From Klyachko models to perfect models

Eric Marberg (HKUST)

joint with Fabrizio Caselli, Zachary Hamaker, Brendan Pawlowski, and Yifeng Zhang

OIST Representation Theory Seminar December 5, 2023

- Preliminaries and conventions
- Klyachko model for $\mathbf{GL}_n(\mathbb{F}_q) \rightsquigarrow$ involution model for S_n
- \bullet Involution models for Coxeter groups \rightsquigarrow Geland models for Iwahori-Hecke algebras
- Digression: another Iwahori-Hecke module on involutions and its surprising decomposition
- \bullet Canonical bases and $W\mbox{-}{\rm graphs}$ indexed by involutions

Model representations

In this talk, we will always work over nice fields/rings so that repns are completely reducible. **Irreducible** (in context of group representations or characters) means irreducible over \mathbb{C} . Write Irr(G) for the set of irreducible characters of a finite group G.

Some more conventions when G is a finite group:

- For a repn $\rho : H \to \mathbf{GL}(V)$ of a subgroup $H \subseteq G$, the **induced repn** is $\mathrm{Ind}_{H}^{G}(\rho)$. As a *G*-module the induced representation can be realized as $\mathbb{C}G \otimes_{\mathbb{C}H} V$.
- A model for G is a set of 1-dimensional representations $\{\lambda_i : H_i \to \mathbb{C}^{\times}\}$ of subgroups.
- The corresponding model representation is ρ = ⊕_i Ind^G_{H_i}(λ_i). These are precisely the G-representations that have bases in which ρ(g) is a monomial matrix ∀g ∈ G.

A **Gelfand model** for *G* is a representation with character $\sum_{\chi \in Irr(G)} \chi$. That is, a Gelfand model for a finite group has a unique irreducible subrepresentation from every isomorphism class. A **Gelfand model** for a semisimple algebra is defined analogously.

Coxeter groups

We are going to talk a lot about (finite) Coxeter systems. A very brief refresher:

- Every Coxeter group W comes with a set of simple generators S that are involutions.
- Call (W, S) a Coxeter system. Its length function ℓ : W → {0,1,2,...} counts the factors in any shortest expression for an element as a product of simple generators.
- Write $s \sim t$ if $s, t \in S$ and $st \neq ts$. (W, S) is irreducible if S has only one \sim -equiv class.

Finite irreducible crystallographic types: A_n , B_n/C_n , D_n , E_6 , E_7 , E_8 , F_4 , G_2

- $W_{A_{n-1}}$ = the symmetric group S_n of permutations of $\{1, 2, 3, ..., n\}$.
- $W_{B_n} = W_{C_n} = n \times n$ monomial matrices with all entries in $\{-1, 0, 1\} \cong C_{S_{2n}}(w_0)$.
- W_{D_n} = subgroup of matrices W_{B_n} with even number of -1 entries.

Finite irreducible **non-crystallographic types**: H_3 , H_4 , $I_2(m)$ for $m \notin \{2, 3, 4, 6\}$

•
$$W_{H_3} = \operatorname{Alt}_5 \times S_2$$
.

• $W_{l_2(m)} =$ dihedral group of order 2m. (Gives $A_1 \times A_1$, A_2 , B_2 , G_2 for m = 2, 3, 4, 6.)

Model for finite general linear and symmetric groups

Klyachko found a surprisingly simple Gelfand model for $\mathbf{GL}_n(\mathbb{F}_q)$. Let $\mathbf{UT}_n(\mathbb{F}_q)$ be the group of $n \times n$ unipotent upper triangular matrices over \mathbb{F}_q Choose a nontrivial homomorphism $\psi : \mathbb{F}_q^+ \to \mathbb{C}^{\times}$. For each $0 \leq 2d \leq n$ let

$$H_d = \left\{ \left[\begin{array}{cc} g & h \\ 0 & x \end{array} \right] : g \in \mathbf{Sp}_d(\mathbb{F}_q), \ x \in \mathbf{UT}_{n-2d}(\mathbb{F}_q) \right\} \ \text{and} \ \lambda_d \left(\left[\begin{array}{cc} g & h \\ 0 & x \end{array} \right] \right) = \psi \left(\sum_{i=1}^{n-2d-1} x_{i,i+1} \right).$$

