikenmeyer & Mkrtchyan, 2016) and for n>>m (Brion, 1993).





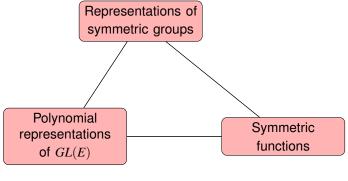
Let ν be a partition of $n \leq \dim(E)$.



Special cases

$$S^{(n)} = \mathbb{C}$$

 $S^{(1,1,\dots,1)} = \operatorname{sgn}$

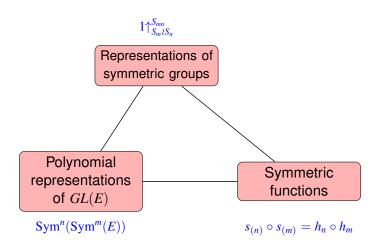


$$\nabla^{(n)}(E) = \operatorname{Sym}^{n} E$$

$$\nabla^{(1,1,\dots,1)}(E) = \bigwedge^{n} E$$

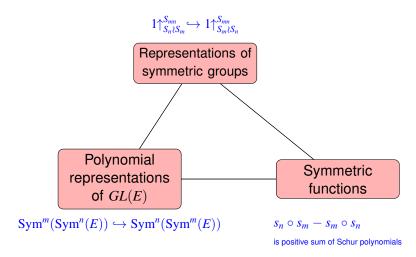
$$s_{(n)} = h_n$$
,
 $s_{(1,1,...,1)} = e_n$

Foulkes module and its analogues



Foulkes' Conjecture

Let m < n.



8/24

In 1936, D.E. Littlewood defined the plethysm $f \circ g$ of symmetric functions f and g (an associative multiplication of symmetric functions).

In 1936, D.E. Littlewood defined the plethysm $f \circ g$ of symmetric functions f and g (an associative multiplication of symmetric functions).

In 1936, D.E. Littlewood defined the plethysm $f \circ g$ of symmetric functions f and g (an associative multiplication of symmetric functions).

E.g.,
$$s_2(x, y) = x^2 + xy + y^2$$
, so $s_2 \circ s_2(x, y) = s_2(x^2, xy, y^2)$

In 1936, D.E. Littlewood defined the plethysm $f \circ g$ of symmetric functions f and g (an associative multiplication of symmetric functions).

E.g.,
$$s_2(x, y) = x^2 + xy + y^2$$
, so
$$s_2 \circ s_2(x, y) = s_2(x^2, xy, y^2) = (x^2)^2 + x^2xy + x^2y^2 + (xy)^2 + xyy^2 + (y^2)^2$$

In 1936, D.E. Littlewood defined the plethysm $f \circ g$ of symmetric functions f and g (an associative multiplication of symmetric functions).

E.g.,
$$s_2(x, y) = x^2 + xy + y^2$$
, so

$$s_2 \circ s_2(x, y) = s_2(x^2, xy, y^2) = (x^2)^2 + x^2xy + x^2y^2 + (xy)^2 + xyy^2 + (y^2)^2$$

$$= s_4(x, y) + s_2(x, y) + s_3(x, y) + s_4(x, y) + s_$$

In 1936, D.E. Littlewood defined the plethysm $f \circ g$ of symmetric functions f and g (an associative multiplication of symmetric functions).

E.g.,
$$s_2(x, y) = x^2 + xy + y^2$$
, so

$$s_2 \circ s_2(x, y) = s_2(x^2, xy, y^2) = (x^2)^2 + x^2xy + x^2y^2 + (xy)^2 + xyy^2 + (y^2)^2$$

$$= s_4(x, y) + s_{(2,2)}(x, y).$$

Plethysm in general

Let ν be a partition of n and μ a partition of m.

