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[-sets and Abaci

A [(-set B is a subset of Z such that max(B) and min(Z \ B) both exist.
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[-sets and Abaci

A [(-set B is a subset of Z such that max(B) and min(Z \ B) both exist.
Given a (3-set B, we defined its charge 3(B) := |BNZx>o| — |Z<o \ B|.

An oo-abacus is just a (horizontal) number line. We may represent any
subset S of Z by placing a bead at each number which is an element of S.
We call this the co-abacus display of S.
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[-sets and Abaci

A [(-set B is a subset of Z such that max(B) and min(Z \ B) both exist.
Given a f3-set B, we defined its charge 3(B) := |B N Z>o| — |Z<o \ B.

An oo-abacus is just a (horizontal) number line. We may represent any
subset S of Z by placing a bead at each number which is an element of S.
We call this the co-abacus display of S.

We obtain the e-abacus display of S by cutting up its oo-abacus display

into sections [ie,ie +e — 1] (i € Z), and putting the section [ie,ie + e — 1]
directly on top of [(i + 1)e, (i + 1)e +e — 1].
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Example
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Example

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

B=1{54,2-1,—

3-abacus display of B
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.

Also, €()) := max{i: A\; > 0} and we identify A\ with (A1,..., A¢(n))-
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of

non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.
Also, ¢(X) := max{i : A\; > 0} and we identify A with (A1,

Given s € Z, the B-set with charge s associated to A is

BsA)={X\i+s—i:i€ZT}.
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.
Also, €()) := max{i: A\; > 0} and we identify A\ with (A1,..., A¢(n))-

Given s € Z, the B-set with charge s associated to A is

BsA)={X\i+s—i:i€ZT}.

Conversely, given a -set B = {b; > by > ---}, it is associated to the
unique partition A = (A1, A2, ...) where

)\i:\{meZ\B:m<bi}].
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.
Also, €()) := max{i: A\; > 0} and we identify A\ with (A1,..., A¢(n))-

Given s € Z, the B-set with charge s associated to A is

BsA)={X\i+s—i:i€ZT}.

Conversely, given a -set B = {b; > by > ---}, it is associated to the
unique partition A = (A1, A2, ...) where

)\i:‘{mGZ\B:m<bi}’.

Indeed, 3,(5)(A) = B.
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Example

A= (4,4,3,1) = (4,4,3,1,0,0,0,...).
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Example

A= (4,4,3,1) = (4,4,3,1,0,0,0,...).
Bo(A) = {5,4,2,—1,-3,—4,—5,...}.
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Example

A= (4,4,3,1) = (4,4,3,1,0,0,0,...).
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Example

A= (4,4,3,1) = (4,4,3,1,0,0,0,...).
Bo(A) = {5,4,2,—1,-3,—4,—5,...}.

B3(A) = {6,5,3,0,—2,—3,—4,...}.
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Example

A= (4,4,3,1) = (4,4,3,1,0,0,0,...).
Bo(A) = {5,4,2,—1,-3,—4,—5,...}.

B3(\) = {6,5,3,0,—2,—3,—4,... }.
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e-Core and e-Weight of a Partition

Let A = (A1, A2, ...) be a partition. Take any s € Z, and look the
e-abacus display of B5(A).
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e-Core and e-Weight of a Partition

Let A = (A1, \2,...) be a partition. Take any s € Z, and look the
e-abacus display of B5(A).

When we slide the beads up their respective runners to fill up the vacant
positions above them, we obtain (the e-abacus display of) the e-core of ),

denoted core. ().

Kai Meng Tan (NUS) Cores and Core Blocks 15 October 2024 7/31



e-Core and e-Weight of a Partition

Let A = (A1, \2,...) be a partition. Take any s € Z, and look the
e-abacus display of B5(A).

When we slide the beads up their respective runners to fill up the vacant
positions above them, we obtain (the e-abacus display of) the e-core of ),
denoted core. ().