Theorem (Klyachko, 1984). $\sum_{d=0}^{\lfloor n/2 \rfloor} \operatorname{Ind}_{H_d}^{\mathsf{GL}_n(\mathbb{F}_q)}(\lambda_d) = \sum_{\chi \in \operatorname{Irr}(\mathsf{GL}_n(\mathbb{F}_q))} \chi$.

Inglis–Richardson–Saxl observed that a similar Gelfand model exists for symmetric group S_n . Define $W_{B_n} = C_{S_{2n}}(w_0) = \text{Weyl}(\mathbf{Sp}_n)$ for $w_0 = 2n \cdots 321$. For each $0 \le 2d \le n$ redefine

$$H_d = W_{B_d} \times S_{n-2d}, \quad \lambda_d(w_{2d} \times \sigma_{n-2d}) = \operatorname{sgn}(\sigma_{n-2d}), \quad \tilde{\lambda}_d(w_{2d} \times \sigma_{n-2d}) = \operatorname{sgn}(w_{2d}).$$

Theorem (IRS, 1990). $\sum_{d=0}^{\lfloor n/2 \rfloor} \operatorname{Ind}_{H_d}^{S_n}(\lambda_d) = \sum_{d=0}^{\lfloor n/2 \rfloor} \operatorname{Ind}_{H_d}^{S_n}(\tilde{\lambda}_d) = \sum_{\chi \in \operatorname{Irr}(S_n)} \chi.$

Involution models and generalized involution models

Both $\{\lambda_d : H_d \to \mathbb{C}\}$ and $\{\tilde{\lambda}_d : H_d \to \mathbb{C}\}$ are involution models for S_n : the subgroups H_d are centralizers of the distinct conjugacy classes of involutions $w = w^{-1} \in S_n$, and every irreducible representation of S_n appears once as constituent of induced 1-dim repns.

Natural to ask which finite Coxeter groups W have involution models, since:

- involution model for $W \leftrightarrow$ Gelfand model defined on span of $\{w = w^{-1} \in W\}$,
- \bullet all irreducible representations of finite Coxeter groups are realizable over $\mathbb R,$
- for finite groups G with this property $\sum_{\chi \in \operatorname{Irr}(G)} \chi(1) = |\{g = g^{-1} \in G\}|$,

Theorem (Baddeley, 1990s; Vinroot, 2008). A finite Coxeter group W has an involution model iff all of its irreducible factors are of type A_n , B_n , D_{2n+1} , H_3 , or $I_2(m)$.

Theorem (M.–Caselli, 2014). A finite Coxeter group W has inv. model iff it has a generalized involution model (GIM), and G(r, p, n) has a GIM iff $G(r, p, n) \cong G(r, n)/\mathbb{Z}_p$.

Example: $W_{D_{2n}}$ has no GIM since $W_{D_n} = G(2,2,n) \cong G(2,n)/\mathbb{Z}_2 = W_{B_n}/\{\pm 1\}$ iff n odd.

Gelfand models for the symmetric group

Let $s_i = (i, i + 1) \in S_n$ so that S_n is generated by $S = \{s_1, s_2, \dots, s_{n-1}\}$. IRS involution models \leftrightarrow two Gelfand S_n -repns spanned by $\{M_w : w = w^{-1} \in S_n\}$ with

$$H_s M_w = \begin{cases} M_{sws} & \text{if } s \in \operatorname{Asc}^<(w) \sqcup \operatorname{Des}^<(w) \\ \pm M_w & \text{if } s \in \operatorname{Des}^=(w) \\ \mp M_w & \text{if } s \in \operatorname{Asc}^=(w) \end{cases} \quad \text{for } s \in S, \ w = w^{-1} \in S_n$$

