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Throughout e ∈ Z≥2.
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β-sets and Abaci

A β-set B is a subset of Z such that max(B) and min(Z \B) both exist.

Given a β-set B, we defined its charge s(B) := |B ∩ Z≥0| − |Z<0 \B|.

An ∞-abacus is just a (horizontal) number line. We may represent any
subset S of Z by placing a bead at each number which is an element of S.
We call this the ∞-abacus display of S.

We obtain the e-abacus display of S by cutting up its ∞-abacus display
into sections [ie, ie+ e− 1] (i ∈ Z), and putting the section [ie, ie+ e− 1]
directly on top of [(i+ 1)e, (i+ 1)e+ e− 1].
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Example

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
· · · · · ·

B = {5, 4, 2,−1,−3,−4,−5, . . . }

−9 −8 −7 −6 −5 −4 −3 −1 2 4 5−2 0 1 3 6 7 8 9
· · · · · ·

...

...

...

...

...

...

3-abacus display of B
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Partitions

A partition λ = (λ1, λ2, . . . ) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.

If |λ| :=
∑∞

i=1 λi = n, we say that λ is a partition of n.
Also, l(λ) := max{i : λi > 0} and we identify λ with (λ1, . . . , λl(λ)).

Given s ∈ Z, the β-set with charge s associated to λ is

βs(λ) = {λi + s− i : i ∈ Z+}.

Conversely, given a β-set B = {b1 > b2 > · · · }, it is associated to the
unique partition λ = (λ1, λ2, . . . ) where

λi = |{m ∈ Z \B : m < bi}|.

Indeed, βs(B)(λ) = B.
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Example

λ = (4, 4, 3, 1) = (4, 4, 3, 1, 0, 0, 0, . . . ).

β2(λ) = {5, 4, 2,−1,−3,−4,−5, . . . }.

· · · · · ·

β3(λ) = {6, 5, 3, 0,−2,−3,−4, . . . }.

· · · · · ·
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e-Core and e-Weight of a Partition

Let λ = (λ1, λ2, . . . ) be a partition. Take any s ∈ Z, and look the
e-abacus display of βs(λ).

When we slide the beads up their respective runners to fill up the vacant
positions above them, we obtain (the e-abacus display of) the e-core of λ,
denoted coree(λ).

The e-weight of λ, denoted wte(λ), is the total number of times the
beads move one position up their runners to obtain its e-core.

Note that coree(λ) and wte(λ) are independent of the charge s.
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Example

λ = (4, 4, 3, 1).

...

...

...

...

...

...

...

...

...

...

...

...

β2(λ) β2(core3(λ))

core3(λ) = (4, 2, 0, 0, 0, . . . ) = (4, 2), and wt3(λ) = 2.
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`-partitions and the Uglov Map

An `-partition λ = (λ(1), . . . , λ(`)) is an `-tuple of partitions.

An `-charge s = (s1, . . . , s`) is an `-tuple of integers.

The Uglov map Ue sends the pair (λ; s) to the partition Ue(λ; s) which
has an e-abacus display that can be obtained as follows:

Stack the ∞-abacus displays of βsi(λ
(i)) on top of each other, with

the display of βs1(λ
(1)) at the bottom and that of βs`(λ

(`)) at the top.

Cut up this stacked ∞-abaci into sections with positions
[ie, ie+ e− 1] (i ∈ Z), and put the section with positions
[ie, ie+ e− 1] on top of that with positions [(i+1)e, (i+1)e+ e− 1].
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Example

λ = (λ(1), λ(2), λ(3)) = ((1), (1, 1), (2)), s = (s1, s2, s3) = (−1, 2, 1).

βs1 (λ
(1)) = {−1,−3,−4, . . . }

βs2 (λ
(2)) = {2, 1,−1,−2, . . . }

βs3 (λ
(3)) = {2,−1,−2,−3 . . . }

· · · · · ·
· · · · · ·
· · · · · ·

...

...

...

...

...

...

U3(λ; s)

= (4, 4, 3, 1)
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e-Core and e-Weight of a Multipartition

Definition

Let λ be an `-partition and let s be an `-charge. We define the e-core and
the e-weight of (λ; s) to be those of Ue(λ; s); i.e.

coree(λ; s) = coree(Ue(λ; s));

wte(λ; s) = wte(Ue(λ; s)).

Example

core3(((1), (1, 1), (2)); (−1, 2, 1)) = core3(4, 4, 3, 1) = (4, 2)

wt3(((1), (1, 1), (2)); (−1, 2, 1)) = wt3(4, 4, 3, 1) = 2.
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The extended affine Weyl group Ŵ`

Given any nonempty set X, the symmetric group S` on ` letters has a
natural right place permutation action on X` via

(x1, . . . , x`)
σ = (xσ(1), . . . , xσ(`)) (σ ∈ S`).