The e-weight of \, denoted wt.()), is the total number of times the
beads move one position up their runners to obtain its e-core.
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e-Core and e-Weight of a Partition

Let A = (A1, \2,...) be a partition. Take any s € Z, and look the
e-abacus display of 55(\).

When we slide the beads up their respective runners to fill up the vacant

positions above them, we obtain (the e-abacus display of) the e-core of ),
denoted core. ().

The e-weight of \, denoted wt.()), is the total number of times the
beads move one position up their runners to obtain its e-core.

Note that core.(\) and wt.(A) are independent of the charge s.
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Example

A= (4,4,3,1).
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Example

A= (4,4,3,1).
o 0 0 o 060
o 0 0 o 060
e - LA N ]
- - e - - e
- @ @ - - @
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Example

A= (4,4,3,1).
o 0 0 o 060
o 0 0 o 060
e - LA N ]
- - e - - e
- @ @ - - @

B2(A)  Pa(corez(X))
corez(A\) = (4,2,0,0,0,...) = (4,2), and wtz(\) = 2.
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(-partitions and the Uglov Map

An (-partition A = (A1),

,A) is an (-tuple of partitions.
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(-partitions and the Uglov Map

An (-partition A = (A1), ..., X9)) is an (-tuple of partitions.

An (-charge s = (s1,...,S¢) is an (-tuple of integers.
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(-partitions and the Uglov Map

An (-partition A = (A1), ..., X9)) is an (-tuple of partitions.
An (-charge s = (s1,...,S¢) is an (-tuple of integers.

The Uglov map U, sends the pair (A;s) to the partition U.(A;s) which
has an e-abacus display that can be obtained as follows:
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(-partitions and the Uglov Map

An (-partition A = (A1), ..., X9)) is an (-tuple of partitions.
An (-charge s = (s1,...,S¢) is an (-tuple of integers.

The Uglov map U, sends the pair (A;s) to the partition U.(A;s) which
has an e-abacus display that can be obtained as follows:

e Stack the oc-abacus displays of ,(A(")) on top of each other with
the display of 5, (A\(1)) at the bottom and that of B,(A(¥)) at the top.
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(-partitions and the Uglov Map

An (-partition A = (A1), ..., X9)) is an (-tuple of partitions.
An (-charge s = (s1,...,S¢) is an (-tuple of integers.

The Uglov map U, sends the pair (A;s) to the partition U.(A;s) which
has an e-abacus display that can be obtained as follows:

e Stack the oc-abacus displays of ,(A(")) on top of each other with
the display of 5, (A\(1)) at the bottom and that of B,(A(¥)) at the top.
@ Cut up this stacked oo-abaci into sections with positions
lie,ie + e — 1] (i € Z), and put the section with positions
[ie,ie + e — 1] on top of that with positions [(i + 1)e, (i + 1)e+e — 1].
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Example

A= ()‘(1)7)‘(2)?)‘(3)) = ((1)7 (171)7 (2))1 5= (31>52353) = (_LQ? 1)'

Bss(AB) ={2,-1,-2,-3...} - ® @ oif - @ - - - -
Bss(A@)={2,1,-1,-2,...} - ® ® ®,- @ @ — — — -
B ={~1,-3,~4,..} - @ - @1- — - — - — ...



Example

A= ()‘(1)7)‘(2)?)‘(3)) = ((1)7 (171)7 (2))1 5= (31>52353) = (_LQ? 1)'

Bss(A®) ={2,-1,-2,-3...} e e e~ - @l- — ..
Bsy M@ ={2,1,-1,-2,...} - ® @ @ - @ @, ~ - — -
551(A(1)):{71773774»"‘} @ - @ - - — = = e



Example

A= ()‘(1)7)\(2)3/\(3)> = ((1)7 (17 1)7 (2))' 5= (81752333) =\~
Bss(A®) ={2,-1,-2,-3...} ;o ° oif - oif - -
By (AP)=1{2,1,-1,-2,...} 1® ® ®,- ® @ — — -
By (AND) = {~1,-8,~4,...} 1@ - @I— - —i1- - -
ceo o
e 0o
Us(\;s) @ - @
- - e
- o0