for certain strict/weak ascent/descent sets $Asc^{<}(w)$, $Des^{<}(w)$, $Des^{=}(w)$ and $Asc^{=}(w)$. Extend $w = w^{-1} \in S_n$ fixing $i_1 < \cdots < i_k$ to $\underline{w} = \underline{w}^{-1} \in S_{n+k}$ by $\underline{w}(i_j) := n+j$. Then

$$\begin{aligned} \mathrm{Des}^{=}(w) &= \{s \in S : \underline{w} s \underline{w} = s\},\\ \mathrm{Asc}^{=}(w) &= \{s \in S : \underline{w} s \underline{w} \in \{s_{n+1}, s_{n+2}, \dots, s_{n+k-1}\}\},\\ \mathrm{Des}^{<}(w) &= \{s_i \in S : w(i) > w(i+1)\} - \mathrm{Des}^{=}(w) \sqcup \mathrm{Asc}^{=}(w),\\ \mathrm{Asc}^{<}(w) &= \{s_i \in S : w(i) < w(i+1)\} - \mathrm{Des}^{=}(w) \sqcup \mathrm{Asc}^{=}(w). \end{aligned}$$

Involution models for Iwahori-Hecke algebras

Let (W, S) be a Coxeter system with length function ℓ . If $W = S_n$ then $S = \{s_1, \ldots, s_{n-1}\}$. The corresponding **Iwahori-Hecke algebra** $\mathcal{H}(W) = \mathbb{Q}[x^{\pm 1}]$ -span $\{H_w : w \in W\}$ has

$$H_s H_w = \begin{cases} H_{sw} & \text{if } \ell(sw) > \ell(w) \\ H_{sw} + (x - x^{-1})H_w & \text{if } \ell(sw) < \ell(w) \end{cases} \quad \text{for } w \in W \text{ and } s \in S$$

Theorem (Adin–Postnikov–Roichman, 2008). Let $W = S_n$. For each sign $\alpha \in \{\pm 1\}$, there is a Gelfand $\mathcal{H}(W)$ -module **GMod**^{α} with basis $\{M_w : w = w^{-1} \in W\}$ such that

$$H_{s}M_{w} = \begin{cases} M_{sws} & \text{if } s \in \operatorname{Asc}^{<}(w) \\ M_{sws} + (x - x^{-1})M_{w} & \text{if } s \in \operatorname{Des}^{<}(w) \\ x_{\alpha}M_{w} & \text{if } s \in \operatorname{Des}^{=}(w) \\ -x_{\alpha}^{-1}M_{w} & \text{if } s \in \operatorname{Asc}^{=}(w) \end{cases} \quad \text{for } s \in S, \ w = w^{-1}, \text{ where } x_{\alpha} := \alpha x^{\alpha}.$$

Theorem (M.–Zhang, 2022). Same result holds if W is any finite Coxeter group with an involution model, for certain explicit sets $Asc^{<}(w)$, $Des^{<}(w)$, $Des^{=}(w)$, $Asc^{=}(w)$.

Perfect models

The Gelfand models **GMod**⁺ and **GMod**⁻ are not produced directly from an involution model. Instead, they are features of a more technical construction called a **perfect model**.

Theorem (M.–Zhang, 2022). A finite Coxeter group has an involution model if and only if it has a perfect model.

Any perfect model \mathcal{P} determines a pair of Gelfand $\mathcal{H}(W)$ -models analogous to \mathbf{GMod}^{\pm} . These modules then gives rise to a pair of W-graphs $\Gamma_{\mathcal{P}}^+$ and $\Gamma_{\mathcal{P}}^-$ which will be discussed later. There is a notion of equivalence, with $\mathcal{P}_1 \equiv \mathcal{P}_2 \Rightarrow \operatorname{cells}\left(\Gamma_{\mathcal{P}_1}^+ \sqcup \Gamma_{\mathcal{P}_2}^-\right) \cong \operatorname{cells}\left(\Gamma_{\mathcal{P}_2}^+ \sqcup \Gamma_{\mathcal{P}_2}^-\right)$.