$$((S^{\mu})^{\otimes n} \otimes \operatorname{Inf}_{S_n}^{S_m \wr S_n}(S^{\nu})) \uparrow_{S_m \wr S_n}^{S_{mn}} \text{ generalised Foulkes module}$$
 Representations of symmetric groups
$$\begin{array}{c} \text{Polynomial} \\ \text{representations} \\ \text{of } GL(E) \end{array}$$
 Symmetric functions
$$\begin{array}{c} \text{Symmetric} \\ \text{functions} \end{array}$$

Plethysm in general

Let ν be a partition of n and μ a partition of m.

$$((S^{\mu})^{\otimes n} \otimes \operatorname{Inf}_{S_n}^{S_m \wr S_n}(S^{\nu})) \uparrow_{S_m \wr S_n}^{S_{mn}} \text{ generalised Foulkes module}$$
 Representations of symmetric groups
$$\begin{array}{c} \text{Polynomial} \\ \text{representations} \\ \text{of } GL(E) \end{array}$$
 Symmetric functions
$$\begin{array}{c} \text{Symmetric} \\ \text{functions} \end{array}$$

How does $s_{\nu} \circ s_{\mu}$ decompose? What are the plethysm coefficients $\langle s_{\nu} \circ s_{\mu}, s_{\lambda} \rangle$?

Consider
$$(\mathbb{C}^{mn})^{\otimes r} = \underbrace{\mathbb{C}^{mn} \otimes \mathbb{C}^{mn} \otimes \cdots \otimes \mathbb{C}^{mn}}_{r \text{ copies}}$$
 (tensor space).

Consider
$$(\mathbb{C}^{mn})^{\otimes r} = \underbrace{\mathbb{C}^{mn} \otimes \mathbb{C}^{mn} \otimes \cdots \otimes \mathbb{C}^{mn}}_{r \text{ copies}}$$
 (tensor space).

The group $GL_{mn}(\mathbb{C})$ acts on \mathbb{C}^{mn} naturally and this extends to a diagonal action on $(\mathbb{C}^{mn})^{\otimes r}$.

Consider
$$(\mathbb{C}^{mn})^{\otimes r} = \underbrace{\mathbb{C}^{mn} \otimes \mathbb{C}^{mn} \otimes \cdots \otimes \mathbb{C}^{mn}}_{r \text{ copies}}$$
 (tensor space).

The group $\mathrm{GL}_{mn}(\mathbb{C})$ acts on \mathbb{C}^{mn} naturally and this extends to a diagonal action on $(\mathbb{C}^{mn})^{\otimes r}$. The symmetric group S_r also acts on tensor space: permutations act by permuting the r tensor factors.

$$\mathbb{C}\mathrm{GL}_{mn}(\mathbb{C})$$
 \circlearrowright $E^{\otimes r}$ \circlearrowleft $\mathbb{C}S_r$

Consider
$$(\mathbb{C}^{mn})^{\otimes r} = \underbrace{\mathbb{C}^{mn} \otimes \mathbb{C}^{mn} \otimes \cdots \otimes \mathbb{C}^{mn}}_{r \text{ copies}}$$
 (tensor space).

The group $\mathrm{GL}_{mn}(\mathbb{C})$ acts on \mathbb{C}^{mn} naturally and this extends to a diagonal action on $(\mathbb{C}^{mn})^{\otimes r}$. The symmetric group S_r also acts on tensor space: permutations act by permuting the r tensor factors.

$$\mathbb{C}\mathrm{GL}_{mn}(\mathbb{C})$$
 \circlearrowright $E^{\otimes r}$ \circlearrowleft $\mathbb{C}S_r$

The actions commute and each generates the full centraliser of each other (Schur-Weyl duality).

Consider
$$(\mathbb{C}^{mn})^{\otimes r} = \underbrace{\mathbb{C}^{mn} \otimes \mathbb{C}^{mn} \otimes \cdots \otimes \mathbb{C}^{mn}}_{r \text{ copies}}$$
 (tensor space).

