Cores of Ariki-Koike algebras

N. Jacon
Laboratoire de Mathématiques de Reims, URCA

December 2020

Representation Theory of Symmetric groups

Over a field of characteristic zero:

$$
\operatorname{Irr}\left(\mathfrak{S}_{n}\right) \leftrightarrow \Pi(n)=\text { Partitions of } n
$$

Representation Theory of Symmetric groups

Over a field of characteristic zero:

$$
\operatorname{Irr}\left(\mathfrak{S}_{n}\right) \leftrightarrow \Pi(n)=\text { Partitions of } n
$$

- We have a set of Specht modules S^{λ} (defined over \mathbb{Z}) with $\lambda \in \Pi(n)$.
- For all field $\mathbb{F}, \mathbb{F} S^{\lambda}:=\mathbb{F} \otimes_{\mathbb{Z}} S^{\lambda}$ is a $\mathbb{F} \mathfrak{S}_{n}$-module.
- If $\operatorname{car}(k)=0$,

$$
\operatorname{Irr}\left(\mathbb{F} \mathfrak{S}_{n}\right)=\left\{\mathbb{F} S^{\lambda} \mid \lambda \in \Pi(n)\right\}
$$

In positive charcteristic ? for all λ, we have composition series:

$$
0 \subset M_{1} \subset \ldots \subset \mathbb{F} S^{\lambda}
$$

and well-defined multiplicities $\left[\mathbb{F} S^{\lambda}: M\right]$ for all $M \in \operatorname{Irr}\left(\mathbb{F} \mathscr{S}_{n}\right)$

Problem

Find the decomposition matrix:

$$
D^{\mathbb{F}}=\left(\left[\mathbb{F} S^{\lambda}: M\right]\right)_{\lambda \in \Pi(n), M \in \operatorname{Irr}\left(\mathbb{F} \mathfrak{S}_{n}\right)}
$$

\rightsquigarrow Difficult!even the dimension of the simples are not known in general ...

Labelling of the simples:

$$
\left[\begin{array}{cccccc}
1 & 0 & \cdots & 0 & \cdots & 0 \\
* & \ddots & \ddots & \vdots & & \vdots \\
* & & & 1 & & \vdots \\
* & & & & & 1 \\
* & & & & & * \\
\vdots & & & & & \vdots
\end{array}\right]
$$

The first rows are labeled by the set of p-regular partitions.
No part are repeated p or more times.

Example: $p=3, n=5$

(5)
(4.1)
(3.2)
$(3.1 .1)$
$(2.2 .1)$
$(2.1 .1 .1)$
$(1.1 .1 .1 .1)$

0 \& 1 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 1 \& 0

1 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 1 \& 0 \& 0\end{array}\right)\)

Hecke algebras

Let $q \in \mathbb{F}^{\times}$with a field \mathbb{F}.
Hecke algebra $\mathcal{H}(q, \mathbb{F})$ of the symmetric group:

- Basis: $\left\{T_{w} \mid w \in \mathfrak{S}_{n}\right\}$
- Relations: $T_{s_{i}}^{2}=q T_{1}+(q-1) T_{s_{i}}$ for $s_{i}=(i, i+1)$

$$
T_{w}=T_{s_{i_{1}}} \ldots T_{s_{i_{t}}} \text { pour } w=s_{i_{1}} \ldots s_{i_{t}} \text { with } t \text { minimal. }
$$

q-Deformation of $\mathbb{F} \mathfrak{S}_{n}$. We have quantum analogues:

- of the Specht modules: $\mathbb{F} S_{q}^{\lambda}$,
- of the decomposition matrix

$$
D_{q}^{\mathbb{F}}=\left(\left[\mathbb{F} S_{q}^{\lambda}: M\right]\right)_{\lambda \in \Pi(n), M \in \operatorname{Irr}(\mathcal{H}(q, \mathbb{F}))}
$$

If $q=1 \rightarrow \mathcal{H}(q, \mathbb{F})=\mathbb{F} \mathfrak{S}_{n}$
In general, $D_{\eta_{e}}^{\mathbb{C}}$ is a "good" approximation of $D^{\mathbb{F}_{e}}$
Set

$$
e=\min \left\{i \geqslant 2 \mid 1+q+q^{2}+\ldots+q^{i-1}=0\right\}
$$

\rightarrow The structure of the blocks only depends on e.

