On stable modular plethysms of the natural module of $\mathsf{SL}_2(\mathbb{F}_p)$ in characteristic p

Pavel Turek

Royal Holloway, University of London

January 24, 2023

Based on arXiv:2210.08943

Outline

- Schur functors and modular plethysms
- 2 Representation theory of $SL_2(\mathbb{F}_p)$ in characteristic p
- 3 Computation of modular plethysms
- 4 Endotrivial modules and Schur functors

Outline

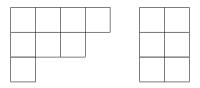
- Schur functors and modular plethysms
- 2 Representation theory of $SL_2(\mathbb{F}_p)$ in characteristic p
- 3 Computation of modular plethysms
- 4 Endotrivial modules and Schur functors

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ be a partition.

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ be a partition. We denote by $Y(\lambda)$ its Young diagram $\{(i, j) \in \mathbb{N}^2 : i \leq \ell(\lambda), j \leq \lambda_i\}$.

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ be a partition. We denote by $Y(\lambda)$ its Young diagram $\{(i,j) \in \mathbb{N}^2 : i \leq \ell(\lambda), j \leq \lambda_i\}$. Given a set S we define a λ -tableau (with entries in S) to be a map $t : Y(\lambda) \to S$.

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ be a partition. We denote by $Y(\lambda)$ its Young diagram $\{(i,j) \in \mathbb{N}^2 : i \leq \ell(\lambda), j \leq \lambda_i\}$. Given a set S we define a λ -tableau (with entries in S) to be a map $t : Y(\lambda) \to S$.



These are the Young diagrams of (4,3,1) and (2^3) .

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ be a partition. We denote by $Y(\lambda)$ its Young diagram $\{(i,j) \in \mathbb{N}^2 : i \leq \ell(\lambda), j \leq \lambda_i\}$. Given a set S we define a λ -tableau (with entries in S) to be a map $t : Y(\lambda) \to S$.

1	2	3	3
2	2	4	
4			

1	2
3	4
6	6

These are the Young diagrams of (4,3,1) and (2^3) . And now tableaux (with entries in \mathbb{N}).

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ be a partition. We denote by $Y(\lambda)$ its Young diagram $\{(i,j) \in \mathbb{N}^2 : i \leq \ell(\lambda), j \leq \lambda_i\}$. Given a set S we define a λ -tableau (with entries in S) to be a map $t : Y(\lambda) \to S$.

1	2	3	3
2	2	4	
4			

1	2	
3	4	
6	6	

These are the Young diagrams of (4,3,1) and (2^3) . And now tableaux (with entries in \mathbb{N}).

Suppose that S is totally ordered. We call a tableau t standard if its entries are weakly increasing along its rows and strictly increasing along its columns.

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ be a partition. We denote by $Y(\lambda)$ its Young diagram $\{(i,j) \in \mathbb{N}^2 : i \leq \ell(\lambda), j \leq \lambda_i\}$. Given a set S we define a λ -tableau (with entries in S) to be a map $t : Y(\lambda) \to S$.

1	2	3	3
2	2	4	
4			

1	2	
3	4	
6	6	

These are the Young diagrams of (4,3,1) and (2^3) . And now tableaux (with entries in \mathbb{N}).

Suppose that S is totally ordered. We call a tableau t standard if its entries are weakly increasing along its rows and strictly increasing along its columns. The first tableau is not standard, while the second is.

Let S=V be a vector space over K. We identify λ -tableaux with entries in V with elements of $\operatorname{Sym}^{\lambda}V:=\operatorname{Sym}^{\lambda_1}V\otimes\operatorname{Sym}^{\lambda_2}V\otimes\cdots\otimes\operatorname{Sym}^{\lambda_{\ell(\lambda)}}V$ by 'multiplying along rows'.

Let S=V be a vector space over K. We identify λ -tableaux with entries in V with elements of $\operatorname{Sym}^{\lambda}V:=\operatorname{Sym}^{\lambda_1}V\otimes\operatorname{Sym}^{\lambda_2}V\otimes\cdots\otimes\operatorname{Sym}^{\lambda_{\ell(\lambda)}}V$ by 'multiplying along rows'. The tableau $\dfrac{u|v|}{w}$ is identified with $uv\otimes w\in\operatorname{Sym}^{(2,1)}V$.

Let S=V be a vector space over K. We identify λ -tableaux with entries in V with elements of $\operatorname{Sym}^{\lambda}V:=\operatorname{Sym}^{\lambda_1}V\otimes\operatorname{Sym}^{\lambda_2}V\otimes\cdots\otimes\operatorname{Sym}^{\lambda_{\ell(\lambda)}}V$ by 'multiplying along rows'. The tableau w is identified with $wv\otimes w\in\operatorname{Sym}^{(2,1)}V$.

For a tableau t define $e(t) = \sum_{\tau \in C(\lambda)} \operatorname{sgn}(\tau) \tau \cdot t$, where $C(\lambda)$ is the column stabiliser in the group of box permutation.

Let S=V be a vector space over K. We identify λ -tableaux with entries in V with elements of $\operatorname{Sym}^{\lambda}V:=\operatorname{Sym}^{\lambda_1}V\otimes\operatorname{Sym}^{\lambda_2}V\otimes\cdots\otimes\operatorname{Sym}^{\lambda_{\ell(\lambda)}}V$ by 'multiplying along rows'. The tableau $\dfrac{u|v|}{w}$ is identified with $uv\otimes w\in\operatorname{Sym}^{(2,1)}V$.

For a tableau t define $e(t) = \sum_{\tau \in C(\lambda)} \operatorname{sgn}(\tau) \tau \cdot t$, where $C(\lambda)$ is the column stabiliser in the group of box permutation.

Example:

$$e\left(\begin{array}{c|c} a&b&c\\ \hline d&e \end{array}\right) = \begin{bmatrix} a&b&c\\ \hline d&e \end{bmatrix} - \begin{bmatrix} d&b&c\\ \hline a&e \end{bmatrix} - \begin{bmatrix} a&e&c\\ \hline d&b \end{bmatrix} + \begin{bmatrix} d&e&c\\ \hline a&b \end{bmatrix}$$

Let S=V be a vector space over K. We identify λ -tableaux with entries in V with elements of $\operatorname{Sym}^{\lambda}V:=\operatorname{Sym}^{\lambda_1}V\otimes\operatorname{Sym}^{\lambda_2}V\otimes\cdots\otimes\operatorname{Sym}^{\lambda_{\ell(\lambda)}}V$ by 'multiplying along rows'. The tableau $\dfrac{u|v|}{w}$ is identified with $uv\otimes w\in\operatorname{Sym}^{(2,1)}V$.

For a tableau t define $e(t) = \sum_{\tau \in C(\lambda)} \operatorname{sgn}(\tau) \tau \cdot t$, where $C(\lambda)$ is the column stabiliser in the group of box permutation.

Example:

$$e\left(\begin{array}{c|c} a&b&c\\ \hline d&e \end{array}\right) = \begin{bmatrix} a&b&c\\ \hline d&e \end{bmatrix} - \begin{bmatrix} d&b&c\\ \hline a&e \end{bmatrix} - \begin{bmatrix} a&e&c\\ \hline d&b \end{bmatrix} + \begin{bmatrix} d&e&c\\ \hline a&b \end{bmatrix}$$

The subspace of $\operatorname{Sym}^{\lambda} V$ spanned by e(t) is a $K\operatorname{GL}(V)$ -submodule $\nabla^{\lambda} V$. We refer to ∇^{λ} as the Schur functor labelled by λ .

Let S=V be a vector space over K. We identify λ -tableaux with entries in V with elements of $\operatorname{Sym}^{\lambda}V:=\operatorname{Sym}^{\lambda_1}V\otimes\operatorname{Sym}^{\lambda_2}V\otimes\cdots\otimes\operatorname{Sym}^{\lambda_{\ell(\lambda)}}V$ by 'multiplying along rows'. The tableau w is identified with $w \otimes w \in \operatorname{Sym}^{(2,1)}V$.

For a tableau t define $e(t) = \sum_{\tau \in C(\lambda)} \operatorname{sgn}(\tau) \tau \cdot t$, where $C(\lambda)$ is the column stabiliser in the group of box permutation.

Example:

$$e\left(\begin{array}{c|c} a & b & c \\ \hline d & e \end{array}\right) = \begin{bmatrix} a & b & c \\ \hline d & e \end{bmatrix} - \begin{bmatrix} d & b & c \\ \hline a & e \end{bmatrix} - \begin{bmatrix} a & e & c \\ \hline d & b \end{bmatrix} + \begin{bmatrix} d & e & c \\ \hline a & b \end{bmatrix}$$

The subspace of $\operatorname{Sym}^{\lambda} V$ spanned by e(t) is a $K\operatorname{GL}(V)$ -submodule $\nabla^{\lambda} V$. We refer to ∇^{λ} as the Schur functor labelled by λ . We have $\nabla^{(n)} = \operatorname{Sym}^n$ and $\nabla^{(1^n)} = \bigwedge^n$.

Let S=V be a vector space over K. We identify λ -tableaux with entries in V with elements of $\operatorname{Sym}^{\lambda}V:=\operatorname{Sym}^{\lambda_1}V\otimes\operatorname{Sym}^{\lambda_2}V\otimes\cdots\otimes\operatorname{Sym}^{\lambda_{\ell(\lambda)}}V$ by 'multiplying along rows'. The tableau $\dfrac{u|v|}{w}$ is identified with $uv\otimes w\in\operatorname{Sym}^{(2,1)}V$.