Example

A= ()‘(1)7)‘(2)7)‘(3)) = ((1)5 (17 1)7 (2))1 5= (31752;33) = (_1a2a 1)'

Bss (A ={2,-1,-2,-3...} 'o ® ® °
ﬁs?()‘(2)):{2717_17_27"'} :. [ ] .:_ [ N )
Be,(AD) = {—1,-3,-4,...} i' ° i

: °

C )

Us(\;s) @ - @
=(4,4,3,1) - - @
- e @
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e-Core and e-Weight of a Multipartition

Definition
Let A be an /-partition and let s be an /-charge. We define the e-core and
the e-weight of (A;s) to be those of U.(A;s); i.e.

corec(A;s) = coree(Ue(A;s8));
wte(A;8) = wte(Ue(A;s)).
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e-Core and e-Weight of a Multipartition

Definition
Let A be an /-partition and let s be an /-charge. We define the e-core and
the e-weight of (A;s) to be those of U.(A;s); i.e.

corec(A;s) = coree(Ue(A;s8));
wte(A;8) = wte(Ue(A;s)).

Example

core3(((1),(1,1),(2)); (—1,2,1)) = cores(4,4,3,1) = (4,2)

WtS(((1)7 (17 1)7 (2)); (_17 2, 1)) = Wt3(47 4,3, 1) =2.
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The extended affine Weyl group W,

Given any nonempty set X, the symmetric group &y on /¢ letters has a
natural right place permutation action on X* via

(xl,...,mg)”=(:ra(1),...,xa(g)) (0663).
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The extended affine Weyl group \/7\\7g

Given any nonempty set X, the symmetric group &y on /¢ letters has a
natural right place permutation action on X* via

(15, 20)7 = (To(1)s -+ > Toe)) (0 € &y).

This right action gives rise to the extended affine Weyl group
W = 7' x &, which has a natural right action on the pairs of
{-partitions and their respective associated /-charges via

(A;8) = (A% (s+et)?) (teZoey).
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Let st = {(s1,
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LetQTﬁz{(sl,...,sz)€Z£:81§52§~--§8g§51+e}.

Theorem (Li-T.)
Let X be an (-partition and s be an (-charge. Let (p;t) € (X; s)wf, the
W -orbit of (A;s).

Q core.(p;t) = corec(A;s).

Q@ wt.(p;t) = min(wte((A; s)‘m)) if and only if t € st’.
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Ariki-Koike Algebras

Let r = (ry,...,7¢) € Z' and n € Z+.
Let F be a field of arbitrary characteristic, with a primitive e-th root of
unity g € F.
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Ariki-Koike Algebras

Let r = (ry,...,7¢) € Z' and n € Z+.
Let F be a field of arbitrary characteristic, with a primitive e-th root of
unity g € F.

The Ariki-Koike algebra #,, = % 4 (n) is the unital F-algebra generated
by {To,T1,...,Tn—1} subject to:

(To—q¢")(To—4q") - (To—q¢") =0;
(T: —¢)(T; +1) =0 (I1<i<n-—1)
ToThToTy = Th Ty Ty To;
LT T =T T (1<i<n-2);
T, = I/, (i - jl > 2).
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Ariki-Koike Algebras

Letr = (r1,...,7¢) € Z* and n € ZF.
Let F be a field of arbitrary characteristic, with a primitive e-th root of
unity g € F.

The Ariki-Koike algebra #,, = % 4 (n) is the unital F-algebra generated
by {To,T1,...,T—1} subject to:

(To—q")(To—q") - (To — ¢"*) = 0;
(Ti —q)(T; +1) =0 (1<i<n-—1);
ToThToTy = Th Ty Ty To;
Tl T = Tia1TiTi (1<i<n-—2)
Ty = T;T; (li—jl=2).