Block Theory

Let $e \in \mathbb{N}_{>1}$, for any field.

- Two partitions are in the same block if they are in the same block of the decomposition matrix.
- In other words: let $(\lambda, \mu) \in \Pi(n)^{2}$ then set

$$
\lambda \equiv \mu
$$

if there exists $M \in \operatorname{Irr}(\mathcal{H}(q, \mathbb{F}))$ such that

$$
\left[\mathbb{F} S_{q}^{\lambda}: M\right] \neq 0 \text { and }\left[\mathbb{F} S_{q}^{\mu}: M\right] \neq 0
$$

Being in the same block
\Longleftrightarrow in the same equivalence class for the transitive closure of the relation \equiv.

Example: $p=3, n=5$

(5)
(4.1)
(3.2)
$(3.1 .1)$
$(2.2 .1)$
$(2.1 .1 .1)$
$(1.1 .1 .1 .1)$

0 \& 1 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 1 \& 0

1 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 1 \& 0 \& 0\end{array}\right)\)

Nakayama conjecture

- Two partitions are in the same block if and only if they have the same e-core.
- The e-core of a partition can be computed by removing the e-hooks of the partition.
- It can also be computed using the abacus decomposition.
- Take the abacus of the partition, for example $\lambda=(10,6,4,1,1)$

- Take $e=3$ then:

The 3-core of the partition $(10,6,4,1,1)$ is the partition (1).

- The number of moves of beads in the abacus to get an e-core is the e-weight of the partition.
- The weight measures the complexity of the block.
- Blocks of e-weight 0 are singleton given by e-cores
- Blocks of e-weight 1 are very easy to describe,

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- The decomposition numbers of the blocks of e-weight 2 and 3 are known (Fayers, Lyle-Ruff).

Example: $p=3, n=5$

$$
\begin{gathered}
(5) \\
(4.1) \\
(3.2) \\
(3.1 .1) \\
(2.2 .1) \\
(2.1 .1,1) \\
(1.1 .1 .1 .1)
\end{gathered}\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Example: $p=3, n=5$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
(5) \\
(4.1) \\
(3.2) \\
(3.1 .1) \\
(2.2 .1) \\
\text { 2.1.1,1) }
\end{array}\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), ~(1.1 .1 .1)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& w(4.1)=1
\end{aligned}
$$

Example: $p=3, n=5$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
(5) \\
(4.1) \\
(3.2) \\
(3.1 .1) \\
(2.2 .1) \\
\text { 2.1.1,1) }
\end{array}\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), ~(1.1 .1 .1)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& w(3.1 .1)=0
\end{aligned}
$$

Example: $p=3, n=5$

Example: $p=3, n=5$

$$
\begin{gathered}
(5) \\
(4.1) \\
(3.2) \\
(3.1 .1) \\
(2.2 .1) \\
(2.1 .1,1) \\
(1.1 .1 .1 .1)
\end{gathered}\left(\begin{array}{ccccc}
. & . & . & 0 & . \\
. & . & . & 0 & . \\
. & . & . & 0 & . \\
0 & 0 & 0 & 1 & 0 \\
. & . & . & 0 & . \\
. & . & . & 0 & . \\
. & . & . & 0 & .
\end{array}\right)
$$