Theorem (M.–Zhang, 2022). Outside rank 3, and ignoring a trivial family of exceptions in type B_n , each irreducible W has at most one equivalence class of perfect models.

To find perfect model \mathcal{P} : choose $J \subseteq S$, "**perfect**" $w = w^{-1} \in W_J$, repn $\sigma : W_J \to \{\pm 1\}$ so

$$\sum_{(J,w,\sigma)\in\mathcal{P}} \operatorname{Ind}_{\mathcal{C}_{W_J}(w)}^{W} \operatorname{Res}_{\mathcal{C}_{W_J}(w)}^{W_J}(\sigma) = \sum_{\chi\in\operatorname{Irr}(W)} \chi \quad \Big[\mathsf{perfect} \Leftrightarrow (wt)^4 = 1 \; \forall t \in T \Big].$$

Bar operators and canonical bases

An antilinear map $L: \mathcal{H}(W) \to \mathcal{H}(W)$ is a \mathbb{Q} -linear map with $L(x^n h) = x^{-n} L(h)$. The bar involution of $\mathcal{H}(W)$ is the antilinear ring automorphism $h \mapsto \overline{h}$ with $\overline{H_w} = (H_{w^{-1}})^{-1}$.

Theorem (Kazhdan–Lusztig, 1979). $\mathcal{H}(W)$ has a unique basis $\{\underline{H}_w\}_{w \in W}$ satisfying

$$\underline{H}_w = \overline{\underline{H}_w} \in H_w + \sum_{\ell(y) < \ell(w)} x^{-1} \mathbb{Z}[x^{-1}] H_y.$$

Assume W is finite & has involution model \rightsquigarrow Gelfand $\mathcal{H}(W)$ -models **GMod**^{\pm} are defined. **Theorem (M.-Zhang, 2022).** GMod[±] has an antilinear bar involution $m \mapsto \overline{m}$ with $\overline{M_w} = M_w$ if $w = w^{-1}$ has $\text{Des}^<(w) = \varnothing$ and $\overline{hm} = \overline{hm}$ for all $h \in \mathcal{H}(W)$. **GMod**[±] has a unique canonical basis $\{\underline{M}_w\}_{w=w^{-1}}$ with (for a certain height map ht)

$$\underline{M}_w = \overline{\underline{M}_w} \in M_w + \sum_{\mathrm{ht}(y) < \mathrm{ht}(w)} x^{-1} \mathbb{Z}[x^{-1}] M_y. \quad \left[\text{e.g., if } W = S_n \text{ then } \mathrm{ht}(w) = \ell(\underline{w}) \right]$$

Elias–Williamson (2013): $\underline{H}_w \in \mathbb{N}[x^{-1}]$ -span $\{H_y : y \in W\}$. No such general positivity for \underline{M}_w .

Involution representations for all Iwahori-Hecke algebras

There is another way of lifting the IRS involution representations to Iwahori-Hecke algebra.

Theorem (Lusztig, 2012). Let (W, S) be any Coxeter system. Choose $\alpha \in \{\pm 1\}$. Then there is an $\mathcal{H}(W)$ -module **Invol**^{α} with basis $\{I_w : w = w^{-1} \in W\}$ such that

$$H_{s}I_{w} = \begin{cases} I_{sws} & \text{if } sw \neq ws > w \\ I_{sws} + (x - x^{-1})I_{w} & \text{if } sw \neq ws < w \\ (x^{\frac{1}{2}} + x^{-\frac{1}{2}})I_{sw} + \alpha I_{w} & \text{if } sw = ws > w \\ \alpha (x^{\frac{1}{2}} - x^{-\frac{1}{2}})I_{sw} + (x - \alpha - x^{-1})I_{w} & \text{if } sw = ws < w \end{cases} \text{ for } s \in S, \ w = w^{-1} \in W;$$

When x = 1 we have $\mathbf{Invol}^{\alpha} \cong \mathbf{Invol}^{-\alpha} \otimes \mathrm{sgn}$ as W-representations.