The group $\operatorname{GL}_{mn}(\mathbb{C})$ acts on \mathbb{C}^{mn} naturally and this extends to a diagonal action on $(\mathbb{C}^{mn})^{\otimes r}$. The symmetric group S_r also acts on tensor space: permutations act by permuting the r tensor factors.

$$\mathbb{C}\mathrm{GL}_{mn}(\mathbb{C})$$
 \circlearrowright $E^{\otimes r}$ \circlearrowleft $\mathbb{C}S_r$

The actions commute and each generates the full centraliser of each other (Schur-Weyl duality). Now restrict the $GL_{mn}(\mathbb{C})$ -action to just the permutation matrices, a copy of S_{mn} . What can we put on the right to preserve the Schur-Weyl duality?

$$\mathbb{C}\mathrm{GL}_{mn}(\mathbb{C})$$
 \circlearrowright $(\mathbb{C}^{mn})^{\otimes r}$ \circlearrowleft $\mathbb{C}S_r$
 \cup \cap
 $\mathbb{C}S_{mn}$?

Consider
$$(\mathbb{C}^{mn})^{\otimes r} = \underbrace{\mathbb{C}^{mn} \otimes \mathbb{C}^{mn} \otimes \cdots \otimes \mathbb{C}^{mn}}_{r \text{ copies}}$$
 (tensor space).

The group $\operatorname{GL}_{mn}(\mathbb{C})$ acts on \mathbb{C}^{mn} naturally and this extends to a diagonal action on $(\mathbb{C}^{mn})^{\otimes r}$. The symmetric group S_r also acts on tensor space: permutations act by permuting the r tensor factors.

$$\mathbb{C}\mathrm{GL}_{mn}(\mathbb{C})$$
 \circlearrowright $E^{\otimes r}$ \circlearrowleft $\mathbb{C}S_r$

The actions commute and each generates the full centraliser of each other (Schur-Weyl duality). Now restrict the $GL_{mn}(\mathbb{C})$ -action to just the permutation matrices, a copy of S_{mn} . What can we put on the right to preserve the Schur-Weyl duality?

$$\begin{array}{cccc} \mathbb{C}\mathrm{GL}_{mn}(\mathbb{C}) & \circlearrowright & (\mathbb{C}^{mn})^{\otimes r} & \circlearrowleft & \mathbb{C}S_r \\ & \cup & & \cap \\ \mathbb{C}S_{mn} & & P_r(mn) \end{array}$$

Answer (Martin 1991, Jones 1993): the partition algebra $P_r(mn)$.

Partition Algebra $P_r(mn)$

The partition algebra $P_r(mn)$ has basis all set partitions of the set $\{1, 2, \dots, r, \overline{1}, \overline{2}, \dots, \overline{r}\}.$

E.g.
$$x = \{\{1, 2, \bar{2}\}, \{3, 4, \bar{1}\}, \{\bar{3}, \bar{4}\}\}.$$

Partition Algebra $P_r(mn)$

The partition algebra $P_r(mn)$ has basis all set partitions of the set $\{1, 2, \dots, r, \overline{1}, \overline{2}, \dots, \overline{r}\}.$

E.g.
$$x = \{\{1, 2, \bar{2}\}, \{3, 4, \bar{1}\}, \{\bar{3}, \bar{4}\}\}.$$

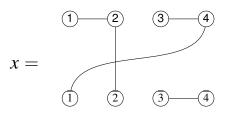
Represent set partitions as diagrams.

Partition Algebra $P_r(mn)$

The partition algebra $P_r(mn)$ has basis all set partitions of the set $\{1,2,\ldots,r,\overline{1},\overline{2},\ldots,\overline{r}\}.$

E.g.
$$x = \{\{1, 2, \bar{2}\}, \{3, 4, \bar{1}\}, \{\bar{3}, \bar{4}\}\}.$$

Represent set partitions as diagrams.

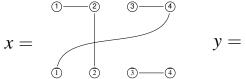


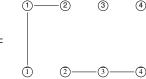
Partition Algebra $P_r(mn)$: multiplication

Multiplication is via concatenation of diagrams.

Partition Algebra $P_r(mn)$: multiplication

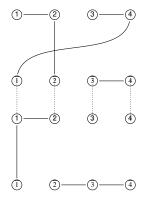
Multiplication is via concatenation of diagrams.