When ¢ = 1, #,, is the lwahori-Hecke algebra of type A.
When ¢ = 2, #,, is the lwahori-Hecke algebra of type B.
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Blocks of 7,

7, is cellular (in the sense of Graham-Lehrer), with the Specht modules

(constructed by Dipper-James-Mathas), indexed by the set of /-partitions
of n, as its cell modules.
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Blocks of %,

7, is cellular (in the sense of Graham-Lehrer), with the Specht modules

(constructed by Dipper-James-Mathas), indexed by the set of /-partitions
of n, as its cell modules.

Note that while %#,, depends only on rW¢ and not on r, its Specht
modules depend on the order of the r;'s.
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Blocks of 7,

7, is cellular (in the sense of Graham-Lehrer), with the Specht modules

(constructed by Dipper-James-Mathas), indexed by the set of /-partitions
of n, as its cell modules.

Note that while %#,, depends only on rW¢ and not on r, its Specht
modules depend on the order of the r;'s.

Let A= (AW, ... X)) be an ¢-partition.
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Blocks of 7,

7, is cellular (in the sense of Graham-Lehrer), with the Specht modules

(constructed by Dipper-James-Mathas), indexed by the set of /-partitions
of n, as its cell modules.

Note that while %#,, depends only on r¥¢ and not on r, its Specht
modules depend on the order of the r;'s.

Let A= (AW, ... X)) be an ¢-partition.

The elements of its Young diagram .
A = {(a,b,5) € (Z*)?:j <€, a< D), b< A1 are called nodes.
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Blocks of 7,

7, is cellular (in the sense of Graham-Lehrer), with the Specht modules
(constructed by Dipper-James-Mathas), indexed by the set of /-partitions
of n, as its cell modules.

Note that while %#,, depends only on r¥¢ and not on r, its Specht
modules depend on the order of the r;'s.

Let A= (AW, ... X)) be an ¢-partition.

The elements of its Young diagram .
A = {(a,b,5) € (Z*)?:j <€, a< D), b< A1 are called nodes.

The residue of (a, b, j) € [A] is the residue class of b — a + 7; modulo e,
and (a,b,j) is called an i-node if its residue equals i.
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Theorem (Lyle-Mathas 07)

Let X and pu be (-partitions of n. The Specht modules S* and S* lie in

the same block of #, if and only if X\ and p have the same number of
i-nodes for all i € 7/ eZ.
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Theorem (Lyle-Mathas 07)

Let X and pu be (-partitions of n. The Specht modules S* and S* lie in
the same block of #, if and only if X\ and p have the same number of
i-nodes for all i € 7/ eZ.

Theorem (James)

(¢ = 1) The partitions A and pi have the same number of i-nodes for all
i € Z/eZ if and only if X and 11 have the same e-core and the same
e-weight.
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Weights of Multipartitions

Definition (Fayers 06)
Let A be an /-partition of n. Define

wge (A Z (A + 5 > (@) = eV
zeZ/eZ

where ¢; () is the number of i-nodes in [A], and 77 is the residue class of
r; modulo e.
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Weights of Multipartitions

Definition (Fayers 06)
Let A be an /-partition of n. Define

wge (A Z (A + 5 > (@) = eV
zeZ/eZ

where ¢; () is the number of i-nodes in [A], and 77 is the residue class of
r; modulo e.

Theorem (Fayers 06)

wtge (A) is a block invariant, wtg (X) € Z>¢, and when ¢ =1,
wtge (A) = wte(A).
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Theorem (Jacon-Lecouvey 21)
Ifr € SZTﬁ, then

thg()\)
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Theorem (Jacon-Lecouvey 21)
Ifr € QTg, then

Wt‘y(()\)
Corollary (Li-T.)

wte(Ue(A;1)) (= wte(A;1)).

wtge (A) = min(wte((A; ) Vo).
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Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of #,:
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Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of #,:

e Fayers 06: Hub € Z¢.
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Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of #,:

e Fayers 06: Hub € Z¢.

e Jacon-Lecouvey 21: (e;r)-cores, an (- tupIe of core partitions with
an associated ¢-charge possibly not in the Wg orbit of r, for r € sz<l€
only.
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Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of #,:

e Fayers 06: Hub € Z¢.

e Jacon-Lecouvey 21: (e;r)-cores, an (- tupIe of core partitions with

an associated ¢-charge possibly not in the Wg orbit of r, for r € sz<l€
only.

