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Motivation

(1) Let G be a finite group. Choose a suitable p-modular system
(K,O, k) and suppose that p ∤ |G|. The representation theory
of KG and kG are ‘the same’. In particular, they are both
semisimple and their simple modules are parametrised by the
conjugacy classes of G.

(2) Fix a field F of characteristic p. There is a certain subalgebra
(the descent algebra) of the group algebra FSn which is
usually not semisimple. The Ext quivers of the cases p = ∞
and p ∤ |Sn| are identical and the algebras have the same
representation type.
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Notation

N is the set consisting of non-negative integers

F is an algebraically closed field with characteristic p (either
p < ∞ or p = ∞)

[a, b] is the set consisting of integers n where a ≤ n ≤ b

An F-algebra A is assumed to be finite-dimensional unital
associative algebra over F unless stated otherwise.
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Basic Algebra

Definition 1

An F-algebra A is basic if every simple A-module is
one-dimensional.

Any finite-dimensional algebra B is Morita equivalent to a
unique (up to isomorphism) basic algebra A.
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Path Algebra

Let Q be a (finite) quiver, that is, Q is a directed graph with the
vertex set Q0 and arrow set Q1 are both finite. For an arrow
α : v → w ∈ Q1, we write h(α) = v and t(α) = w. A path γ in Q
is a finite sequence of arrows in Q of the form

γ = αℓ · · ·α2α1

γ : ◦ · · ·αℓ

oo ◦α1

oo

such that t(αi) = h(αi+1) for each i ∈ [1, ℓ− 1]. In this case,
t(γ) = t(αℓ), h(γ) = h(α1), and the length of γ is ℓ. The
concatenation γξ of two paths γ and ξ is defined if t(ξ) = h(γ).
For each vertex i ∈ Q0, we write ei for the path of length 0 at the
vertex i.
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Definition 2

Let Q be a quiver. The path algebra FQ is the vector space with a
formal basis consisting of all paths in Q and, for any two paths γ
and ξ, the multiplication is defined as

γ · ξ =

{
γξ if t(ξ) = h(γ),
0 otherwise.

FQ is unital with the unit
∑

i∈Q0
ei

FQ is finite-dimensional if and only if Q has no oriented cycle

FQ is basic

For any m ∈ N, the subspace of FQ spanned by paths of
lengths at least m is an ideal of FQ.
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Example 1

Consider the quiver Q as follows:

•

Then FQ ∼= F[x].



Notation I Basic Algebra Ext Groups Notation II Main Result I Descent Algebra Representation Type Main Result II Ref.

The Ext groups

Let A be an F-algebra, M,N be A-modules and

· · · → P2
d2−→ P1

d1−→ P0 → 0

be the projective resolution of M . Take HomA(−, N), we get

C := 0 → HomA(P0, N)
d∗1−→ HomA(P1, N)

d∗2−→ HomA(P2, N) → · · · .

The nth Ext group ExtnA(M,N) is the nth cohomology group of
C. In particular, Ext0A(M,N) ∼= HomA(M,N).
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The Ext Quiver

Let A be an F-algebra and {Si : i ∈ I} be a complete set of
non-isomorphic simple A-modules. We construct the Ext quiver
QA of A as follows. Let QA be the quiver (directed graph) with
vertices labelled by I. For i, j ∈ I, the number of arrows from i to
j is

(Rad(P(Si))/Rad
2(P(Si)) : Sj) = dimF Ext

1
A(Si, Sj)

where P(Si) is the projective cover of Si and Radn(V ) is the nth
radical of V (for any A-module V ).
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Theorem 3 (Gabriel 1979)

Let A be a basic F-algebra, QA be the Ext quiver of A and J be
the ideal of FQA consisting of all paths of lengths at least one.
Then

A ∼= FQA/I

for some ideal I of FQA such that Jn ⊆ I ⊆ J2 for some integer
n ≥ 2.
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Example 2

If p < ∞, the Ext quiver Q of the group algebra FCp is the single
vertex with the single loop ε.

• ε

Then
FCp

∼= FQ/(εp) ∼= F[x]/(xp).
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Reduction Modulo p

Fix a p-modular system (K,O, k), that is O is a local PID
with the maximal ideal (π), K is the field of fractions of O,
and k is the residue field O/(π) of characteristic p < ∞.

For an O-torsion free O-algebra A, let

Â = K ⊗O A, Ā = k ⊗O A, JA = A ∩ Rad(Â),

and, for an O-free A-module M , let

M̂ = K ⊗O M, M̄ = k ⊗O M

be the Â- and Ā-modules respectively.

For simplicity, we may assume all O-modules are finitely
generated.
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Integral Basic Algebra

Let Q = (Q0, Q1) be a quiver. The quiver algebra OQ is the
O-free algebra with a formal basis consisting of all paths in Q and,
for any two paths γ and ξ, the multiplication is defined as

γ · ξ =

{
γξ if t(ξ) = h(γ),
0 otherwise.

Let JQ be the (two-sided) ideal of OQ consisting of paths of
length at least one.
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The Hypotheses (Z ⇒ Y ⇒ X ⇒ W)

k = O/(π) Ā = k ⊗O A JA = A ∩ Rad(Â) Ŝ = K ⊗O S

Hypothesis W

If M and S are finitely generated O-free A-modules with Ŝ simple
then ExttA(M,S) is O-free for all t ⩾ 0.