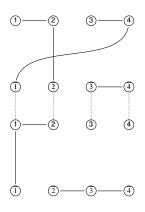
Partition Algebra $P_r(mn)$: multiplication

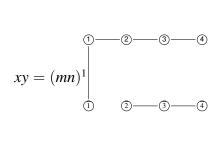
Multiplication is via concatenation of diagrams.



Partition Algebra $P_r(mn)$: multiplication

Multiplication is via concatenation of diagrams.

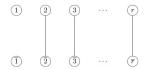


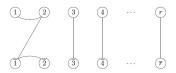


• The group algebra of the symmetric group $\mathbb{C}S_r$ is a subalgebra of $P_r(mn)$ (set-partitions with r 'propagating' parts).

• The group algebra of the symmetric group $\mathbb{C}S_r$ is a subalgebra of $P_r(mn)$ (set-partitions with r 'propagating' parts).It's also a quotient.

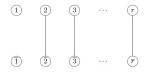
- The group algebra of the symmetric group $\mathbb{C}S_r$ is a subalgebra of $P_r(mn)$ (set-partitions with r 'propagating' parts).It's also a quotient.
- Generators for $P_r(mn)$ are generators for generators for S_r along with two extra elements:

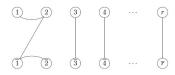




• Partition algebra $P_r(mn)$ is actually built up from the group algebras $\mathbb{C}S_r$, $\mathbb{C}S_{r-1}$, ..., $\mathbb{C}S_2$, $\mathbb{C}S_1$, $\mathbb{C}S_0 = \mathbb{C}$. It's a cellular algebra.

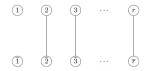
- The group algebra of the symmetric group $\mathbb{C}S_r$ is a subalgebra of $P_r(mn)$ (set-partitions with r 'propagating' parts).It's also a quotient.
- Generators for $P_r(mn)$ are generators for generators for S_r along with two extra elements:

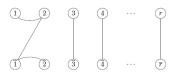




- Partition algebra $P_r(mn)$ is actually built up from the group algebras $\mathbb{C}S_r$, $\mathbb{C}S_{r-1}$, ..., $\mathbb{C}S_2$, $\mathbb{C}S_1$, $\mathbb{C}S_0 = \mathbb{C}$. It's a cellular algebra.
- Simple modules of $P_r(mn)$ are $\{L(\lambda) : \lambda \vdash r, r-1, \ldots, 2, 1, 0\}$.

- The group algebra of the symmetric group $\mathbb{C}S_r$ is a subalgebra of $P_r(mn)$ (set-partitions with r 'propagating' parts).It's also a quotient.
- Generators for $P_r(mn)$ are generators for generators for S_r along with two extra elements:





- Partition algebra $P_r(mn)$ is actually built up from the group algebras $\mathbb{C}S_r$, $\mathbb{C}S_{r-1}$, ..., $\mathbb{C}S_2$, $\mathbb{C}S_1$, $\mathbb{C}S_0 = \mathbb{C}$. It's a cellular algebra.
- Simple modules of $P_r(mn)$ are $\{L(\lambda) : \lambda \vdash r, r-1, \ldots, 2, 1, 0\}$.
- $P_r(mn)$ is semisimple if and only if $mn \notin \{0, 1, 2, \dots, 2r 2\}$.

Some simple modules

The 'top layer' simple modules $L(\lambda)$ for λ a partition of r are just the simple $\mathbb{C}S_r$ modules inflated to $P_r(mn)$.

Some simple modules

The 'top layer' simple modules $L(\lambda)$ for λ a partition of r are just the simple $\mathbb{C}S_r$ modules inflated to $P_r(mn)$.

In general, there is a diagrammatic way of constructing a $P_r(mn)$ -module from a $\mathbb{C}S_{r-\ell}$ -module: the simple modules are quotients.