Definition
Define corege () := core.(A;r). J
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Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of #,,:

e Fayers 06: Hub € Z¢.

e Jacon-Lecouvey 21: (e;r)-cores, an (- tuple of core partitions with

an associated ¢-charge possibly not in the Wg—OI’bIt of r, forr € sﬁlf
only.

Definition
Define corege () := core.(A;r).

Theorem (Nakayama's ‘Conjecture’ for Ariki-Koike algebras (Li-T.))

Two Specht modules S* and S* (possibly of different algebras) lie in the
same block if and only if corege(A\) = corege (p) and wtge (A) = wtge ().
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Cores and weights of a block

Definition
The core and the weight of a block B of %,,, denoted corex (B) and
wtge (B), are the common e-core and the common e-weight of the

{-partitions lying in B.
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Action of the affine Weyl group W,

Let A be an ¢-partition. A removable node of A is an n € [A] such that
[A] \ {n} = [p] for some l-partition p; in which case n is also called an
addable node of p.
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Action of the affine Weyl group W,

Let A be an ¢-partition. A removable node of A is an n € [A] such that
[A] \ {n} = [p] for some l-partition p; in which case n is also called an
addable node of p.

For each i € Z/eZ, write s;(\) for the (-partition obtained by removing all
removable i-nodes of A and adding all addable i-nodes of A. This induces
a left action of the affine Weyl group W, = (s; | i € Z/eZ) on the set of

{-partitions.
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Action of the affine Weyl group W,

Let A be an ¢-partition. A removable node of A is an n € [A] such that
[A] \ {n} = [p] for some l-partition p; in which case n is also called an
addable node of p.

For each i € Z/eZ, write s;(\) for the (-partition obtained by removing all
removable i-nodes of A and adding all addable i-nodes of A. This induces
a left action of the affine Weyl group W, = (s; | i € Z/eZ) on the set of

{-partitions.

This action preserves weights of ¢-partitions, and
corege (s;(A)) = s;(coreg (X)). Consequently, we get a left action of W, on
the set of blocks of Ariki-Koike algebras.
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Scopes Equivalence

Theorem (Chuang-Rouquier 08)

If every (-partition lying B has no removable i-node (or no addable

i-node), then B and s;(B) are Morita equivalent, with S* < S5 for all
A lying in B.

We say the blocks B and s;(B) are Scopes equivalent when this happens.
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Scopes Equivalence

Theorem (Chuang-Rouquier 08)

If every (-partition lying B has no removable i-node (or no addable
i-node), then B and s;(B) are Morita equivalent, with S* < S5 for all
A lying in B.

We say the blocks B and s;(B) are Scopes equivalent when this happens.

We further extend Scopes equivalence to an equivalence relation on the

set of blocks of Ariki-Koike algebras by taking its reflexive and transitive
closure.
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[w : k]-Pairs

Let B be a block of #,,, and let i € Z/eZ.
Assume that s;(B) is a block of #,,_j with k£ > 0.
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[w : k]-Pairs

Let B be a block of %, and let i € Z/eZ.
Assume that s;(B) is a block of #,,_j with k& > 0.

The blocks B and s;(B) are said to form a [w : k]-pair, where
w = wte(B) = wte(si(B)).
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[w : k]-Pairs

Let B be a block of %, and let i € Z/eZ.
Assume that s;(B) is a block of #,,_j with k& > 0.

The blocks B and s;(B) are said to form a [w : k]-pair, where
w = wte(B) = wte(si(B)).