For a tableau t define $e(t) = \sum_{\tau \in C(\lambda)} \operatorname{sgn}(\tau) \tau \cdot t$, where $C(\lambda)$ is the column stabiliser in the group of box permutation.

Example:

$$e\left(\begin{array}{c|c} a&b&c\\ \hline d&e \end{array}\right) = \begin{bmatrix} a&b&c\\ \hline d&e \end{bmatrix} - \begin{bmatrix} d&b&c\\ \hline a&e \end{bmatrix} - \begin{bmatrix} a&e&c\\ \hline d&b \end{bmatrix} + \begin{bmatrix} d&e&c\\ \hline a&b \end{bmatrix}$$

The subspace of $\operatorname{Sym}^{\lambda} V$ spanned by e(t) is a $K\operatorname{GL}(V)$ -submodule $\nabla^{\lambda} V$. We refer to ∇^{λ} as the Schur functor labelled by λ . We have $\nabla^{(n)} = \operatorname{Sym}^n$ and $\nabla^{(1^n)} = \bigwedge^n$. If K has characteristic zero, $\nabla^{\lambda} V$ give all the indecomposable polynomial $K\operatorname{GL}(V)$ -modules.

Let Λ be a ring of symmetric functions in variables x_1, x_2, \ldots

Let Λ be a ring of symmetric functions in variables x_1, x_2, \ldots For a partition λ , the Schur function s_{λ} is given by

$$s_{\lambda} = \sum_{T \in \mathsf{Std}(\lambda)} x^{T}.$$

Let Λ be a ring of symmetric functions in variables x_1, x_2, \ldots . For a partition λ , the Schur function s_{λ} is given by

$$s_{\lambda} = \sum_{T \in \mathsf{Std}(\lambda)} x^{T}.$$

Example:

$$s_{(2,1)} = x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{2}} + x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{3}} + x^{\frac{2}{3}} + x^{\frac{2}{3}} + x^{\frac{2}{3}} + x^{\frac{2}{3}}$$

$$x^{\frac{2|3|}{3}} + \dots = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \dots$$

Let Λ be a ring of symmetric functions in variables x_1, x_2, \ldots . For a partition λ , the Schur function s_{λ} is given by

$$s_{\lambda} = \sum_{T \in \mathsf{Std}(\lambda)} x^{T}.$$

Example:

$$s_{(2,1)} = x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{2}} + x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{3}} + x^{\frac{1}{3}} + x^{\frac{2}{3}} + x^{\frac{2}{3}} + x^{\frac{2}{3}}$$

$$x^{\frac{2}{3}} + \dots = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \dots$$

By omitting the three dots at the end we obtain $s_{(2,1)}(x_1, x_2, x_3)$.

Let Λ be a ring of symmetric functions in variables x_1, x_2, \ldots . For a partition λ , the Schur function s_{λ} is given by

$$s_{\lambda} = \sum_{T \in \mathsf{Std}(\lambda)} x^{T}.$$

Example:

$$s_{(2,1)} = x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{2}} + x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{3}} + x^{\frac{1}{3}} + x^{\frac{2}{3}} + x^$$

$$x^{\frac{2|3|}{3}} + \dots = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \dots$$

By omitting the three dots at the end we obtain $s_{(2,1)}(x_1,x_2,x_3)$. We move between Schur functors and Schur functions via formal characters. The formal character of $\nabla^{\lambda}V$ is $s_{\lambda}(x_1,x_2,\ldots,x_d)$ where $d=\dim V$.

Let Λ be a ring of symmetric functions in variables x_1, x_2, \ldots . For a partition λ , the Schur function s_{λ} is given by

$$s_{\lambda} = \sum_{T \in \mathsf{Std}(\lambda)} x^{T}.$$

Example:

$$s_{(2,1)} = x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{2}} + x^{\frac{1}{2}} + x^{\frac{1}{3}} + x^{\frac{1}{3}} + x^{\frac{1}{3}} + x^{\frac{2}{3}} + x^$$

 $x^{\frac{2|3|}{3}} + \dots = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \dots$

By omitting the three dots at the end we obtain $s_{(2,1)}(x_1,x_2,x_3)$. We move between Schur functors and Schur functions via formal characters. The formal character of $\nabla^{\lambda}V$ is $s_{\lambda}(x_1,x_2,\ldots,x_d)$ where $d=\dim V$. This is particularly useful in characteristic zero or p with p larger than the underlying polynomial degree.

A modular plethysm is a composition of two Schur functors.

A modular plethysm is a composition of two Schur functors. Taking formal characters we obtain plethysms of Schur functions.

A modular plethysm is a composition of two Schur functors. Taking formal characters we obtain plethysms of Schur functions.

Example:

$$s_{(2,1)} \circ s_{(2)}(x,y) = s_{(2,1)}(x^2, xy, y^2) = x^5y + 2x^4y^2 + 2x^3y^3 + 2x^2y^4 + xy^5$$

A modular plethysm is a composition of two Schur functors. Taking formal characters we obtain plethysms of Schur functions.

Example:

$$s_{(2,1)} \circ s_{(2)}(x,y) = s_{(2,1)}(x^2, xy, y^2) = x^5y + 2x^4y^2 + 2x^3y^3 + 2x^2y^4 + xy^5$$

Stanley has identified the problem of decomposing plethysms as one of the major open problems in algebraic combinatorics.

A modular plethysm is a composition of two Schur functors. Taking formal characters we obtain plethysms of Schur functions.

Example:

$$s_{(2,1)} \circ s_{(2)}(x,y) = s_{(2,1)}(x^2, xy, y^2) = x^5y + 2x^4y^2 + 2x^3y^3 + 2x^2y^4 + xy^5$$

Stanley has identified the problem of decomposing plethysms as one of the major open problems in algebraic combinatorics.

For the modular plethysms $\nabla^{\nu}\nabla^{\mu}$ of the natural $\mathrm{SL}_2(\mathbb{F}_p)$ -module over characteristic p we can assume that $\mu=(I)$.

A modular plethysm is a composition of two Schur functors. Taking formal characters we obtain plethysms of Schur functions.

Example:

$$s_{(2,1)} \circ s_{(2)}(x,y) = s_{(2,1)}(x^2, xy, y^2) = x^5y + 2x^4y^2 + 2x^3y^3 + 2x^2y^4 + xy^5$$

Stanley has identified the problem of decomposing plethysms as one of the major open problems in algebraic combinatorics.

For the modular plethysms $\nabla^{\nu}\nabla^{\mu}$ of the natural $\mathrm{SL}_2(\mathbb{F}_p)$ -module over characteristic p we can assume that $\mu=(I)$. Throughout we moreover assume that $I\leq p-2$ and $|\nu|< p$ (we say ν is p-small).

A modular plethysm is a composition of two Schur functors. Taking formal characters we obtain plethysms of Schur functions.

Example:

$$s_{(2,1)} \circ s_{(2)}(x,y) = s_{(2,1)}(x^2, xy, y^2) = x^5y + 2x^4y^2 + 2x^3y^3 + 2x^2y^4 + xy^5$$

Stanley has identified the problem of decomposing plethysms as one of the major open problems in algebraic combinatorics.

For the modular plethysms $\nabla^{\nu}\nabla^{\mu}$ of the natural $\mathrm{SL}_2(\mathbb{F}_p)$ -module over characteristic p we can assume that $\mu=(I)$. Throughout we moreover assume that $I\leq p-2$ and $|\nu|< p$ (we say ν is p-small).

In the literature:

ullet computational formulas for modular plethysms when $abla^{
u}$ is a symmetric or an exterior power established by Kouwenhoven in 1990,

A modular plethysm is a composition of two Schur functors. Taking formal characters we obtain plethysms of Schur functions.

Example:

$$s_{(2,1)} \circ s_{(2)}(x,y) = s_{(2,1)}(x^2, xy, y^2) = x^5y + 2x^4y^2 + 2x^3y^3 + 2x^2y^4 + xy^5$$

Stanley has identified the problem of decomposing plethysms as one of the major open problems in algebraic combinatorics.

For the modular plethysms $\nabla^{\nu}\nabla^{\mu}$ of the natural $\mathrm{SL}_2(\mathbb{F}_p)$ -module over characteristic p we can assume that $\mu=(I)$. Throughout we moreover assume that $I\leq p-2$ and $|\nu|< p$ (we say ν is p-small).

In the literature:

- ullet computational formulas for modular plethysms when $abla^
 u$ is a symmetric or an exterior power established by Kouwenhoven in 1990,
- various isomorphisms of modular plethysms established by McDowell and Wildon in 2022.