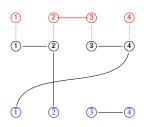
E.g. 'bottom layer' module $L(\emptyset)$ in the semisimple case. Its basis is given by set partitions of $\{1, 2, \dots, r\}$ with the natural concatenation action.

Some simple modules

The 'top layer' simple modules $L(\lambda)$ for λ a partition of r are just the simple $\mathbb{C}S_r$ modules inflated to $P_r(mn)$.

In general, there is a diagrammatic way of constructing a $P_r(mn)$ -module from a $\mathbb{C}S_{r-\ell}$ -module: the simple modules are quotients.

E.g. 'bottom layer' module $L(\emptyset)$ in the semisimple case. Its basis is given by set partitions of $\{1,2,\ldots,r\}$ with the natural concatenation action. When the diagram x acts on set partition $\{\{1\},\{2,3\},\{4\}\}$, the result is set partition $\{\{1,2\},\{3,4\}\}$.



We are interested in the plethysm coefficients

$$[1\uparrow^{S_{mn}}_{S_m \wr S_n}: S^{\lambda}] = \langle s_{(n)} \circ s_{(m)}, s_{\lambda} \rangle, \quad \lambda \vdash mn.$$

We are interested in the plethysm coefficients

$$[1\uparrow^{S_{mn}}_{S_m \wr S_n}: S^{\lambda}] = \langle s_{(n)} \circ s_{(m)}, s_{\lambda} \rangle, \quad \lambda \vdash mn.$$

Schur-Weyl duality:

$$\begin{array}{cccc}
\mathbb{C}GL_{mn}(\mathbb{C}) & \circlearrowright & (\mathbb{C}^{mn})^{\otimes r} & \circlearrowleft & \mathbb{C}S_r \\
& \cup & & & \cap \\
\mathbb{C}S_{mn} & & & P_r(mn)
\end{array}$$

We are interested in the plethysm coefficients

$$[1\uparrow^{S_{mn}}_{S_m \wr S_n}: S^{\lambda}] = \langle s_{(n)} \circ s_{(m)}, s_{\lambda} \rangle, \quad \lambda \vdash mn.$$

Schur-Weyl duality:

$$\begin{array}{cccc} \mathbb{C}\mathrm{GL}_{mn}(\mathbb{C}) & \circlearrowright & (\mathbb{C}^{mn})^{\otimes r} & \circlearrowleft & \mathbb{C}S_r \\ \cup & & & \cap \\ \mathbb{C}S_{mn} & & & P_r(mn) \end{array}$$

$$\mathbb{C}S_{mn} - \operatorname{mod} \longrightarrow \operatorname{mod} - P_r(mn)$$

$$1 \uparrow_{S_m \upharpoonright S_n}^{S_{mn}} \mapsto X$$

We are interested in the plethysm coefficients

$$[1\uparrow^{S_{mn}}_{S_m \wr S_n}: S^{\lambda}] = \langle s_{(n)} \circ s_{(m)}, s_{\lambda} \rangle, \quad \lambda \vdash mn.$$

Schur-Weyl duality:

$$\begin{array}{cccc} \mathbb{C}\mathrm{GL}_{mn}(\mathbb{C}) & \circlearrowright & (\mathbb{C}^{mn})^{\otimes r} & \circlearrowleft & \mathbb{C}S_r \\ & \cup & & \cap \\ \mathbb{C}S_{mn} & & P_r(mn) \end{array}$$

$$\mathbb{C}S_{mn} - \operatorname{mod} \longrightarrow \operatorname{mod} - P_r(mn)
1 \uparrow_{S_m \wr S_n}^{S_{mn}} \mapsto X
S^{(\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_k)} \mapsto L(\lambda_2, \lambda_3, \dots, \lambda_k)$$

(provided $\lambda_2 + \cdots + \lambda_k \leq r$; otherwise it is killed.) Our plethysm coefficient becomes

$$[1\uparrow_{S_m \wr S_n}^{S_{mm}} \colon S^{\lambda}]_{\mathbb{C}S_{mn}} = [X : L(\lambda_2, \lambda_3, \dots, \lambda_k)]_{P_r(mn)}.$$

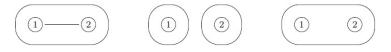
Define the diagrammatic Foulkes module to be the complex vector space F^r with basis the set of all (Λ, Λ') where Λ and Λ' are set partitions of $\{1, \ldots, r\}$ and Λ' is coarser than Λ . We draw the basis elements as diagrams and talk about Λ as the inner partition and Λ' as the outer partition.