Theorem (M., 2013). For finite W, these W-representations are Gelfand models if and only if all irreducible factors of (W, S) are of type A_n , H_3 , or $I_2(m)$ with m odd.

Natural to ask what is the irreducible decomposition of $|nvo|^+$ and $|nvo|^-$ in the typical case when they are not Gelfand models. The answer is known for finite W, and sort of amazing.

Unipotent characters, formally

Lusztig attaches to each finite Coxeter group W a set of **unipotent characters** Uch(W).

- We consider $\Phi \in \mathrm{Uch}(W)$ to be a formal object with 3 properties:
 - FakeDeg(Φ) $\in \mathbb{N}[x]$, called the fake degree.
 - $Deg(\Phi) \in \mathbb{R}[x]$, called the **generic degree**.
 - $\operatorname{Eig}(\Phi) \in \mathbb{C}^{\times}$, called the Frobenius eigenvalue.

There is always an inclusion $Irr(W) \subset Uch(W)$, which is equality only in type A.

- $\operatorname{FakeDeg}(\Phi) = 0$ for $\Phi \in \operatorname{Uch}(W) \setminus \operatorname{Irr}(W)$.
- FakeDeg(Φ) is graded multiplicity of $\Phi \in Irr(W)$ in coinvariant algebra of W.
- $\operatorname{Deg}(\Phi)|_{x=1} = \Phi(1)$ and $\operatorname{Eig}(\Phi) = 1$ for all $\Phi \in \operatorname{Irr}(W) \subset \operatorname{Uch}(W)$.

Uch(W) has further a decomposition into disjoint families.

For crystallographic types, Uch(W) is the set of irreducible characters in a finite group of Lie type G not orthogonal to all **Deligne-Lusztig generalized characters** R_{ψ} for $\psi \in Irr(W)$.

Fourier transform on unipotent characters

Each W has an involution $FT \in GL(\{maps Uch(W) \to \mathbb{R}\})$ called its Fourier transform. **FT** is a real matrix with rows/columns indexed by Uch(W). FT = 1 in type A. For (W, S) crystallographic, **FT** is essentially matrix of scalar products $\langle \Phi, R_{\psi} \rangle$.

Distinguished (almost determining) properties of **FT** in all types:

- **FT** sends fake degrees of Uch(W) to (a certain permutation of) its generic degrees.
- **FT** is block diagonal with respect to the division of Uch(W) into families.
- **FT** fixes vector of irreducible multiplicities of **left cell representations** of *W*.
- FT and diagonal matrix of Frobenius eigenvalues determine a "fusion datum."

Even in crystallographic types, Lusztig's original definition of **FT** is heuristic.

In non-crystallographic types, listed properties determine **FT** except on two large families of unipotent characters of size 74 in type H_4 and size $\lfloor \frac{m}{2} \rfloor \lceil \frac{m}{2} \rceil$ in type $I_2(m+2)$.

Matrices for these families were found experimentally by Malle (1994) and Lusztig (1994).

Malle's 74 \times 74 Fourier transform matrix block in type H_4

An amazing decomposition

Recall that we have two $\mathcal{H}(W)$ -modules **Invol**[±] spanned by $\{I_w : w = w^{-1} \in W\}$. When we specialize x = 1 these become *W*-representations. These turn out to be isomorphic.