(3.1.1) is a 3-core

Example: $p=3, n=5$
(5)
(4.1)
(3.2)
$(3.1 .1)$
$(2.2 .1)$
$(2.1 .1 .1)$
$(1.1 .1 .1 .1)$$\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & . & 0 & 0 & . \\ 0 & . & 0 & 0 & . \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & . \\ . & . & 1 & 0 & . \\ . & . & 0 & 0 & .\end{array}\right)$
(5), (2.2.1) and (2.1.1.1) have (2) as a 3-core (weight 1)

Example: $p=3, n=5$

(5)
(4.1)
(3.2)
$(3.1 .1)$
$(2.2 .1)$
$(2.1 .1 .1)$
$(1.1 .1 .1 .1)$

0 \& 1 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 1 \& 0

1 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 1 \& 0 \& 0\end{array}\right)\)
(4.1), (3.2) and (1.1.1.1.1) have (1.1) as a 3 -core (weight 1)

Ariki-Koike algebras

Let \mathbb{F} a field and $q \in \mathbb{F}^{\times}$. Let $\mathbf{s}=\left(s_{1}, \ldots, s_{l}\right) \in \mathbb{Z}^{\prime}$. The Ariki-Koike algebra $\mathcal{H}^{s}(q, \mathbb{F})$ is presented by

- generators by $T_{0}, T_{1}, \ldots, T_{n-1}$
- Relations:

$$
\begin{aligned}
& \Rightarrow T_{0} T_{1} T_{0} T_{1}=T_{1} T_{0} T_{1} T_{0} \\
& \Rightarrow T_{i} T_{j}=T_{j} T_{i} \text { if }|i-j|>1 \\
& \Rightarrow T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} \\
& \Rightarrow\left(T_{i}-q\right)\left(T_{i}+1\right)=0 \text { if } i>0 \\
& \Rightarrow\left(T_{0}-q^{s_{1}}\right) \ldots\left(T_{0}-q^{s_{l}}\right)=0 .
\end{aligned}
$$

It can be seen as a generalization of the Hecke algebra.

- Includes Hecke algebras of type $A(I=1)$ and $B(I=2)$
- Quotient of the affine Hecke algebra of type A
- Connected with Cherednik algebras, Calogero-Moser cells ...
- Representations of reductive groups, Spetses etc.
- Quantum affine algebras.
- Quiver-Hecke algebras

Representation Theory

If $\mathcal{H}^{s}(q, \mathbb{F})$ is semisimple:

$$
\operatorname{Irr}\left(\mathcal{H}^{s}(q, \mathbb{F})\right) \leftrightarrow \Pi^{\prime}(n)
$$

where

$$
\Pi_{n}^{\prime}=\left\{\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{\prime}\right) \mid \forall i \lambda^{i} \in \Pi\left(n_{i}\right), n_{1}+\ldots+n_{l}=n\right\}
$$

In general:

- We have a set of $\mathcal{H}^{5}(q, \mathbb{F})$-module modules $\mathbb{F} S_{q}^{\lambda}$ with $\lambda \in \Pi^{\prime}(n)$ ("Specht modules")
- In the semisimple case

$$
\operatorname{Irr}\left(\mathcal{H}^{5}(q, \mathbb{F})\right)=\left\{\mathbb{F} S_{q}^{\lambda} \mid \lambda \in \Pi^{\prime}(n)\right\}
$$

In the non semisimple case,

$$
e=\min \left\{i \geqslant 2 \mid 1+q+q^{2}+\ldots+q^{i-1}=0\right\}
$$

- One can assume that s in the set

$$
\mathcal{A}_{e}^{\prime}:=\left\{\left(s_{1}, \ldots, s_{l}\right) \in \mathbb{Z}^{\prime} \mid \forall 1 \leqslant i<j \leqslant I, 0 \leqslant s_{j}-s_{i}<e\right\} .
$$

- we have a decomposition matrix:

$$
D_{s, q}^{\mathbb{F}}=\left(\left[\mathbb{F} S_{q}^{\lambda}: M\right]\right)_{\lambda \in \Pi^{\prime}(n), M \in \operatorname{Irr}(\mathcal{H}(q, \mathbb{F}))}
$$

- If $\mathbb{F}=\mathbb{C}$, explicit combinatorial algorithm for computing it (Ariki, Lascoux-Leclerc-Thibon, Uglov, J)
- $D_{\mathrm{s}, q}^{\mathbb{T}} \rightsquigarrow$ Generalization of p-regular partitions (Kleshchev, FLOTW, Uglov I-partitions)
- What can we say about blocks ?