Define the diagrammatic Foulkes module to be the complex vector space F^r with basis the set of all (Λ, Λ') where Λ and Λ' are set partitions of $\{1, \ldots, r\}$ and Λ' is coarser than Λ . We draw the basis elements as diagrams and talk about Λ as the inner partition and Λ' as the outer partition.

E.g. if r = 2 there are three basis elements

Define the diagrammatic Foulkes module to be the complex vector space F^r with basis the set of all (Λ, Λ') where Λ and Λ' are set partitions of $\{1, \ldots, r\}$ and Λ' is coarser than Λ . We draw the basis elements as diagrams and talk about Λ as the inner partition and Λ' as the outer partition.

E.g. if r = 2 there are three basis elements



The $P_r(mn)$ -module action: for x a partition algebra diagram we let

$$(\Lambda, \Lambda').x = m^a n^b (\Gamma, \Gamma')$$

if $\Lambda.x = m^a\Gamma$ in the natural $P_r(m)$ -action on set partitions and $\Lambda'.x = n^b\Gamma'$ in the natural $P_r(n)$ -action on set partitions.

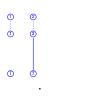
$$(\Lambda, \Lambda').x = m^a n^b (\Gamma, \Gamma')$$

if $\Lambda . x = m^a \Gamma$ in the natural $P_r(m)$ -action on set partitions and $\Lambda' . x = n^b \Gamma'$ in the natural $P_r(n)$ -action on set partitions.

$$(\Lambda, \Lambda').x = m^a n^b (\Gamma, \Gamma')$$

if $\Lambda.x = m^a\Gamma$ in the natural $P_r(m)$ -action on set partitions and $\Lambda'.x = n^b\Gamma'$ in the natural $P_r(n)$ -action on set partitions.

because



$$\{\{1\}, \{2\}\}.x = m\{\{1\}, \{2\}\}$$

$$\{\{1,2\}\}.x = \{\{1\},\{2\}\}$$

The correspondence

Proposition 1

Under the Schur functor $\operatorname{Hom}_{\mathbb{C}S_{mn}}(-,(\mathbb{C}^{mn})^{\otimes r})$,

$$\mathbb{C}S_{mn} - \operatorname{mod} \longrightarrow \operatorname{mod} - P_r(mn)$$

$$1 \uparrow_{S_m \wr S_n}^{S_{mn}} \mapsto a \ quotient \ of \ F^r.$$

If $m, n \ge r$ then $1 \uparrow_{S_m \wr S_n}^{S_{mn}}$ is sent to the diagrammatic Foulkes module F^r .

The correspondence

Proposition 1

Under the Schur functor $\operatorname{Hom}_{\mathbb{C}S_{mn}}(-,(\mathbb{C}^{mn})^{\otimes r})$,

$$\mathbb{C}S_{mn} - \operatorname{mod} \longrightarrow \operatorname{mod} - P_r(mn)$$

$$1 \uparrow_{S_m \wr S_n}^{S_{mn}} \mapsto a \ quotient \ of \ F^r.$$

If $m,n \geq r$ then $1 \uparrow_{S_m \wr S_n}^{S_{mn}}$ is sent to the diagrammatic Foulkes module F^r .

Consequence: if $m, n \ge r$ and $\sum_{i \ge 2} \lambda_i \le r$ then

$$[1\uparrow^{S_{mn}}_{S_m \wr S_n}: S^{\lambda}]_{\mathbb{C}S_{mn}} = [F^r: L(\lambda_2, \lambda_3, \dots, \lambda_k)]_{P_r(mn)}.$$

Define F_0^r to be the subspace of the diagrammatic Foulkes module F^r spanned by those (Λ, Λ') where $\Lambda = \Lambda'$. This is a submodule.