Building off and summarizing prior work of Casselman, Geck, Kottwitz, and Lusztig:

Theorem (M., 2013). There is a unique function ε : Uch(W) \rightarrow {-1,0,1} such that (a) $\varepsilon(\Phi) = 0$ if and only if $\operatorname{Eig}(\Phi) \notin \mathbb{R}$,

(b) $FT(\varepsilon)$ gives the multiplicities in irreducible decomposition of $Invol^{\pm}$ when x = 1. And when (W, S) is crytallographic, the map ε is exactly the Frobenius-Schur indicator

$$\varepsilon(\Phi) = \frac{1}{|G|} \sum_{g \in G} \Phi(g^2) = \begin{cases} 1 & \text{if } \Phi \text{ is character of a representation defined over } \mathbb{R} \\ 0 & \text{if } \Phi \text{ not real-valued} \\ -1 & \text{otherwise} \end{cases}$$

There are only two unipotent characters Φ with $\varepsilon(\Phi) = -1$, in type H_4 only.

Examples in classical types

Let $ch(Invol^{\pm})$ be the character of the isomorphic *W*-modules $Invol^{+}$ or $Invol^{-}$ when x = 1.

- In type A_n one has $ch(Invol^{\pm}) = \sum_{\lambda \vdash n+1} \chi^{\lambda} = ch(GMod^{\pm})$.
- In type B_n/C_n one has

$$\operatorname{ch}(\mathsf{Invol}^{\pm}) = \sum_{(\lambda,\mu)\vdash n} 2^{d(\lambda,\mu)} \chi^{(\lambda,\mu)}$$

where in the sum it is required that $\mu_i \leq \lambda_i + 1$ and $\lambda_i^{\top} \leq \mu_i^{\top} + 1$ for all *i*. • In type D_n one has

$$\operatorname{ch}(\mathsf{Invol}^{\pm}) = \sum_{\lambda \vdash \frac{n}{2}} \left(\chi^{\{\lambda\},1} + \chi^{\{\lambda\},2} \right) + \sum_{(\lambda,\mu)\vdash n} 2^{\mathsf{e}(\lambda,\mu)} \chi^{\{\lambda,\mu\}}$$

where in second sum $\lambda \subsetneq \mu$ and skew diagram $\mu \setminus \lambda$ must contain no 2 × 2 squares.

Here $d(\lambda, \mu)$ and $e(\lambda, \mu)$ are certain combinatorially defined nonnegative integers. For example: $e(\lambda, \mu)$ is the number of connected components of skew diagram $\mu \setminus \lambda$ minus one.

Pictures of constituents of $ch(Invol^{\pm})$

type B_n/C_n :

 $\mu_i \leq \lambda_i + 1$ and $\lambda_i^{\top} \leq \mu_i^{\top} + 1$ means:

type D_n :

 $\mu \setminus \lambda$ has no 2 × 2 squares means:

 $\lambda =$ grey, μ formed by adding \Box or deleting lacksquare $\lambda =$ grey, μ formed by adding \Box 's

 $\mathcal{H}(W)$ has two 1-dim representations, generated by $\sum_{w \in W} (\alpha x^{\alpha})^{\ell(w)} w \in \mathcal{H}(W)$ for $\alpha = \pm 1$. **Theorem (Lusztig, 2014).** Invol^{α} is generated by $\sum_{w \in W} (\alpha x^{\frac{\alpha}{2}})^{\ell(w)} w$ for $\alpha = \pm 1$.

Theorem (Lusztig, 2012). Each **Invol**^{\pm} has an antilinear **bar involution** $m \mapsto \overline{m}$ with

 $\overline{I_1} = I_1$ and $\overline{hm} = \overline{hm}$ for all $h \in \mathcal{H}(W)$ and $m \in \mathbf{Invol}^{\pm}$.

Also each **Invol**^{\pm} has a unique **canonical basis** $\{\underline{I}_w\}_{w=w^{-1}}$ with

$$\underline{I}_w = \overline{\underline{I}_w} \in I_w + \sum_{\ell(y) < \ell(w)} x^{-\frac{1}{2}} \mathbb{Z}[x^{-\frac{1}{2}}] I_y.$$

As with \underline{M}_w , coefficients of \underline{I}_w in standard basis $\{I_y : y = y^{-1} \in W\}$ not always positive.