Outline

- Schur functors and modular plethysms
- 2 Representation theory of $SL_2(\mathbb{F}_p)$ in characteristic p
- 3 Computation of modular plethysms
- 4 Endotrivial modules and Schur functors

• p is an odd prime,

- p is an odd prime,
- \bullet k is a field of characteristic p,

- p is an odd prime,
- k is a field of characteristic p,
- ζ_p is a primitive (complex) pth root of unity,

- p is an odd prime,
- k is a field of characteristic p,
- ζ_p is a primitive (complex) pth root of unity,
- G denotes the group $SL_2(\mathbb{F}_p)$,

- p is an odd prime,
- k is a field of characteristic p,
- ζ_p is a primitive (complex) pth root of unity,
- G denotes the group $SL_2(\mathbb{F}_p)$,
- *E* is the natural two dimensional *kG*-module,

- p is an odd prime,
- k is a field of characteristic p,
- ζ_p is a primitive (complex) pth root of unity,
- G denotes the group $SL_2(\mathbb{F}_p)$,
- E is the natural two dimensional kG-module,
- \bullet H denotes an arbitrary finite group of order divisible by p,

- p is an odd prime,
- k is a field of characteristic p,
- ζ_p is a primitive (complex) pth root of unity,
- G denotes the group $SL_2(\mathbb{F}_p)$,
- *E* is the natural two dimensional *kG*-module,
- H denotes an arbitrary finite group of order divisible by p,
- \cong denotes an isomorphism of kH-modules,

- p is an odd prime,
- k is a field of characteristic p,
- ζ_p is a primitive (complex) pth root of unity,
- G denotes the group $SL_2(\mathbb{F}_p)$,
- E is the natural two dimensional kG-module,
- H denotes an arbitrary finite group of order divisible by p,
- ullet \cong denotes an isomorphism of kH-modules,
- $\stackrel{p}{\cong}$ denotes an isomorphism in the stable module category of kH ('isomorphism modulo projectives'). That is, for two kH-modules V,W we write $V\stackrel{p}{\cong}W$ if there are projective kH-modules P,Q such that $V\oplus P\cong W\oplus Q$.

The irreducible kG-modules are given by $\operatorname{Sym}^0 E, \operatorname{Sym}^1 E, \dots, \operatorname{Sym}^{p-1} E$.

The irreducible kG-modules are given by $\operatorname{Sym}^0 E, \operatorname{Sym}^1 E, \dots, \operatorname{Sym}^{p-1} E$. They are all non-projective apart from $\operatorname{Sym}^{p-1} E$.

The irreducible kG-modules are given by $\operatorname{Sym}^0 E, \operatorname{Sym}^1 E, \dots, \operatorname{Sym}^{p-1} E$. They are all non-projective apart from $\operatorname{Sym}^{p-1} E$.

Theorem (Stable Clebsch-Gordan rule)

Let $0 \le i \le j \le p-2$. Writing S for the tensor product $\operatorname{Sym}^i E \otimes \operatorname{Sym}^j E$ we have the decomposition

$$S \stackrel{p}{\cong} \begin{cases} \operatorname{Sym}^{j-i} E \oplus \operatorname{Sym}^{j-i+2} E \oplus \cdots \oplus \operatorname{Sym}^{i+j} E & \text{if } i+j < p-2, \\ \operatorname{Sym}^{j-i} E \oplus \operatorname{Sym}^{j-i+2} E \oplus \cdots \oplus \operatorname{Sym}^{2p-4-i-j} E & \text{if } i+j \geq p-2. \end{cases}$$

The irreducible kG-modules are given by $\operatorname{Sym}^0 E, \operatorname{Sym}^1 E, \dots, \operatorname{Sym}^{p-1} E$. They are all non-projective apart from $\operatorname{Sym}^{p-1} E$.

Theorem (Stable Clebsch-Gordan rule)

Let $0 \le i \le j \le p-2$. Writing S for the tensor product $\operatorname{Sym}^i E \otimes \operatorname{Sym}^j E$ we have the decomposition

$$S \stackrel{p}{\cong} \begin{cases} \operatorname{Sym}^{j-i} E \oplus \operatorname{Sym}^{j-i+2} E \oplus \cdots \oplus \operatorname{Sym}^{i+j} E & \text{if } i+j < p-2, \\ \operatorname{Sym}^{j-i} E \oplus \operatorname{Sym}^{j-i+2} E \oplus \cdots \oplus \operatorname{Sym}^{2p-4-i-j} E & \text{if } i+j \geq p-2. \end{cases}$$

Observe that all the non-projective indecomposable summands of a tensor product of two irreducible kG-modules are irreducible.

The irreducible kG-modules are given by $\operatorname{Sym}^0 E, \operatorname{Sym}^1 E, \dots, \operatorname{Sym}^{p-1} E$. They are all non-projective apart from $\operatorname{Sym}^{p-1} E$.

Theorem (Stable Clebsch-Gordan rule)

Let $0 \le i \le j \le p-2$. Writing S for the tensor product $\operatorname{Sym}^i E \otimes \operatorname{Sym}^j E$ we have the decomposition

$$S \stackrel{p}{\cong} \begin{cases} \operatorname{Sym}^{j-i} E \oplus \operatorname{Sym}^{j-i+2} E \oplus \cdots \oplus \operatorname{Sym}^{i+j} E & \text{if } i+j < p-2, \\ \operatorname{Sym}^{j-i} E \oplus \operatorname{Sym}^{j-i+2} E \oplus \cdots \oplus \operatorname{Sym}^{2p-4-i-j} E & \text{if } i+j \geq p-2. \end{cases}$$

Observe that all the non-projective indecomposable summands of a tensor product of two irreducible kG-modules are irreducible.

Example: Sym³ $E \otimes \text{Sym}^3 E \stackrel{p}{\cong} \text{Sym}^0 E \oplus \text{Sym}^2 E \oplus \text{Sym}^4 E \oplus \text{Sym}^6 E$ for p > 11.

The irreducible kG-modules are given by $\operatorname{Sym}^0 E, \operatorname{Sym}^1 E, \dots, \operatorname{Sym}^{p-1} E$. They are all non-projective apart from $\operatorname{Sym}^{p-1} E$.

Theorem (Stable Clebsch-Gordan rule)

Let $0 \le i \le j \le p-2$. Writing S for the tensor product $\operatorname{Sym}^i E \otimes \operatorname{Sym}^j E$ we have the decomposition

$$S \stackrel{p}{\cong} \begin{cases} \operatorname{Sym}^{j-i} E \oplus \operatorname{Sym}^{j-i+2} E \oplus \cdots \oplus \operatorname{Sym}^{i+j} E & \text{if } i+j < p-2, \\ \operatorname{Sym}^{j-i} E \oplus \operatorname{Sym}^{j-i+2} E \oplus \cdots \oplus \operatorname{Sym}^{2p-4-i-j} E & \text{if } i+j \geq p-2. \end{cases}$$

Observe that all the non-projective indecomposable summands of a tensor product of two irreducible kG-modules are irreducible.

Example: $\operatorname{Sym}^3 E \otimes \operatorname{Sym}^3 E \stackrel{p}{\cong} \operatorname{Sym}^0 E \oplus \operatorname{Sym}^2 E \oplus \operatorname{Sym}^4 E \oplus \operatorname{Sym}^6 E$ for $p \geq 11$. If instead p = 5, then $\operatorname{Sym}^3 E \otimes \operatorname{Sym}^3 E \stackrel{p}{\cong} \operatorname{Sym}^0 E$.

Recall that for any kH-module V we define a module ΩV to be the kernel of the surjection $PV \rightarrow V$, where PV is the projective cover of V.

Recall that for any kH-module V we define a module ΩV to be the kernel of the surjection PV woheadrightarrow V, where PV is the projective cover of V. We refer to Ω as the Heller operator.

Recall that for any kH-module V we define a module ΩV to be the kernel of the surjection PV woheadrightarrow V, where PV is the projective cover of V. We refer to Ω as the Heller operator.

Lemma

Let k denote the trivial kH-module. For any kH-module V we have $\Omega k \otimes V \stackrel{p}{\cong} \Omega V$.

Recall that for any kH-module V we define a module ΩV to be the kernel of the surjection PV woheadrightarrow V, where PV is the projective cover of V. We refer to Ω as the Heller operator.

Lemma

Let k denote the trivial kH-module. For any kH-module V we have $\Omega k \otimes V \overset{p}{\cong} \Omega V$.

It can be shown that the non-projective indecomposable kG-modules are labelled by pairs (I,m) with $0 \le I \le p-2$ and $m \in \mathbb{Z}/(p-1)\mathbb{Z}$. The pair (I,m) corresponds to the module Ω^m (Sym I E).

Recall that for any kH-module V we define a module ΩV to be the kernel of the surjection PV woheadrightarrow V, where PV is the projective cover of V. We refer to Ω as the Heller operator.

Lemma

Let k denote the trivial kH-module. For any kH-module V we have $\Omega k \otimes V \stackrel{p}{\cong} \Omega V$.

It can be shown that the non-projective indecomposable kG-modules are labelled by pairs (I,m) with $0 \le I \le p-2$ and $m \in \mathbb{Z}/(p-1)\mathbb{Z}$. The pair (I,m) corresponds to the module Ω^m (Sym^I E).

We can tensor two such modules by adding powers of Ω and using the Clebsch–Gordan rule.

Recall that for any kH-module V we define a module ΩV to be the kernel of the surjection PV woheadrightarrow V, where PV is the projective cover of V. We refer to Ω as the Heller operator.

Lemma

Let k denote the trivial kH-module. For any kH-module V we have $\Omega k \otimes V \stackrel{p}{\cong} \Omega V$.

It can be shown that the non-projective indecomposable kG-modules are labelled by pairs (I, m) with $0 \le I \le p-2$ and $m \in \mathbb{Z}/(p-1)\mathbb{Z}$. The pair (I, m) corresponds to the module Ω^m (Sym^I E).

We can tensor two such modules by adding powers of Ω and using the Clebsch–Gordan rule.