Define F_0^r to be the subspace of the diagrammatic Foulkes module F^r spanned by those (Λ, Λ') where $\Lambda = \Lambda'$. This is a submodule.

More generally, for $\ell=0,1,\ldots,r-1$, define F_ℓ^r to be the subspace of F^r spanned by those (Λ,Λ') where the number of parts of Λ and the number of parts of Λ' differ by at most ℓ ,

$$0 \subset F_0^r \subset F_1^r \subset F_2^r \subset \cdots F_{r-1}^r = F^r.$$

Define F_0^r to be the subspace of the diagrammatic Foulkes module F^r spanned by those (Λ, Λ') where $\Lambda = \Lambda'$. This is a submodule.

More generally, for $\ell=0,1,\ldots,r-1$, define F_ℓ^r to be the subspace of F^r spanned by those (Λ,Λ') where the number of parts of Λ and the number of parts of Λ' differ by at most ℓ ,

$$0 \subset F_0^r \subset F_1^r \subset F_2^r \subset \cdots F_{r-1}^r = F^r.$$

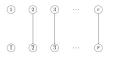
E.g. if r=2

$$F_1^2$$
 ① ②

$$F_0^2$$

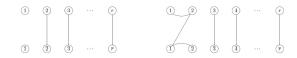
$$0 \subset F_0^r \subset F_1^r \subset F_2^r \subset \cdots F_{r-1}^r = F^r.$$

To see F_{ℓ}^{r} is a submodule we look at the effect of the partition algebra generators: the symmetric group generators behave well so it is just the two additional partition algebra generators to consider.



$$0 \subset F_0^r \subset F_1^r \subset F_2^r \subset \cdots F_{r-1}^r = F^r.$$

To see F_{ℓ}^r is a submodule we look at the effect of the partition algebra generators: the symmetric group generators behave well so it is just the two additional partition algebra generators to consider.



The $P_r(mn)$ -action on the layer $F_\ell^r/F_{\ell-1}^r$ only depends on mn and not on the individual values of m and n.

Consequences for Foulkes' Conjecture

Theorem 2

Suppose
$$m, n \ge \sum_{i \ge 2} \lambda_i$$
 then $[1 \uparrow_{S_m \wr S_n}^{S_{mn}} : S^{\lambda}] = [1 \uparrow_{S_n \wr S_m}^{S_{mn}} : S^{\lambda}].$

Consequences for Foulkes' Conjecture

Theorem 2

Suppose
$$m, n \geq \sum_{i \geq 2} \lambda_i$$
 then $[1 \uparrow_{S_m \wr S_n}^{S_{mn}} : S^{\lambda}] = [1 \uparrow_{S_n \wr S_m}^{S_{mn}} : S^{\lambda}].$

A geometric proof of this was given in 1998 by Manivel.

For any partition $\lambda=(\lambda_1,\ldots,\lambda_k)$, set $\lambda_{[mn]}=(mn-|\lambda|,\lambda_1,\ldots,\lambda_k)$.

For any partition
$$\lambda=(\lambda_1,\ldots,\lambda_k)$$
 , set $\lambda_{[mn]}=(mn-|\lambda|,\lambda_1,\ldots,\lambda_k)$.

E.g.
$$(3,1)_{[7]} = (3,3,1), (3,1)_{[8]} = (4,3,1), (3,1)_{[9]} = (5,3,1), (3,1)_{[10]} = (6,3,1), \dots$$

For any partition
$$\lambda=(\lambda_1,\ldots,\lambda_k)$$
 , set $\lambda_{[mn]}=(mn-|\lambda|,\lambda_1,\ldots,\lambda_k).$

E.g.
$$(3,1)_{[7]} = (3,3,1), (3,1)_{[8]} = (4,3,1), (3,1)_{[9]} = (5,3,1), (3,1)_{[10]} = (6,3,1), \dots$$

We can fix λ and look at the double sequence of plethysm coefficients $\langle s_{(n)} \circ s_{(m)}, \, s_{\lambda_{[mn]}} \rangle = [1 \uparrow^{S_{mn}}_{S_m ! S_n} : S^{\lambda_{[mn]}}]$ as m and n vary.