Weight and blocks

- $\lambda=\left(\lambda^{1}, \ldots, \lambda^{\prime}\right) \in \Pi^{\prime}(n)$,
- Residues of λ : for $I=2, \mathbf{s}=(0,1)$ and $e=3$ the residues of the nodes of the 2-partition $((4),(2,1))$ of 7 are given as follows:

$$
\left(\begin{array}{|l|l|l|l|}
\hline 0 & 1 & 2 & 0 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 0 &
\end{array}\right)
$$

- $c_{i}(\lambda)$ is the number of nodes with residue i in the l-partition.
- $\mathcal{C}_{e, \mathrm{~s}}(\lambda):=\left(c_{0}(\lambda), \ldots, c_{e-1}(\lambda)\right)$.
- Here we have $\mathcal{C}_{e, s}((4),(2,1))=(3,2,2)$.
- (Lyle-Mathas) Two I-partitions λ and μ are in the same block if and only if

$$
\mathcal{C}_{e, s}(\lambda)=\mathcal{C}_{e, s}(\mu)
$$

- For example for $I=2, \mathbf{s}=(0,1)$ and $e=3$, the partition $((4),(2,1))$ is in the same block as

$$
\left(\begin{array}{|l|l|}
\hline 0 & 1 \\
\hline 2 &
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 2 & 0 \\
\hline 0 & & \\
\hline
\end{array}\right)
$$

- Fayers: Notion of weight:

$$
p_{(e, s)}(\lambda)=\sum_{1 \leqslant i \leqslant 1} c_{s_{i}}(\lambda)-\frac{1}{2} \sum_{i \in \mathbb{Z} / e \mathbb{Z}}\left(c_{i}(\lambda)-c_{i-1}(\lambda)\right)^{2} .
$$

- Can we find a similar characterization as in the case of the symmetric group ?

Let $\mathbf{s} \in \mathbb{Z}^{\prime}$. and $\lambda \in \Pi^{\prime}(n)$. Write

$$
\left(L_{s_{1}}, \ldots, L_{s_{l}}\right)
$$

its abacus (e.g. $\mathbf{s}=(0,1,2)$ and $\lambda=((2),(1),(1.1)))$

then we say that λ is a reduced (e, s)-core
(1) $I=1$ and $L_{s_{1}}\left(\lambda^{1}\right) \subset L_{s_{1}+e}\left(\lambda^{1}\right)$,
(2) or $I>1$ and

$$
L_{s_{1}}\left(\lambda^{1}\right) \subset L_{s_{2}}\left(\lambda^{2}\right) \subset \ldots \subset L_{s_{l}}\left(\lambda^{\prime}\right) \subset L_{s_{1}+e}\left(\lambda^{1}\right) .
$$

For $\mathbf{s}=(0,3)$ and $e=4, \lambda=((4,1,1),(1,1))$ is a reduced (e, s)-core.

Proposition (J-Lecouvey, Fayers)

The reduced (e,s)-cores are exactly the multipartitions with e-weight 0.

Is is then easy to see that the associated blocks are simple.

Theorem (J-Lecouvey)

Two I-partitions with the same rank have the same core if and only if they belong to the same block.