This right action gives rise to the extended affine Weyl group
Ŵ` = Z` oS`, which has a natural right action on the pairs of
`-partitions and their respective associated `-charges via

(λ; s)tσ = (λσ; (s+ et)σ) (t ∈ Z`, σ ∈ S`).
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(λ; s)tσ = (λσ; (s+ et)σ) (t ∈ Z`, σ ∈ S`).
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Let A`e = {(s1, . . . , s`) ∈ Z` : s1 ≤ s2 ≤ · · · ≤ s` ≤ s1 + e}.

Theorem (Li-T.)

Let λ be an `-partition and s be an `-charge. Let (µ; t) ∈ (λ; s)Ŵ` , the

Ŵ`-orbit of (λ; s).

1 coree(µ; t) = coree(λ; s).

2 wte(µ; t) = min(wte((λ; s)
Ŵ`)) if and only if t ∈ A`e.
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Ariki-Koike Algebras

Let r = (r1, . . . , r`) ∈ Z` and n ∈ Z+.
Let F be a field of arbitrary characteristic, with a primitive e-th root of
unity q ∈ F.

The Ariki-Koike algebra Hn = HF,q,r(n) is the unital F-algebra generated
by {T0, T1, . . . , Tn−1} subject to:

(T0 − qr1)(T0 − qr2) · · · (T0 − qr`) = 0;

(Ti − q)(Ti + 1) = 0 (1 ≤ i ≤ n− 1);

T0T1T0T1 = T1T0T1T0;

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ n− 2);

TiTj = TjTi (|i− j| ≥ 2).

When ` = 1, Hn is the Iwahori-Hecke algebra of type A.
When ` = 2, Hn is the Iwahori-Hecke algebra of type B.
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Blocks of Hn

Hn is cellular (in the sense of Graham-Lehrer), with the Specht modules
(constructed by Dipper-James-Mathas), indexed by the set of `-partitions
of n, as its cell modules.

Note that while Hn depends only on rŴ` and not on r, its Specht
modules depend on the order of the ri’s.

Let λ = (λ(1), . . . , λ(`)) be an `-partition.

The elements of its Young diagram

[λ] = {(a, b, j) ∈ (Z+)3 : j ≤ `, a ≤ l(λ(j)), b ≤ λ(j)a } are called nodes.

The residue of (a, b, j) ∈ [λ] is the residue class of b− a+ rj modulo e,
and (a, b, j) is called an i-node if its residue equals i.
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Theorem (Lyle-Mathas 07)

Let λ and µ be `-partitions of n. The Specht modules Sλ and Sµ lie in
the same block of Hn if and only if λ and µ have the same number of
i-nodes for all i ∈ Z/eZ.

Theorem (James)

(` = 1) The partitions λ and µ have the same number of i-nodes for all
i ∈ Z/eZ if and only if λ and µ have the same e-core and the same
e-weight.
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Weights of Multipartitions

Definition (Fayers 06)

Let λ be an `-partition of n. Define

wtH(λ) =
∑̀
j=1

crj (λ) +
1

2

∑
i∈Z/eZ

(ci(λ)− ci+1(λ))
2,

where ci(λ) is the number of i-nodes in [λ], and rj is the residue class of
rj modulo e.

Theorem (Fayers 06)

wtH(λ) is a block invariant, wtH(λ) ∈ Z≥0, and when ` = 1,
wtH(λ) = wte(λ).
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Theorem (Jacon-Lecouvey 21)

If r ∈ A`e, then

wtH(λ) = wte(Ue(λ; r)) (= wte(λ; r)).

Corollary (Li-T.)

wtH(λ) = min(wte((λ; r)
Ŵ`)).
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Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of Hn:

Fayers 06: Hub ∈ Z`.
Jacon-Lecouvey 21: (e; r)-cores, an `-tuple of core partitions with

an associated `-charge possibly not in the Ŵ`-orbit of r, for r ∈ A`e
only.

Definition

Define coreH(λ) := coree(λ; r).

Theorem (Nakayama’s ‘Conjecture’ for Ariki-Koike algebras (Li-T.))

Two Specht modules Sλ and Sµ (possibly of different algebras) lie in the
same block if and only if coreH(λ) = coreH(µ) and wtH(λ) = wtH(µ).
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Cores and weights of a block

Definition

The core and the weight of a block B of Hn, denoted coreH(B) and
wtH(B), are the common e-core and the common e-weight of the
`-partitions lying in B.
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Action of the affine Weyl group We

Let λ be an `-partition. A removable node of λ is an n ∈ [λ] such that
[λ] \ {n} = [µ] for some `-partition µ; in which case n is also called an
addable node of µ.

For each i ∈ Z/eZ, write si(λ) for the `-partition obtained by removing all
removable i-nodes of λ and adding all addable i-nodes of λ. This induces
a left action of the affine Weyl group We = 〈si | i ∈ Z/eZ〉 on the set of
`-partitions.

This action preserves weights of `-partitions, and
coreH(si(λ)) = si(coreH(λ)). Consequently, we get a left action of We on
the set of blocks of Ariki-Koike algebras.
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Scopes Equivalence

Theorem (Chuang-Rouquier 08)

If every `-partition lying B has no removable i-node (or no addable
i-node), then B and si(B) are Morita equivalent, with Sλ ↔ Ssi(λ) for all
λ lying in B.