For any partition
$$\lambda=(\lambda_1,\ldots,\lambda_k)$$
 , set $\lambda_{[mn]}=(mn-|\lambda|,\lambda_1,\ldots,\lambda_k)$.

E.g.
$$(3,1)_{[7]} = (3,3,1), (3,1)_{[8]} = (4,3,1), (3,1)_{[9]} = (5,3,1), (3,1)_{[10]} = (6,3,1), \dots$$

We can fix λ and look at the double sequence of plethysm coefficients $\langle s_{(n)} \circ s_{(m)}, \, s_{\lambda_{[mn]}} \rangle = [1 \uparrow^{S_{mn}}_{S_m \wr S_n} : S^{\lambda_{[mn]}}]$ as m and n vary.

By carefully studying the diagrammatic Foulkes module F^r we obtain a formula for these plethysm coefficients in terms of smaller plethysm coefficients and Littlewood-Richardson coefficients, and we demonstrate stability.

For any partition
$$\lambda=(\lambda_1,\ldots,\lambda_k)$$
 , set $\lambda_{[mn]}=(mn-|\lambda|,\lambda_1,\ldots,\lambda_k).$

E.g.
$$(3,1)_{[7]} = (3,3,1), (3,1)_{[8]} = (4,3,1), (3,1)_{[9]} = (5,3,1), (3,1)_{[10]} = (6,3,1), \dots$$

We can fix λ and look at the double sequence of plethysm coefficients $\langle s_{(n)} \circ s_{(m)}, \, s_{\lambda_{[mn]}} \rangle = [1 \uparrow^{S_{mn}}_{S_m \wr S_n} : S^{\lambda_{[mn]}}]$ as m and n vary.

By carefully studying the diagrammatic Foulkes module F^r we obtain a formula for these plethysm coefficients in terms of smaller plethysm coefficients and Littlewood-Richardson coefficients, and we demonstrate stability.

Theorem 3

The double-sequence $\langle s_{(n)} \circ s_{(m)}, s_{\lambda_{[mn]}} \rangle$ stabilises and the stable values are achieved whenever $m, n \geq |\lambda|$.

The stability for n was originally proved by Brion, and for m by Carré-Thibon.

In recent work with Chris Bowman and Mark Wildon, we extend the partition algebra approach to arbitrary plethysm coefficients.

 New interpretation of the plethysm coefficients as the composition multiplicities of a simple module for the ramified partition algebra restricted to the partition algebra.

- New interpretation of the plethysm coefficients as the composition multiplicities of a simple module for the ramified partition algebra restricted to the partition algebra.
- ullet Stability result for $\langle s_{
 u_{[n]}} \circ s_{(m)}, \, s_{\lambda_{[mn]}}
 angle$.

- New interpretation of the plethysm coefficients as the composition multiplicities of a simple module for the ramified partition algebra restricted to the partition algebra.
- ullet Stability result for $\langle s_{
 u_{[n]}} \circ s_{(m)}, \, s_{\lambda_{[mn]}}
 angle$.
- Combinatorial formula for these stable plethysm coefficients in terms of smaller plethysm coefficients and Littlewood-Richardson coefficients.

- New interpretation of the plethysm coefficients as the composition multiplicities of a simple module for the ramified partition algebra restricted to the partition algebra.
- Stability result for $\langle s_{
 u_{[n]}} \circ s_{(m)}, \, s_{\lambda_{[mn]}} \rangle$.
- Combinatorial formula for these stable plethysm coefficients in terms of smaller plethysm coefficients and Littlewood-Richardson coefficients.
- Upper bounds for arbitrary plethysm coefficients.