Example: Let p = 5. We compute

$$\Omega\left(\operatorname{\mathsf{Sym}}^3E\right)\otimes\Omega^2\left(\operatorname{\mathsf{Sym}}^3E\right)\overset{p}{\cong}\Omega^3\left(\operatorname{\mathsf{Sym}}^0E\right).$$

Write R(G) for the representation ring of G, an abelian group generated freely by the isomorphism classes of the indecomposable kG-modules equipped with multiplication given by tensoring.

Write R(G) for the representation ring of G, an abelian group generated freely by the isomorphism classes of the indecomposable kG-modules equipped with multiplication given by tensoring.

The isomorphism classes of the (virtual) projective modules form an ideal I. Let $\overline{R(G)} = R(G)/I$.

Write R(G) for the representation ring of G, an abelian group generated freely by the isomorphism classes of the indecomposable kG-modules equipped with multiplication given by tensoring.

The isomorphism classes of the (virtual) projective modules form an ideal I. Let $\overline{R(G)} = R(G)/I$. We write \overline{V} for the element of $\overline{R(G)}$ corresponding to a kG-module V.

Write R(G) for the representation ring of G, an abelian group generated freely by the isomorphism classes of the indecomposable kG-modules equipped with multiplication given by tensoring.

The isomorphism classes of the (virtual) projective modules form an ideal I. Let $\overline{R(G)} = R(G)/I$. We write \overline{V} for the element of $\overline{R(G)}$ corresponding to a kG-module V.

Theorem (T, 2022)

The map $\Psi \colon \mathbb{Z}[\zeta_p + \zeta_p^{-1}][X,Y]/(X^{p-1} - 1,Y^2 - 1) \to \overline{R(G)}$ given by $\zeta_p^2 + \zeta_p^{-2} \mapsto \overline{\operatorname{Sym}^2 E} - \overline{k}, \ X \mapsto \overline{\Omega k}$ and $Y \mapsto \overline{\operatorname{Sym}^{p-2} E}$ is an isomorphism.

Write R(G) for the representation ring of G, an abelian group generated freely by the isomorphism classes of the indecomposable kG-modules equipped with multiplication given by tensoring.

The isomorphism classes of the (virtual) projective modules form an ideal I. Let $\overline{R(G)} = R(G)/I$. We write \overline{V} for the element of $\overline{R(G)}$ corresponding to a kG-module V.

Theorem (T, 2022)

The map $\Psi \colon \underline{\mathbb{Z}[\zeta_p + \zeta_p^{-1}][X,Y]/(X^{p-1} - 1,Y^2 - 1)} \to \overline{R(G)}$ given by $\zeta_p^2 + \zeta_p^{-2} \mapsto \overline{\operatorname{Sym}^2 E} - \overline{k}, \ X \mapsto \overline{\Omega k}$ and $Y \mapsto \overline{\operatorname{Sym}^{p-2} E}$ is an isomorphism.

The subring R_l of $\overline{R(G)}$ consisting of the (virtual) semisimple modules corresponds under Ψ to $\mathbb{Z}[\zeta_p + \zeta_p^{-1}][Y]/(Y^2 - 1)$.

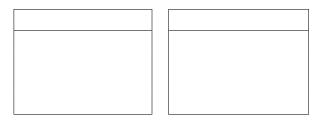
Write R(G) for the representation ring of G, an abelian group generated freely by the isomorphism classes of the indecomposable kG-modules equipped with multiplication given by tensoring.

The isomorphism classes of the (virtual) projective modules form an ideal I. Let $\overline{R(G)} = R(G)/I$. We write \overline{V} for the element of $\overline{R(G)}$ corresponding to a kG-module V.

Theorem (T, 2022)

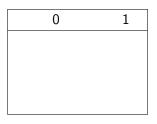
The map $\Psi \colon \underline{\mathbb{Z}[\zeta_p + \zeta_p^{-1}][X,Y]/(X^{p-1} - 1,Y^2 - 1)} \to \overline{R(G)}$ given by $\zeta_p^2 + \zeta_p^{-2} \mapsto \overline{\operatorname{Sym}^2 E} - \overline{k}, \ X \mapsto \overline{\Omega k}$ and $Y \mapsto \overline{\operatorname{Sym}^{p-2} E}$ is an isomorphism.

The subring R_I of $\overline{R(G)}$ consisting of the (virtual) semisimple modules corresponds under Ψ to $\mathbb{Z}[\zeta_p + \zeta_p^{-1}][Y]/(Y^2 - 1)$. A further subring generated by even symmetric powers of E (up to p-3) corresponds to $\mathbb{Z}[\zeta_p + \zeta_p^{-1}]$.



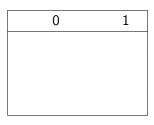
Let us construct two $(p-1) \times (p-1)/2$ tables (for p=5).

<i>h</i> \ <i>c</i> 3	0	1	
3			
2			
1			
0			



Let us construct two $(p-1)\times (p-1)/2$ tables (for p=5). Label rows by $h\in \mathbb{Z}/(p-1)\mathbb{Z}$ and columns by $0\leq c\leq (p-3)/2$.

3 $\Omega^3 k \Omega^3 (\operatorname{Sym}^2 E)$ 2 $\Omega^2 k \Omega^2 (\operatorname{Sym}^2 E)$	$h \setminus c$
	3
	2
1 $\Omega k \Omega \left(\operatorname{Sym}^2 E \right)$	1
0 $k ext{Sym}^2 E$	0



Let us construct two $(p-1)\times (p-1)/2$ tables (for p=5). Label rows by $h\in \mathbb{Z}/(p-1)\mathbb{Z}$ and columns by $0\leq c\leq (p-3)/2$. We fill the first table with $\Omega^h\left(\operatorname{Sym}^{2c}E\right)$

$h \backslash c$	0	1
3	$\Omega^3 k$	$\Omega^3 \left(\operatorname{Sym}^2 E \right)$
2	$\Omega^2 k$	$\Omega^2 \left(\operatorname{Sym}^2 E \right)$
1	Ωk	$\Omega\left(\operatorname{Sym}^2E\right)$
0	k	Sym ² E

0	1
$\Omega^3 \left(\operatorname{Sym}^3 E \right)$	$\Omega^3 E$
$\Omega^2 \left(\text{Sym}^3 E \right)$	$\Omega^2 E$
Ω (Sym ³ E)	ΩE
Sym ³ E	Ε

Let us construct two $(p-1)\times (p-1)/2$ tables (for p=5). Label rows by $h\in \mathbb{Z}/(p-1)\mathbb{Z}$ and columns by $0\le c\le (p-3)/2$. We fill the first table with $\Omega^h\left(\operatorname{Sym}^{2c}E\right)$ and the second one with $\Omega^h\left(\operatorname{Sym}^{p-2-2c}E\right)$.

$h \backslash c$	0	1
3	$\Omega^3 k$	$\Omega^3 \left(\operatorname{Sym}^2 E \right)$
2	$\Omega^2 k$	$\Omega^2 \left(\operatorname{Sym}^2 E \right)$
1	Ωk	$\Omega\left(\operatorname{Sym}^2E\right)$
0	k	Sym ² E

0	1
$\Omega^3 \left(\text{Sym}^3 E \right)$	$\Omega^3 E$
$\Omega^2 \left(\text{Sym}^3 E \right)$	$\Omega^2 E$
Ω (Sym ³ E)	ΩE
Sym ³ E	Ε

Let us construct two $(p-1)\times (p-1)/2$ tables (for p=5). Label rows by $h\in \mathbb{Z}/(p-1)\mathbb{Z}$ and columns by $0\le c\le (p-3)/2$. We fill the first table with $\Omega^h\left(\operatorname{Sym}^{2c}E\right)$ and the second one with $\Omega^h\left(\operatorname{Sym}^{p-2-2c}E\right)$. Then multiplication by X, respectively, Y corresponds to going up, respectively, changing a table.

$h \backslash c$	0	1
3	$\Omega^3 k$	$\Omega^3 \left(\operatorname{Sym}^2 E \right)$
2	$\Omega^2 k$	$\Omega^2 \left(\operatorname{Sym}^2 E \right)$
1	Ωk	$\Omega\left(\operatorname{Sym}^2E\right)$
0	k	Sym ² E

0	1
$\Omega^3 \left(\operatorname{Sym}^3 E \right)$	$\Omega^3 E$
$\Omega^2 \left(\operatorname{Sym}^3 E \right)$	$\Omega^2 E$
$\Omega \left(\operatorname{Sym}^3 E \right)$	ΩE
Sym³ E	Ε

Let us construct two $(p-1)\times (p-1)/2$ tables (for p=5). Label rows by $h\in \mathbb{Z}/(p-1)\mathbb{Z}$ and columns by $0\le c\le (p-3)/2$. We fill the first table with $\Omega^h\left(\operatorname{Sym}^{2c}E\right)$ and the second one with $\Omega^h\left(\operatorname{Sym}^{p-2-2c}E\right)$. Then multiplication by X, respectively, Y corresponds to going up, respectively, changing a table.

Example: $\Omega\left(\operatorname{Sym}^3 E\right) \otimes \Omega^2\left(\operatorname{Sym}^3 E\right) \stackrel{p}{\cong} \Omega^3\left(\operatorname{Sym}^0 E\right)$ can be written using Ψ as $XYX^2Y = X^3$.