Theorem (Scopes 91)

Let ¢ = 1. Every partition lying in B has no addable i-node if and only if
k> w.
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[w : k]-Pairs

Let B be a block of %, and let i € Z/eZ.
Assume that s;(B) is a block of #,,_j with k& > 0.

The blocks B and s;(B) are said to form a [w : k]-pair, where
w = wte(B) = wte(si(B)).

Theorem (Scopes 91)

Let ¢ = 1. Every partition lying in B has no addable i-node if and only if
k> w.

Thus, B and s;(B) are Scopes equivalent if and only if they form a
[w : k|-pair with k > w.
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[w : k]-Pairs
Let B be a block of #,,, and let i € Z/eZ.
Assume that s;(B) is a block of #,,_j with k& > 0.

The blocks B and s;(B) are said to form a [w : k]-pair, where
w = wte(B) = wte(si(B)).

Theorem (Scopes 91)

Let ¢ = 1. Every partition lying in B has no addable i-node if and only if
k> w.

Thus, B and s;(B) are Scopes equivalent if and only if they form a

[w : k|-pair with k > w.

Theorem (Li-T.)

If B and s;(B) form a [w : k|-pair with k > w, then B and s;(B) are
Scopes equivalent.

v
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[w : k]-Pairs
Let B be a block of #,,, and let i € Z/eZ.
Assume that s;(B) is a block of #,,_j with k& > 0.

The blocks B and s;(B) are said to form a [w : k]-pair, where
w = wte(B) = wte(si(B)).

Theorem (Scopes 91)

Let ¢ = 1. Every partition lying in B has no addable i-node if and only if
k> w.

Thus, B and s;(B) are Scopes equivalent if and only if they form a

[w : k|-pair with k > w.

Theorem (Li-T.)

If B and s;(B) form a [w : k|-pair with k > w, then B and s;(B) are
Scopes equivalent.
(The converse is false.)

v
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Core blocks

Definition (Fayers 07)

A block of an Ariki-Koike algebra is a core block if every multipartition
lying in it is a multicore.
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Core blocks

Definition (Fayers 07)

A block of an Ariki-Koike algebra is a core block if every multipartition
lying in it is a multicore.

Remark

@ It is not true that every multicore lies in a core block.
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Core blocks

Definition (Fayers 07)

A block of an Ariki-Koike algebra is a core block if every multipartition
lying in it is a multicore.

Remark

@ It is not true that every multicore lies in a core block.

@ The weight of a core block can be arbitrarily big if there is no
restriction on e and /.
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Moving vectors of multipartitions

Given an f-partition A = (A, ... X)) with an associated (-charge s,
define its moving vector mv.(A;s) = (mq,...,my) as follows:
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Moving vectors of multipartitions

Given an f-partition A = (A, ... X)) with an associated (-charge s,
define its moving vector mv.(A;s) = (mq,...,my) as follows:

Label the rows of the e-abacus display of U.(A;s) by {1, ..., ¢} according
to which co-abacus displays of A(9)’s they come from. Then m; is the
number of times a bead from a row labelled by i is moved to the row
immediately above it when the beads in the e-abacus display of U.(A;s)
are moved to obtained its e-core.
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Example

A= ()‘(1)7)‘(2)?/\(3)> = ((1)7 (17 1)7 (2))1 5= (31>52353) ==

Bey(A®)=1{2,-1,-2,-3...} ---'® ® @'~ - @
By (A?)={2,1,-1,-2,...} 1@ ® ®,- @ @
By (AV)={-1,-3,-4,...} 1@ - @1 - - -

°
°
Us(A;s) @ - @
=(4,4,3,1) - - @
°



Example

A= ()‘(1)7)‘(2)7)‘(3)) = ((1)5 (17 1)7 (2))1 5= (31752;33) = (_1a2a 1)'

Bey A3)) = {2,-1,-2,-3...} o0 0 - - @ - - I
Bsy(A®@)={2,1,-1,-2,...} - ® ® @ ,- ® @, — — — -