Hypothesis X

Suppose that the algebra A has finite rank over O, we have
Rad(A) = πA+ JA and orthogonal idempotent decompositions of
the identity in Ā lift to A.
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Hypothesis Y

There exist a finite quiver Q, an ideal I of OQ, and n ⩾ 2 such
that Jn

Q ⊆ I ⊆ J2
Q and A ∼= OQ/I is O-free of finite rank.

(Equivalently, Â is basic and A, A/JA and A/J2
A are all O-free.)

Hypothesis Z

Hypothesis Y holds, and for all n ⩾ 1, A/Jn
A is O-free.
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If A satisfies Hypothesis Y, there are O-free of rank one
A-modules S1, . . . , Sm where m = |Q0| such that, for all
i = 1, . . . ,m, Ŝi and S̄i are simple Â- and Ā-modules respectively.
Let P̂i and P̄i be their projective covers.
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Theorem 3 (Benson-L. 2024)

(i) Hypothesis Z ⇒ Hypothesis Y ⇒ Hypothesis X ⇒ Hypothesis
W

(ii) If A satisfies Hypothesis W, then, for any finitely generated
O-free A-modules M,S with Ŝ simple and t ⩾ 0, we have
ExttA(M,S) is O-free and

k ⊗O ExttA(M,S) ∼= ExttĀ(M̄, S̄),

K ⊗O ExttA(M,S) ∼= Extt
Â
(M̂, Ŝ).

In particular, dimk Ext
t
Ā(M̄, S̄) = dimK Extt

Â
(M̂, Ŝ).

(iii) If A satisfies Hypothesis Z, then the radical layer multiplicities
of P̂i and P̄i are equal, i.e., for all 1 ⩽ i, j ⩽ m and t ⩾ 0,

(Radt(P̂i)/Rad
t+1(P̂i) : Ŝj) = (Radt(P̄i)/Rad

t+1(P̄i) : S̄j).
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Corollary 4

If A satisfies Hypothesis W, then the Ext quivers of Â and Ā are
identical.
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Descent Algebras of Coxeter Groups

Let (W,S) be a Coxeter system. There is a length function
ℓ : W → N defined as follows: for w ∈ W , let r be the smallest
non-negative integer such that

w = s1 · · · sr

where s1, . . . , sr ∈ S. Define ℓ(w) = r.

ℓ(e) = 0

ℓ(s) = 1 for any s ∈ S

W has a unique longest element
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For each subset J ⊆ S, let

WJ = parabolic subgroup of W generated by J ,

XJ = distinguished left coset representatives consisting

of minimal length elements for W/WJ .

Let O be an integral domain and OW be the group algebra. Define

xJ =
∑

w∈XJ

w ∈ OW.

For subsets J,K ⊆ S, let XJK be the distinguished double coset
representatives of (WJ ,WK) in W .
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Theorem 5 (Solomon 1976)

Let O be an integral domain. Let Γ := {xJ : J ⊆ S} and
DO(W ) = spanOΓ ⊆ OW . Then DO(W ) is a subalgebra of OW
with O-free basis Γ where

xJxK =
∑
L⊆S

aLJKxL

where aLJK is the number of elements w ∈ XJK such that
w−1Jw ∩K = L.

The algebra DO(W ) is known as the Solomon’s descent
algebra.

It is usually neither commutative nor semisimple.
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Theorem 6 (Solomon 1976, Atkinson-van Willigenburg 1997,
Atkinson-Pfeiffer-van Willigenburg 2002)

The algebra D̂ (respectively D̄) is basic.



Notation I Basic Algebra Ext Groups Notation II Main Result I Descent Algebra Representation Type Main Result II Ref.

Theorem 7 (Benson-L. 2024)

The descent algebra D = DO(W ) satisfies Hypothesis W when
p ∤ |W |, and Hypothesis Z when p is sufficiently large. In
particular, the Ext quivers of D̂ and D̄ are identical when p ∤ |W |.
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Example 8 (Type A)
Let Dn = DO(An−1) be the descent algebra of type A. The simple
modules for the descent algebras D̂n and D̄n are parametrised by
partitions and p-regular partitions of n respectively. Their Ext
quivers have previously been computed by Schocker when p = ∞
and Saliola when p ∤ |Sn|.

For example, when n = 5 and p ̸= 2, 5, the Ext quiver of D̂5 or D̄5

is

213 312 41 5 32 221 15

However, when p = 5, the Ext quiver of D̄5 is

213 312 41 5 32 221
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Other examples

Example 9

Let p be an arbitrary prime.

(i) The nil-Coxeter algebra of a finite Coxeter group satisfies
Hypothesis Z.

(ii) The face algebra of hyperplane arrangements in a real space
satisfies Hypothesis Y.

(iii) The 0-Hecke algebra of a finite Coxeter group satisfies
Hypothesis X.
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Trichotomy Theorem

Based on the isomorphism class of its indecomposable modules, a
finite-dimensional algebra is classified into the following three
types: representation finite type, tame type and wild type.

Theorem 4 (Drozd 1980)

An algebra has either representation finite, tame or wild type and
these three types are mutually exclusive.
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Theorem 10 (Schocker 2004)

The descent algebra D̂n has finite representation type if n ⩽ 5, and
wild type otherwise.

Theorem 11 (Erdmann-L. 2024)

The representation type D̄n is depicted as follows:

Schocker’s result can be seen as the asymptotic behaviour of
our result when p → ∞.
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Problem

Suppose that A satisfies Hypothesis Z. Are the representation type
of Â and Ā the same, that is, Â has finite type (respectively, tame
or wild) if and only if Ā has finite type (respectively, tame or wild)?
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