$h \backslash c$	0	1
3	$\Omega^3 k$	$\Omega^3 \left(\operatorname{Sym}^2 E \right)$
2	$\Omega^2 k$	$\Omega^2 \left(\operatorname{Sym}^2 E \right)$
1	Ωk	$\Omega\left(\operatorname{Sym}^2E\right)$
0	k	Sym ² E

0	1
$\Omega^3 \left(\operatorname{Sym}^3 E \right)$	$\Omega^3 E$
$\Omega^2 \left(\operatorname{Sym}^3 E \right)$	$\Omega^2 E$
$\Omega \left(\operatorname{Sym}^3 E \right)$	ΩE
Sym ³ E	Ε

Let us construct two $(p-1)\times (p-1)/2$ tables (for p=5). Label rows by $h\in \mathbb{Z}/(p-1)\mathbb{Z}$ and columns by $0\le c\le (p-3)/2$. We fill the first table with $\Omega^h\left(\operatorname{Sym}^{2c}E\right)$ and the second one with $\Omega^h\left(\operatorname{Sym}^{p-2-2c}E\right)$. Then multiplication by X, respectively, Y corresponds to going up, respectively, changing a table.

Example: $\Omega\left(\operatorname{Sym}^3 E\right) \otimes \Omega^2\left(\operatorname{Sym}^3 E\right) \stackrel{p}{\cong} \Omega^3\left(\operatorname{Sym}^0 E\right)$ can be written using Ψ as $XYX^2Y = X^3$. Alternatively, using the table, this is $k \otimes k$ with switching tables twice and going up three times.

Outline

- Schur functors and modular plethysms
- 2 Representation theory of $SL_2(\mathbb{F}_p)$ in characteristic p
- 3 Computation of modular plethysms
- 4 Endotrivial modules and Schur functors

By restricting the inverse of the isomorphism

$$\begin{split} \Psi \colon \mathbb{Z}[\zeta_p + \zeta_p^{-1}][X,Y]/(X^{p-1}-1,Y^2-1) &\to \overline{R(G)} \text{ one obtains} \\ \Psi_1 \colon R_I &\to \mathbb{Z}[\zeta_p + \zeta_p^{-1}][Y]/(Y^2-1). \end{split}$$

By restricting the inverse of the isomorphism

 $\Psi \colon \mathbb{Z}[\zeta_p + \zeta_p^{-1}][X,Y]/(X^{p-1} - 1,Y^2 - 1) \to \overline{R(G)} \text{ one obtains}$ $\Psi_1 \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}][Y]/(Y^2 - 1). \text{ Letting } Y = -1 \text{ we get a surjective ring homomorphism } \Theta \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}].$

By restricting the inverse of the isomorphism

$$\Psi \colon \mathbb{Z}[\zeta_p + \zeta_p^{-1}][X, Y]/(X^{p-1} - 1, Y^2 - 1) \to \overline{R(G)} \text{ one obtains}$$

$$\Psi_1: R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}][Y]/(Y^2 - 1)$$
. Letting $Y = -1$ we get a surjective ring homomorphism $\Theta: R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}]$.

We have
$$\Theta(\operatorname{Sym}^{l} E) = \zeta_{p}^{-l} + \zeta_{p}^{-l+2} + \cdots + \zeta_{p}^{l}$$
.

By restricting the inverse of the isomorphism

$$\begin{array}{l} \Psi\colon \mathbb{Z}[\zeta_p+\zeta_p^{-1}][X,Y]/(X^{p-1}-1,Y^2-1)\to \overline{R(G)} \text{ one obtains} \\ \Psi_1\colon R_I\to \mathbb{Z}[\zeta_p+\zeta_p^{-1}][Y]/(Y^2-1). \text{ Letting } Y=-1 \text{ we get a surjective} \\ \text{ring homomorphism } \Theta\colon R_I\to \mathbb{Z}[\zeta_p+\zeta_p^{-1}]. \end{array}$$

We have
$$\Theta(\operatorname{Sym}^{l} E) = \zeta_{p}^{-l} + \zeta_{p}^{-l+2} + \cdots + \zeta_{p}^{l}$$
.

Proposition

 Θ is a homomorphism of p- λ -rings.

By restricting the inverse of the isomorphism

$$\Psi \colon \mathbb{Z}[\zeta_p + \zeta_p^{-1}][X, Y]/(X^{p-1} - 1, Y^2 - 1) \to \overline{R(G)} \text{ one obtains}$$

$$\Psi_1 \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}][Y]/(Y^2 - 1). \text{ Letting } Y = -1 \text{ we get a surjective}$$

ring homomorphism $\Theta \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}].$

We have
$$\Theta(\operatorname{Sym}^{l} E) = \zeta_{p}^{-l} + \zeta_{p}^{-l+2} + \cdots + \zeta_{p}^{l}$$
.

Proposition

 Θ is a homomorphism of p- λ -rings.

p- λ -rings come with operations $\{\nu\}$ labelled by p-small partitions ν .

By restricting the inverse of the isomorphism

$$\Psi \colon \mathbb{Z}[\zeta_p + \zeta_p^{-1}][X,Y]/(X^{p-1} - 1,Y^2 - 1) \to \overline{R(G)} \text{ one obtains}$$

$$\Psi_1 \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}][Y]/(Y^2 - 1). \text{ Letting } Y = -1 \text{ we get a surjective}$$

ring homomorphism $\Theta \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}].$

We have
$$\Theta(\operatorname{Sym}^{l} E) = \zeta_{p}^{-l} + \zeta_{p}^{-l+2} + \cdots + \zeta_{p}^{l}$$
.

Proposition

 Θ is a homomorphism of p- λ -rings.

p- λ -rings come with operations $\{\nu\}$ labelled by p-small partitions ν . For R_I the operations are given by Schur functors. That is, $\{\nu\}$ $\overline{V} = \overline{\nabla^{\nu}V}$.

p- λ -rings

By restricting the inverse of the isomorphism

$$\Psi \colon \mathbb{Z}[\zeta_p + \zeta_p^{-1}][X,Y]/(X^{p-1}-1,Y^2-1) \to \overline{R(G)} \text{ one obtains}$$

$$\Psi_1 \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}][Y]/(Y^2-1). \text{ Letting } Y = -1 \text{ we get a surjective ring homomorphism } \Theta \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}].$$
 We have
$$\Theta(\overline{\operatorname{Sym}^I E}) = \zeta_p^{-I} + \zeta_p^{-I+2} + \dots + \zeta_p^I.$$

Proposition

 Θ is a homomorphism of p- λ -rings.

p- λ -rings come with operations $\{\nu\}$ labelled by p-small partitions ν . For R_I the operations are given by Schur functors. That is, $\{\nu\}$ $\overline{V} = \overline{\nabla^{\nu}V}$. For $\mathbb{Z}[\zeta_p + \zeta_p^{-1}]$ the operations correspond to Schur functions.

p- λ -rings

By restricting the inverse of the isomorphism

$$\Psi \colon \mathbb{Z}[\zeta_p + \zeta_p^{-1}][X,Y]/(X^{p-1}-1,Y^2-1) \to \overline{R(G)}$$
 one obtains $\Psi_1 \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}][Y]/(Y^2-1)$. Letting $Y = -1$ we get a surjective

ring homomorphism $\Theta \colon R_I \to \mathbb{Z}[\zeta_p + \zeta_p^{-1}].$

We have
$$\Theta(\operatorname{Sym}^{l} E) = \zeta_{p}^{-l} + \zeta_{p}^{-l+2} + \cdots + \zeta_{p}^{l}$$
.

Proposition

 Θ is a homomorphism of p- λ -rings.

p- λ -rings come with operations $\{\nu\}$ labelled by p-small partitions ν .

For R_I the operations are given by Schur functors. That is, $\{\nu\}$ $\overline{V} = \overline{\nabla^{\nu}V}$.

For $\mathbb{Z}[\zeta_p + \zeta_p^{-1}]$ the operations correspond to Schur functions.

Example: Let
$$f = \zeta_p^2 + 1 + \zeta_p^{-2}$$
. Then

$$\{(2,1)\}\ f = s_{2,1}(\zeta_p^2, 1, \zeta_p^{-2}) = \zeta_p^4 + 2\zeta_p^2 + 2 + 2\zeta_p^{-2} + \zeta_p^{-4}.$$

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then

$$\Theta(\overline{\nabla^{\nu}\operatorname{Sym}^{l}E}) = s_{\nu}(\zeta_{p}^{-l}, \zeta_{p}^{-l+2}, \dots, \zeta_{p}^{l}).$$

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then

$$\Theta(\overline{\nabla^{\nu}\operatorname{Sym}^{l}E}) = s_{\nu}(\zeta_{p}^{-l}, \zeta_{p}^{-l+2}, \dots, \zeta_{p}^{l}).$$

The only obstacle left is that Θ is not invertible.

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then

$$\Theta(\overline{\nabla^{\nu}\operatorname{Sym}^{l}E}) = s_{\nu}(\zeta_{p}^{-l}, \zeta_{p}^{-l+2}, \dots, \zeta_{p}^{l}).$$

The only obstacle left is that Θ is not invertible. However, it can be shown that one obtains $\nabla^{\nu} \operatorname{Sym}^{l} E$ in the stable category by taking the 'least element' in the preimage of $s_{\nu}(\zeta_{n}^{-l}, \zeta_{n}^{-l+2}, \dots, \zeta_{n}^{l})$.