By AD)) = {—1,-3,—4,...} ® - @i- - -1 — -

oo o0

EEER

U3(>\;S) e - 01

=(4,4,3,1) - - @3

-0 @2

- - -1
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Example

A= (}\(1)’)\(2)’)\(3)) = ((1)7 (171)’ (2))1 5= (31752353) = (_1a2a 1)'

Bey A®)) = {2,-1,-2,-3...} o0 0 - - @ - - -
By (M) ={2,1,-1,-2,...} /@ ® ® - ® @~ - -
Bsy ANy = {—1,-3,—4,...} io - oi— - —i— - —3

XEE

e 0 o>

Us(A;s) @ - @1

= (4,4,3,1) - @3

- 0 @2

- - -1

Thus mvs(A;s) = (0,1,1).
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Moving vectors of blocks of Ariki-Koike algebras

From now on, we assume that r € o’
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Moving vectors of blocks of Ariki-Koike algebras

From now on, we assume that r € o¢.

The moving vector is a block invariant; that is, ¢-partitions having the
same core and same weight have the same moving vector, so one can talk
about the moving vector mv(B) of a block B of an Ariki-Koike algebra.
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Moving vectors of blocks of Ariki-Koike algebras

From now on, we assume that r € s’

The moving vector is a block invariant; that is, ¢-partitions having the
same core and same weight have the same moving vector, so one can talk
about the moving vector mv(B) of a block B of an Ariki-Koike algebra.

Furthermore, the left action of W, preserves moving vectors of
l-partitions; in fact, it classifies completely the W-orbits of the blocks of
Ariki-Koike algebras.
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Moving vectors of blocks of Ariki-Koike algebras

From now on, we assume that r € s’

The moving vector is a block invariant; that is, ¢-partitions having the
same core and same weight have the same moving vector, so one can talk
about the moving vector mv(B) of a block B of an Ariki-Koike algebra.

Furthermore, the left action of W, preserves moving vectors of
l-partitions; in fact, it classifies completely the W-orbits of the blocks of
Ariki-Koike algebras.

This notion of moving vectors is first introduced by Yanbo Li and Xiangyu
Qi to study the representation types of the blocks of Ariki-Koike algebras.
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Moving vectors of core blocks

Theorem (Li-Qi-T.)

Let B be a block of #,,, with mv(B) = (my,...,my). Then B is a core
block if and only if m; = 0 for some j.
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Scopes vectors

To a given core block B with mv(B) = (my,...,my) and m; = 0, we can
associate a j-Scopes vector Sc;(B) € {0,1,2,...,0—1}°.
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Example

Lete=¢=3,r=(3,3,6), cores(B) = (8,6,4,2), mv(B) = (1,0,1).

Bi2(cores(B)) -



Example
Lete=¢=3,r=(3,3,6), core3(B) = (8,6,4,2), mv(B) = (1,0,1).
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Example
Lete=¢=3,r=(3,3,6), cores(B) = (8,6,4,2), mv(B) = (1,0,1).

(5"(5'(&2
| !
\.‘ .‘\.‘1
\.1‘\.1\.13

B:B

P12 (cores(B u’ov
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Example

Lete=¢=3,r=(3,3,6), core3(B) = (8,6,4,2), mv(B) = (1,0,1).

(@@ (@2
o
1900,@®11
(PPN
\._A\!A\!AS

Bi2(cores(B)) (::(5:(::2
e -1

(=1(=)-12
! !
=1 =11
! !
Sl 13

Thus Sca(B) = (2,1,0).
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Scopes equivalence between core blocks

Theorem (Li-Qi-T.)

Let B and B’ be core blocks of Ariki-Koike algebras (with the same
associated (-charge), with the same moving vector (my,...,my) where
m; = 0. If Sc;(B) = Sc;(B’), then B and B’ are Scopes equivalent.

Corollary
Let B be a core block of #,,. Then

wte(B) < |3] [5] e.
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