Computation of the weight

$$
\left|\begin{array}{llll|llll|lll|llll}
\bullet & 0 & \bullet & \circ & \bullet & \bullet & \circ & \circ \\
\bullet \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \circ & \bullet & \bullet & \circ & 0 & \circ & 0 & 0 & 0 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \circ & \circ & \bullet & \circ & \bullet & \circ & \circ & \circ & \circ \\
\hline
\end{array}\right|
$$

To determine its core, we perform the above procedure and we obtain the following 3 -abacus:

$$
\left|\begin{array}{llll|llll|llll|llll}
\bullet & 0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & 0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & 0 & \bullet & \circ & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right|
$$

the associated (e, s)-core is the 3 -partition $((1), \emptyset, \emptyset)$ together with the multicharge $(0,2,2)$

Example

$$
\begin{aligned}
& \left|\begin{array}{llll|llll|llll|llll}
\bullet & 0 & \circ & \bullet & 0 & \bullet & \circ & 0 \\
\bullet & \circ & \circ & \bullet & \circ & 0 & \bullet & \circ & 0 & 0 \\
\bullet & \circ & \bullet & \circ & 0 & 0 & \circ & 0 & 0 & 0
\end{array}\right| \\
& \left|\begin{array}{llll|llll|llll|llll}
\bullet & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & 0 & \bullet & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\bullet & 0 & \bullet & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right|
\end{aligned}
$$

Take $n=4, e=4$ and $s=(0,1)$.

2-partition	core	block weight
$((4), \emptyset)$	$(\emptyset ;(0,1))$	2
$((3),(1))$	$((\emptyset,(1,1)) ;(0,3))$	1
$(\emptyset, 4)$	$(\emptyset ;(0,1))$	2
$((3,1), \emptyset)$	$(\emptyset ;(0,1))$	2
$((2),(2))$	$((\emptyset, 1.1) ;(0,3))$	1
$((1),(3))$	$(\emptyset ;(0,1))$	2
$((2,2), \emptyset)$	$(((2), \emptyset) ;(0,3))$	1
$((2,1),(1))$	$(((2,1), 1) ;(0,1))$	0
$((2,1,1), \emptyset)$	$(\emptyset ;(0,1))$	2
$((2),(1,1))$	$(((2),(1,1)) ;(0,1))$	0

2-partition	core	block weight
$((1,1),(2))$	$(\emptyset ;(0,1))$	2
$((1),(2,1))$	$(((1),(2,1)) ;(0,1))$	0
$((1,1),(1,1))$	$(((2), \emptyset) ;(0,3))$	1
$(\emptyset,(3,1))$	$(\emptyset ;(0,1))$	2
$((1,1,1),(1))$	$(\emptyset ;(0,1))$	2
$(\emptyset,(2,2))$	$((\emptyset,(1,1)) ;(0,3))$	1
$((1,1,1,1), \emptyset)$	$(\emptyset ;(0,1))$	2
$(\emptyset,(2,1,1))$	$(\emptyset ;(0,1))$	2
$((1),(1,1,1))$	$(((2), \emptyset) ;(0,3))$	1
$(\emptyset,(1,1,1,1))$	$(\emptyset ;(0,1))$	2

- Corresponds to Fayers definition of weight.
- Generalization of the notion of weights.
- Blocks of weight 1 and 2 are known (Fayers, J-Lecouvey)
- The multicharge associated to the I-partition may be different from the one associated with its core !!

Schur elements

- Ariki-Koike algebra $=$ Hecke algebra of the complex reflection group $G(I, 1, n)$
- We have a one parameter Hecke algebra H of type $G(I, p, n)$
- In the semisimple case, each simple H-module \rightsquigarrow Schur element $s_{V}(q) \in \mathbb{C}\left[q, q^{-1}\right]$.
- H is semisimple unless the parameter is a e-root of 1 .

The e-defect (e-weight) of V is denoted by $d_{e}(V)$ and it is the maximal element $k \in \mathbb{N}_{\geqslant 0}$ such $\Phi_{e}(q)^{k}$ divides the Schur element $s_{V}(q)$.

Theorem (Chlouveraki-J)

Under the above hypotheses, assume that $W=G(I, p, n)$, if two simples modules are in the same block then they have the same e-defect.