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then

$$\Theta(\overline{\nabla^{\nu}\operatorname{Sym}^{l}E}) = s_{\nu}(\zeta_{p}^{-l}, \zeta_{p}^{-l+2}, \dots, \zeta_{p}^{l}).$$

The only obstacle left is that Θ is not invertible. However, it can be shown that one obtains $\nabla^{\nu} \operatorname{Sym}^{l} E$ in the stable category by taking the 'least element' in the preimage of $s_{\nu}(\zeta_{p}^{-l}, \zeta_{p}^{-l+2}, \dots, \zeta_{p}^{l})$.

Example: We know that
$$\Theta(\nabla^{(2,1)}\operatorname{Sym}^2 E) = s_{(2,1)}(\zeta_p^{-2}, 1, \zeta_p^2) = \zeta_p^4 + 2\zeta_p^2 + 2 + 2\zeta_p^{-2} + \zeta_p^{-4} = (\zeta_p^4 + \zeta_p^2 + 1 + \zeta_p^{-2} + \zeta_p^{-4}) + (\zeta_p^2 + 1 + \zeta_p^{-2}).$$

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then

$$\Theta(\overline{\nabla^{\nu}\operatorname{Sym}^{l}E}) = s_{\nu}(\zeta_{p}^{-l}, \zeta_{p}^{-l+2}, \dots, \zeta_{p}^{l}).$$

The only obstacle left is that Θ is not invertible. However, it can be shown that one obtains $\nabla^{\nu}\operatorname{Sym}^{l}E$ in the stable category by taking the 'least element' in the preimage of $s_{\nu}(\zeta_{p}^{-l},\zeta_{p}^{-l+2},\ldots,\zeta_{p}^{l})$.

Example: We know that
$$\Theta(\overline{\nabla^{(2,1)}\operatorname{Sym}^2 E}) = s_{(2,1)}(\zeta_p^{-2}, 1, \zeta_p^2) = \zeta_p^4 + 2\zeta_p^2 + 2 + 2\zeta_p^{-2} + \zeta_p^{-4} = (\zeta_p^4 + \zeta_p^2 + 1 + \zeta_p^{-2} + \zeta_p^{-4}) + (\zeta_p^2 + 1 + \zeta_p^{-2}).$$
 If $p > 5$, then $\nabla^{(2,1)}\operatorname{Sym}^2 E \stackrel{p}{\cong} \operatorname{Sym}^4 E \oplus \operatorname{Sym}^2 E.$

101481471717

Corollary

Let ν be a p-small partition and 0 < l < p - 2. Then

$$\Theta(\overline{\nabla^{\nu}\operatorname{Sym}^{l}E}) = s_{\nu}(\zeta_{p}^{-l}, \zeta_{p}^{-l+2}, \dots, \zeta_{p}^{l}).$$

The only obstacle left is that Θ is not invertible. However, it can be shown that one obtains $\nabla^{\nu} \operatorname{Sym}^{\prime} E$ in the stable category by taking the 'least element' in the preimage of $s_{\nu}(\zeta_{p}^{-l}, \zeta_{p}^{-l+2}, \dots, \zeta_{p}^{l})$.

Example: We know that
$$\Theta(\nabla^{(2,1)}\operatorname{Sym}^2 E) = s_{(2,1)}(\zeta_p^{-2}, 1, \zeta_p^2) = \zeta_p^4 + 2\zeta_p^2 + 2 + 2\zeta_p^{-2} + \zeta_p^{-4} = (\zeta_p^4 + \zeta_p^2 + 1 + \zeta_p^{-2} + \zeta_p^{-4}) + (\zeta_p^2 + 1 + \zeta_p^{-2}).$$
If $p > 5$, then $\nabla^{(2,1)}\operatorname{Sym}^2 E \stackrel{P}{\simeq} \operatorname{Sym}^4 E \oplus \operatorname{Sym}^2 E$

If p > 5, then $\nabla^{(2,1)} \operatorname{Sym}^2 E \stackrel{p}{\cong} \operatorname{Sym}^4 E \oplus \operatorname{Sym}^2 E$.

If p = 5, then $\nabla^{(2,1)} \operatorname{Sym}^2 E \stackrel{p}{\cong} \operatorname{Sym}^2 E$.

Fix a partition λ and let $(i,j) \in Y(\lambda)$. The hook length of (i,j) is $\lambda_i + \lambda'_i - i - j + 1$.

Fix a partition λ and let $(i,j) \in Y(\lambda)$. The hook length of (i,j) is $\lambda_i + \lambda'_i - i - j + 1$. The content of (i,j) equals j - i.

Fix a partition λ and let $(i,j) \in Y(\lambda)$. The hook length of (i,j) is $\lambda_i + \lambda_j' - i - j + 1$. The content of (i,j) equals j - i. We denote by \mathcal{H} the multiset of hook lengths of λ , by \mathcal{C} the multiset of all contents and by \mathcal{C}_s the multiset of shifted contents by s (obtained by adding s to all contents).

Fix a partition λ and let $(i,j) \in Y(\lambda)$. The hook length of (i,j) is $\lambda_i + \lambda_j' - i - j + 1$. The content of (i,j) equals j - i. We denote by $\mathcal H$ the multiset of hook lengths of λ , by $\mathcal C$ the multiset of all contents and by $\mathcal C_s$ the multiset of shifted contents by s (obtained by adding s to all contents). Example: Hook lengths, contents and shifted contents by s of the partition (s, 2).

4	3	1
2	1	

0	1	2
-1	0	

3	4	5
2	3	

Fix a partition λ and let $(i,j) \in Y(\lambda)$. The hook length of (i,j) is $\lambda_i + \lambda_j' - i - j + 1$. The content of (i,j) equals j - i. We denote by $\mathcal H$ the multiset of hook lengths of λ , by $\mathcal C$ the multiset of all contents and by $\mathcal C_s$ the multiset of shifted contents by s (obtained by adding s to all contents). Example: Hook lengths, contents and shifted contents by s of the partition (s, 2).

4	3	1
2	1	

0	1	2
-1	0	

3	4	5
2	3	

Theorem (Stanley's Hook Content Formula)

Let λ be a partition, I a non-negative integer and q a variable. Then

$$s_\lambda(q^{-l},q^{-l+2},\ldots,q^l) = rac{\prod_{c\in\mathcal{C}_{l+1}}(q^c-q^{-c})}{\prod_{h\in\mathcal{H}}(q^h-q^{-h})}.$$

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then we can write

$$\Theta\left(\overline{\nabla^{\nu}\operatorname{Sym}^{l}E}\right) = \frac{\prod_{c \in \mathcal{C}_{l+1}}(\zeta_{p}^{c} - \zeta_{p}^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_{p}^{h} - \zeta_{p}^{-h})}.$$

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then we can write

$$\Theta\left(\overline{\nabla^{\nu}\operatorname{Sym}^{I}E}\right) = \frac{\prod_{c \in \mathcal{C}_{I+1}}(\zeta_{p}^{c} - \zeta_{p}^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_{p}^{h} - \zeta_{p}^{-h})}.$$

Example: Let us compute $\nabla^{(3,2)}\operatorname{Sym}^2 E$. Recall that $\mathcal{H}=\{1,1,2,3,4\}$ and $\mathcal{C}_3=\{2,3,3,4,5\}$.

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then we can write

$$\Theta\left(\overline{\nabla^{\nu}\operatorname{Sym}' E}\right) = \frac{\prod_{c \in \mathcal{C}_{l+1}}(\zeta_{p}^{c} - \zeta_{p}^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_{p}^{h} - \zeta_{p}^{-h})}.$$

Example: Let us compute $\nabla^{(3,2)}\operatorname{Sym}^2 E$. Recall that $\mathcal{H}=\{1,1,2,3,4\}$ and $\mathcal{C}_3=\{2,3,3,4,5\}$. $\Theta\left(\overline{\nabla^{(3,2)}\operatorname{Sym}^2 E}\right)=\frac{\prod_{c\in\mathcal{C}_3}(\zeta_p^c-\zeta_p^{-c})}{\prod_{h\in\mathcal{H}}(\zeta_p^h-\zeta_p^{-h})}$

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then we can write

$$\Theta\left(\overline{\nabla^{\nu}\operatorname{Sym}^{l}E}\right) = \frac{\prod_{c \in \mathcal{C}_{l+1}}(\zeta_{p}^{c} - \zeta_{p}^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_{p}^{h} - \zeta_{p}^{-h})}.$$

Example: Let us compute $\nabla^{(3,2)}\operatorname{Sym}^2 E$. Recall that $\mathcal{H} = \{1,1,2,3,4\}$ and $\mathcal{C}_3 = \{2,3,3,4,5\}$. $\Theta\left(\overline{\nabla^{(3,2)}\operatorname{Sym}^2 E}\right) = \frac{\prod_{c \in \mathcal{C}_3}(\zeta_p^c - \zeta_p^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_p^h - \zeta_p^{-h})}$

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then we can write

$$\Theta\left(\overline{\nabla^{\nu}\operatorname{Sym}' E}\right) = \frac{\prod_{c \in \mathcal{C}_{l+1}}(\zeta_{p}^{c} - \zeta_{p}^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_{p}^{h} - \zeta_{p}^{-h})}.$$