We say the blocks B and si(B) are Scopes equivalent when this happens.

We further extend Scopes equivalence to an equivalence relation on the
set of blocks of Ariki-Koike algebras by taking its reflexive and transitive
closure.
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[w : k]-Pairs

Let B be a block of Hn, and let i ∈ Z/eZ.
Assume that si(B) is a block of Hn−k with k > 0.

The blocks B and si(B) are said to form a [w : k]-pair, where
w = wte(B) = wte(si(B)).

Theorem (Scopes 91)

Let ` = 1. Every partition lying in B has no addable i-node if and only if
k ≥ w.
Thus, B and si(B) are Scopes equivalent if and only if they form a
[w : k]-pair with k ≥ w.

Theorem (Li-T.)

If B and si(B) form a [w : k]-pair with k ≥ w, then B and si(B) are
Scopes equivalent.
(The converse is false.)
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Core blocks

Definition (Fayers 07)

A block of an Ariki-Koike algebra is a core block if every multipartition
lying in it is a multicore.

Remark
1 It is not true that every multicore lies in a core block.

2 The weight of a core block can be arbitrarily big if there is no
restriction on e and `.
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Moving vectors of multipartitions

Given an `-partition λ = (λ(1), . . . , λ(`)) with an associated `-charge s,
define its moving vector mve(λ; s) = (m1, . . . ,m`) as follows:

Label the rows of the e-abacus display of Ue(λ; s) by {1, . . . , `} according
to which ∞-abacus displays of λ(i)’s they come from. Then mi is the
number of times a bead from a row labelled by i is moved to the row
immediately above it when the beads in the e-abacus display of Ue(λ; s)
are moved to obtained its e-core.
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Example

λ = (λ(1), λ(2), λ(3)) = ((1), (1, 1), (2)), s = (s1, s2, s3) = (−1, 2, 1).

βs1 (λ
(1)) = {−1,−3,−4, . . . }

βs2 (λ
(2)) = {2, 1,−1,−2, . . . }

βs3 (λ
(3)) = {2,−1,−2,−3 . . . }

· · · · · ·
· · · · · ·
· · · · · ·

...

...

...

...

...

...

U3(λ; s)

= (4, 4, 3, 1)

3

2

1

3

2

1
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βs1 (λ
(1)) = {−1,−3,−4, . . . }

βs2 (λ
(2)) = {2, 1,−1,−2, . . . }

βs3 (λ
(3)) = {2,−1,−2,−3 . . . }

· · · · · ·
· · · · · ·
· · · · · ·

...

...

...

...

...

...

U3(λ; s)

= (4, 4, 3, 1)
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(3)) = {2,−1,−2,−3 . . . }

· · · · · ·
· · · · · ·
· · · · · ·

...

...

...

...

...

...

U3(λ; s)

= (4, 4, 3, 1)
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2

1

3

2

1

Thus mv3(λ; s) = (0, 1, 1).
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Moving vectors of blocks of Ariki-Koike algebras

From now on, we assume that r ∈ A`e.

The moving vector is a block invariant; that is, `-partitions having the
same core and same weight have the same moving vector, so one can talk
about the moving vector mv(B) of a block B of an Ariki-Koike algebra.

Furthermore, the left action of We preserves moving vectors of
`-partitions; in fact, it classifies completely the We-orbits of the blocks of
Ariki-Koike algebras.

This notion of moving vectors is first introduced by Yanbo Li and Xiangyu
Qi to study the representation types of the blocks of Ariki-Koike algebras.
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Moving vectors of core blocks

Theorem (Li-Qi-T.)

Let B be a block of Hn, with mv(B) = (m1, . . . ,m`). Then B is a core
block if and only if mj = 0 for some j.
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Scopes vectors

To a given core block B with mv(B) = (m1, . . . ,m`) and mj = 0, we can
associate a j-Scopes vector Scj(B) ∈ {0, 1, 2, . . . , `− 1}e.
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Example

Let e = ` = 3, r = (3, 3, 6), core3(B) = (8, 6, 4, 2), mv(B) = (1, 0, 1).

1

1

1

1

2

2

2

2

3

3

3

3

...

...

...

...

...

...

β12(core3(B))
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Example

Let e = ` = 3, r = (3, 3, 6), core3(B) = (8, 6, 4, 2), mv(B) = (1, 0, 1).

1

1

1

1

2

2

2

2

3

3

3

3

...

...

...

...

...

...

β12(core3(B))

Thus Sc2(B) = (2, 1, 0).
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Scopes equivalence between core blocks

Theorem (Li-Qi-T.)

Let B and B′ be core blocks of Ariki-Koike algebras (with the same
associated `-charge), with the same moving vector (m1, . . . ,m`) where
mj = 0. If Scj(B) = Scj(B

′), then B and B′ are Scopes equivalent.

Corollary

Let B be a core block of Hn. Then

wte(B) ≤
⌊
`
2

⌋ ⌈
`
2

⌉
e.
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