Example: Let us compute $\nabla^{(3,2)} \operatorname{Sym}^2 E$. Recall that $\mathcal{H} = \{1,1,2,3,4\}$ and $\mathcal{C}_3 = \{2,3,3,4,5\}$. $\Theta\left(\overline{\nabla^{(3,2)}\operatorname{Sym}^2 E}\right) = \frac{\prod_{c \in \mathcal{C}_3}(\zeta_p^c - \zeta_p^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_p^h - \zeta_p^{-h})} = \frac{\zeta_p^5 - \zeta_p^{-5}}{\zeta_p - \zeta_p^{-1}} \frac{\zeta_p^3 - \zeta_p^{-3}}{\zeta_p - \zeta_p^{-1}} = \zeta_p^6 + 2\zeta_p^4 + 3\zeta_p^2 + 3 + 3\zeta_p^{-2} + 2\zeta_p^{-4} + \zeta_p^{-6}.$

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then we can write

$$\Theta\left(\overline{\nabla^{\nu}\operatorname{Sym}^{I}E}\right) = \frac{\prod_{c \in \mathcal{C}_{I+1}}(\zeta_{p}^{c} - \zeta_{p}^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_{p}^{h} - \zeta_{p}^{-h})}.$$

Example: Let us compute $\nabla^{(3,2)} \operatorname{Sym}^2 E$. Recall that $\mathcal{H} = \{1,1,2,3,4\}$ and $\mathcal{C}_3 = \{2,3,3,4,5\}$. $\Theta\left(\overline{\nabla^{(3,2)}\operatorname{Sym}^2 E}\right) = \frac{\prod_{c \in \mathcal{C}_3}(\zeta_p^c - \zeta_p^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_p^h - \zeta_p^{-h})} = \frac{\zeta_p^5 - \zeta_p^{-5}}{\zeta_p - \zeta_p^{-1}} \frac{\zeta_p^3 - \zeta_p^{-3}}{\zeta_p - \zeta_p^{-1}} = \zeta_p^6 + 2\zeta_p^4 + 3\zeta_p^2 + 3 + 3\zeta_p^{-2} + 2\zeta_p^{-4} + \zeta_p^{-6}.$ If p > 7 we can conclude that $\nabla^{(3,2)}\operatorname{Sym}^2 E \stackrel{p}{\cong} \operatorname{Sym}^6 E \oplus \operatorname{Sym}^4 E \oplus \operatorname{Sym}^2 E.$

Corollary

Let ν be a p-small partition and $0 \le l \le p-2$. Then we can write

$$\Theta\left(\overline{\nabla^{\nu}\operatorname{Sym}^{I}E}\right) = \frac{\prod_{c \in \mathcal{C}_{I+1}}(\zeta_{p}^{c} - \zeta_{p}^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_{p}^{h} - \zeta_{p}^{-h})}.$$

Example: Let us compute $\nabla^{(3,2)} \operatorname{Sym}^2 E$. Recall that $\mathcal{H} = \{1,1,2,3,4\}$ and $\mathcal{C}_3 = \{2,3,3,4,5\}$. $\Theta\left(\overline{\nabla^{(3,2)}\operatorname{Sym}^2 E}\right) = \frac{\prod_{c \in \mathcal{C}_3}(\zeta_p^c - \zeta_p^{-c})}{\prod_{h \in \mathcal{H}}(\zeta_p^h - \zeta_p^{-h})} = \frac{\zeta_p^5 - \zeta_p^{-5}}{\zeta_p - \zeta_p^{-1}} \frac{\zeta_p^3 - \zeta_p^{-3}}{\zeta_p - \zeta_p^{-1}} = \zeta_p^6 + 2\zeta_p^4 + 3\zeta_p^2 + 3 + 3\zeta_p^{-2} + 2\zeta_p^{-4} + \zeta_p^{-6}$. If $\rho > 7$ we can conclude that

 $\nabla^{(3,2)} \operatorname{Sym}^2 E \stackrel{p}{\cong} \operatorname{Sym}^6 E \oplus \operatorname{Sym}^4 E \oplus \operatorname{Sym}^2 E$. If p = 7, then $\nabla^{(3,2)} \operatorname{Sym}^2 E \stackrel{p}{\cong} \operatorname{Sym}^4 E \oplus \operatorname{Sym}^2 E$.

Theorem (T, 2022)

Let $0 \le l \le p-2$ and let ν be a p-small partition. Then $\nabla^{\nu}\operatorname{Sym}^{l}E$ is projective if and only if $\nu_{1} \ge p-l$ or $\ell(\nu) \ge l+2$.

Theorem (T, 2022)

Let $0 \le l \le p-2$ and let ν be a p-small partition. Then $\nabla^{\nu}\operatorname{Sym}^{l}E$ is projective if and only if $\nu_{1} \ge p-l$ or $\ell(\nu) \ge l+2$.

Note that the second inequality $\ell(\nu) \geq l+2$ is equivalent to $\nabla^{\nu}\operatorname{Sym}^{l}E$ being the zero module.

Theorem (T, 2022)

Let $0 \le l \le p-2$ and let ν be a p-small partition. Then $\nabla^{\nu}\operatorname{Sym}^{l}E$ is projective if and only if $\nu_{1} \ge p-l$ or $\ell(\nu) \ge l+2$.

Note that the second inequality $\ell(\nu) \geq l+2$ is equivalent to $\nabla^{\nu}\operatorname{Sym}^{l}E$ being the zero module.

In 2021 Paget and Wildon classified all irreducible plethysms of the natural $\mathbb{C}SL_2(\mathbb{C})$ -module. We can show an analogous result in prime characteristic.

Theorem (T, 2022)

Let $0 \le l \le p-2$ and let ν be a p-small partition. Then $\nabla^{\nu}\operatorname{Sym}^{l}E$ is projective if and only if $\nu_{1} \ge p-l$ or $\ell(\nu) \ge l+2$.

Note that the second inequality $\ell(\nu) \geq l+2$ is equivalent to $\nabla^{\nu}\operatorname{Sym}^{l}E$ being the zero module.

In 2021 Paget and Wildon classified all irreducible plethysms of the natural $\mathbb{C}SL_2(\mathbb{C})$ -module. We can show an analogous result in prime characteristic.

We say that a kG-module is stably-irreducible if it has only one non-projective indecomposable summand which is moreover irreducible.

Theorem (T, 2022)

Let $0 \le l \le p-2$ and let ν be a p-small partition with $\ell(\nu) \le l$ and $\nu_1 \le p-l-2$. Then $\nabla^{\nu}\operatorname{Sym}^{l}E$ is stably-irreducible if and only if (at least) one of the following happens:

- **①** (elementary cases) $\nu = \emptyset$ or $\nu = (1)$,
- ② (row cases) $\nu = (p l 2)$ or l = 1,
- **3** (column cases) $\nu = (1^l)$ or l = p 3,
- (rectangular cases) p=7 and either $\nu=(2,2,2)$ with l=3 or $\nu=(3,3)$ with l=2.

Theorem (T, 2022)

Let $0 \le l \le p-2$ and let ν be a p-small partition with $\ell(\nu) \le l$ and $\nu_1 \le p-l-2$. Then $\nabla^{\nu}\operatorname{Sym}^{l}E$ is stably-irreducible if and only if (at least) one of the following happens:

- (elementary cases) $\nu = \emptyset$ or $\nu = (1)$,
- ② (row cases) $\nu = (p l 2)$ or l = 1,
- **3** (column cases) $\nu = (1^{l})$ or l = p 3,
- (rectangular cases) p=7 and either $\nu=(2,2,2)$ with l=3 or $\nu=(3,3)$ with l=2.

One can drop the two constraints for the p-small partition by adding rows of length p-l-1 and columns of length l+1.

Theorem (T, 2022)

Let $0 \le l \le p-2$ and let ν be a p-small partition with $\ell(\nu) \le l$ and $\nu_1 \le p-l-2$. Then $\nabla^{\nu}\operatorname{Sym}^{l}E$ is stably-irreducible if and only if (at least) one of the following happens:

- (elementary cases) $\nu = \emptyset$ or $\nu = (1)$,
- ② (row cases) $\nu = (p l 2)$ or l = 1,
- **3** (column cases) $\nu = (1^l)$ or l = p 3,
- (rectangular cases) p=7 and either $\nu=(2,2,2)$ with l=3 or $\nu=(3,3)$ with l=2.

One can drop the two constraints for the *p*-small partition by adding rows of length p-l-1 and columns of length l+1. Note that the above list of (ν, l) is closed under the involution $(\nu, l) \mapsto (\nu', p-l-2)$.

Outline

- Schur functors and modular plethysms
- 2 Representation theory of $SL_2(\mathbb{F}_p)$ in characteristic p
- 3 Computation of modular plethysms
- 4 Endotrivial modules and Schur functors

Recall that a kH-module V is endotrivial if there is a kH-module W such that $V \otimes W \stackrel{p}{\cong} k$.

Recall that a kH-module V is endotrivial if there is a kH-module W such that $V \otimes W \stackrel{\cong}{\cong} k$.

Examples: If k denotes the trivial kH-module, then Ωk is endotrivial.

Recall that a kH-module V is endotrivial if there is a kH-module W such that $V \otimes W \stackrel{p}{\cong} k$.

Examples: If k denotes the trivial kH-module, then Ωk is endotrivial. The irreducible kG-module $\operatorname{Sym}^{p-2} E$ is endotrivial since the Clebsch–Gordan rule gives $\operatorname{Sym}^{p-2} E \otimes \operatorname{Sym}^{p-2} E \stackrel{p}{\cong} k$.

Recall that a kH-module V is endotrivial if there is a kH-module W such that $V \otimes W \stackrel{p}{\cong} k$.

Examples: If k denotes the trivial kH-module, then Ωk is endotrivial. The irreducible kG-module $\operatorname{Sym}^{p-2} E$ is endotrivial since the Clebsch–Gordan rule gives $\operatorname{Sym}^{p-2} E \otimes \operatorname{Sym}^{p-2} E \stackrel{p}{\cong} k$.

An important property of endotrivial modules is that a tensor product of an endotrivial module and a non-projective indecomposable module has precisely one non-projective indecomposable summand.

Recall that a kH-module V is endotrivial if there is a kH-module W such that $V \otimes W \stackrel{p}{\cong} k$.

Examples: If k denotes the trivial kH-module, then Ωk is endotrivial. The irreducible kG-module $\operatorname{Sym}^{p-2} E$ is endotrivial since the Clebsch–Gordan rule gives $\operatorname{Sym}^{p-2} E \otimes \operatorname{Sym}^{p-2} E \stackrel{p}{\cong} k$.

An important property of endotrivial modules is that a tensor product of an endotrivial module and a non-projective indecomposable module has precisely one non-projective indecomposable summand.

Example: For any $0 \le i \le p-2$ we have $\operatorname{Sym}^i E \otimes \operatorname{Sym}^{p-2} E \stackrel{p}{\cong} \operatorname{Sym}^{p-2-i} E$.

Proposition (T, 2022)

Let ν be a p-small partition of n, V an endotrivial kH-module and W any kH-module. If d is the dimension of V, then

$$abla^
u(V\otimes W)\stackrel{p}{\cong} \left\{ egin{aligned} V^{\otimes n}\otimes
abla^
u W & ext{if } d\equiv 1 mod p, \ V^{\otimes n}\otimes
abla^
u'W & ext{if } d\equiv -1 mod p. \end{aligned}
ight.$$

Proposition (T, 2022)

Let ν be a p-small partition of n, V an endotrivial kH-module and W any kH-module. If d is the dimension of V, then

$$abla^
u(V\otimes W)\stackrel{p}{\cong} \left\{ egin{aligned} V^{\otimes n}\otimes
abla^
u W & ext{if } d\equiv 1 mod p, \ V^{\otimes n}\otimes
abla^
u'W & ext{if } d\equiv -1 mod p. \end{aligned}
ight.$$

Proposition (T, 2022)

Let ν be a p-small partition of n, V an endotrivial kH-module and W any kH-module. If d is the dimension of V, then

$$abla^
u(V\otimes W)\stackrel{p}{\cong} egin{cases} V^{\otimes n}\otimes
abla^
u W & ext{if } d\equiv 1 mod p, \ V^{\otimes n}\otimes
abla^
u'W & ext{if } d\equiv -1 mod p. \end{cases}$$

Steps of the proof for $d \equiv 1 \mod p$ (throughout n equals the size of ν):

ullet expand $V^{\otimes n}$ using Schur–Weyl duality,

Proposition (T, 2022)

Let ν be a p-small partition of n, V an endotrivial kH-module and W any kH-module. If d is the dimension of V, then

$$abla^
u(V\otimes W)\stackrel{p}{\cong} egin{cases} V^{\otimes n}\otimes
abla^
u W & ext{if } d\equiv 1 mod p, \ V^{\otimes n}\otimes
abla^
u'W & ext{if } d\equiv -1 mod p. \end{cases}$$

- ullet expand $V^{\otimes n}$ using Schur–Weyl duality,
- this *n*-fold tensor product has a unique non-projective summand,

Proposition (T, 2022)

Let ν be a p-small partition of n, V an endotrivial kH-module and W any kH-module. If d is the dimension of V, then

$$abla^
u(V\otimes W)\stackrel{p}{\cong} \left\{ egin{aligned} V^{\otimes n}\otimes
abla^
u W & ext{if } d\equiv 1 mod p, \ V^{\otimes n}\otimes
abla^
u'W & ext{if } d\equiv -1 mod p. \end{aligned}
ight.$$

- ullet expand $V^{\otimes n}$ using Schur–Weyl duality,
- this *n*-fold tensor product has a unique non-projective summand,
- by dimension counting this summand is $Sym^n V$,

Proposition (T, 2022)

Let ν be a p-small partition of n, V an endotrivial kH-module and W any kH-module. If d is the dimension of V, then

$$abla^
u(V\otimes W)\stackrel{p}{\cong} \left\{ egin{aligned} V^{\otimes n}\otimes
abla^
u W & ext{if } d\equiv 1 mod p, \ V^{\otimes n}\otimes
abla^
u'W & ext{if } d\equiv -1 mod p. \end{aligned}
ight.$$

- ullet expand $V^{\otimes n}$ using Schur–Weyl duality,
- this *n*-fold tensor product has a unique non-projective summand,
- by dimension counting this summand is Symⁿ V,
- for any $\lambda \vdash n$ the module $\nabla^{\lambda} V$ is projective unless $\lambda = (n)$,

Proposition (T, 2022)

Let ν be a p-small partition of n, V an endotrivial kH-module and W any kH-module. If d is the dimension of V, then

$$abla^
u(V\otimes W)\stackrel{p}{\cong} \left\{ egin{aligned} V^{\otimes n}\otimes
abla^
u W & ext{if } d\equiv 1 mod p, \ V^{\otimes n}\otimes
abla^
u'W & ext{if } d\equiv -1 mod p. \end{aligned}
ight.$$

- ullet expand $V^{\otimes n}$ using Schur–Weyl duality,
- this *n*-fold tensor product has a unique non-projective summand,
- by dimension counting this summand is $Sym^n V$,
- for any $\lambda \vdash n$ the module $\nabla^{\lambda} V$ is projective unless $\lambda = (n)$,
- expand $\nabla^{\nu}(V \otimes W)$ using the Kronecker coefficients.

Proposition (T, 2022)

Let ν be a p-small partition of n, V an endotrivial kH-module and W any kH-module. If d is the dimension of V, then

$$abla^
u(V\otimes W)\stackrel{p}{\cong} \left\{ egin{aligned} V^{\otimes n}\otimes
abla^
u W & ext{if } d\equiv 1 mod p, \ V^{\otimes n}\otimes
abla^
u'W & ext{if } d\equiv -1 mod p. \end{aligned}
ight.$$

- ullet expand $V^{\otimes n}$ using Schur–Weyl duality,
- this *n*-fold tensor product has a unique non-projective summand,
- by dimension counting this summand is $\bigwedge^n V$,
- for any $\lambda \vdash n$ the module $\nabla^{\lambda} V$ is projective unless $\lambda = (1^n)$,
- expand $\nabla^{\nu}(V \otimes W)$ using the Kronecker coefficients.

Corollary

If W is a kH-module and $\nu \vdash n$ with n < p, then $\nabla^{\nu}(\Omega W) \stackrel{p}{\cong} \Omega^{n}(\nabla^{\nu'} W)$.

Corollary

If W is a kH-module and $\nu \vdash n$ with n < p, then $\nabla^{\nu}(\Omega W) \stackrel{p}{\cong} \Omega^{n}(\nabla^{\nu'} W)$.

This helps generalise the earlier classifications of certain plethysms $\nabla^{\nu}\operatorname{Sym}^{l}E$ by replacing $\operatorname{Sym}^{l}E$ by any indecomposable kG-module.

Corollary

If W is a kH-module and $\nu \vdash n$ with n < p, then $\nabla^{\nu}(\Omega W) \stackrel{p}{\cong} \Omega^{n}(\nabla^{\nu'} W)$.

This helps generalise the earlier classifications of certain plethysms $\nabla^{\nu}\operatorname{Sym}^{l}E$ by replacing $\operatorname{Sym}^{l}E$ by any indecomposable kG-module.

Corollary

For $0 \le l \le p-2$ and $\nu \vdash n$ with n < p we have

$$\nabla^{\nu}\operatorname{Sym}^{p-2-l}E\overset{p}{\cong}\begin{cases} \nabla^{\nu'}\operatorname{Sym}^{l}E & \text{if } n \text{ is even,}\\ \operatorname{Sym}^{p-2}E\otimes\nabla^{\nu'}\operatorname{Sym}^{l}E & \text{if } n \text{ is odd.} \end{cases}$$

Corollary

If W is a kH-module and $\nu \vdash n$ with n < p, then $\nabla^{\nu}(\Omega W) \stackrel{p}{\cong} \Omega^{n}(\nabla^{\nu'} W)$.

This helps generalise the earlier classifications of certain plethysms $\nabla^{\nu}\operatorname{Sym}^{l}E$ by replacing $\operatorname{Sym}^{l}E$ by any indecomposable kG-module.

Corollary

For $0 \le l \le p-2$ and $\nu \vdash n$ with n < p we have

$$\nabla^{\nu}\operatorname{Sym}^{p-2-l}E\overset{p}{\cong}\begin{cases} \nabla^{\nu'}\operatorname{Sym}^{l}E & \text{if } n \text{ is even,}\\ \operatorname{Sym}^{p-2}E\otimes\nabla^{\nu'}\operatorname{Sym}^{l}E & \text{if } n \text{ is odd.} \end{cases}$$

Consequently, the number of the non-projective indecomposable summands of $\nabla^{\nu} \operatorname{Sym}^{l} E$ is invariant under the involution $(\nu, l) \mapsto (\nu', p - l - 2)$.