Now we have the Kazhdan–Lusztig basis $\{\underline{H}_w\}$ for $\mathcal{H}(W)$, viewed as a left and right module. Also have canonical bases $\{\underline{M}_w\}$ for **GMod**⁺ and **GMod**⁻, and $\{\underline{I}_w\}$ for **Invol**⁺ and **Invol**⁻. What can one do with all of these constructions?

W-graphs in principle

Suppose \mathcal{A} is an R-algebra with generators $\{a_s\}_{s\in S}$ and \mathcal{B} is an \mathcal{A} -module with basis $\{b_v\}_{v\in V}$. Create a directed graph Γ with vertex set V and edges $v \xrightarrow{c(v,w)}{s} w$ whenever

$$a_s b_v = \sum_{w \in V} c(v, w) b_w$$
 and $0 \neq c(v, w) \in R$.

Observations. We can recover \mathcal{B} from Γ , and we can try to decompose \mathcal{B} using Γ :

- A cell in Γ is a strongly connected component.
- Cells don't span literal subrepns of \mathcal{B} , but form vertices in a directed acyclic graph.
- This DAG defines a filtration of \mathcal{B} , in which each cell spans a successive quotient.
- When completely reducible, \mathcal{B} is direct sum of these quotient **cell representations**.

This talk: a *W*-graph means an instance of Γ for $\mathcal{A} = \mathcal{H}(W)$ with generators $\{H_s : s \in S\}$.

In literature, "W-graph" has more specific meaning: refers to Γ 's that determine \mathcal{B} even if we remove all *s*-labels from edges, as long as vertices remember a form of "descent set."

Standard basis W-graphs: boring representations, interesting graphs

Let $\mathcal{A} = \mathcal{H}(W) = \langle H_s : s \in S \rangle$ and suppose $\mathcal{B} = \mathcal{H}(W)$ or GMod^{\pm} or Invol^{\pm} .

Take $\{b_v\}_{v \in V}$ to be the standard bases $\{H_w\}_{w \in W}$ or $\{M_w\}_{w=w^{-1}}$ or $\{I_w\}_{w=w^{-1}}$.

Resulting *W*-graphs Γ are boring for representation theory:

- Every edge is **bidirected**: if $v \to w$ is an edge then so is $w \to v$ (for some labels).
- Every connected component is strongly connected: one cell if $\mathcal{B} = \mathcal{H}(W)$ or **Invol**[±].
- If $\mathcal{B} = \mathbf{GMod}^{\pm}$ then # of cells is number of conjugacy classes of involutions in W.

But interesting for combinatorics:

- Form $\overrightarrow{\Gamma}$ from Γ by retaining only edges $v \rightarrow w$ with $\ell(v) < \ell(w)$ or $\operatorname{ht}(v) < \operatorname{ht}(w)$.
- If $\mathcal{B} = \mathcal{H}(W)$ then $\overrightarrow{\Gamma}$ is left weak order lattice for W.
- If $\mathcal{B} = \mathsf{Invol}^{\pm}$, $W = S_n$ then Γ is weak order on \mathbf{O}_n -orbit closures in FI_n .
- If $\mathcal{B} = \mathbf{GMod}^{\pm}$, $\mathcal{W} = S_{2n}$ then $\Gamma \leftrightarrow \mathbf{weak}$ order on \mathbf{Sp}_n -orbit closures in \mathbf{Fl}_{2n} .

Maximal chains in standard basis W-graphs

Write $\overrightarrow{\Gamma}_{\mathcal{H}}$, $\overrightarrow{\Gamma}_{\text{Invol}}$, $\overrightarrow{\Gamma}_{\text{GMod}}$ for $\overrightarrow{\Gamma}$ when $\mathcal{B} = \mathcal{H}(W)$, Invol^{\pm} , GMod^{\pm} . (Same for either \pm) Maximal chains in $\overrightarrow{\Gamma}_{\mathcal{H}}$ correspond to reduced words for longest element $w_0 \in W$.

- Stanley (1984): if W = S_n then # of maximal chains in Γ_H is # of standard Young tableaux of "staircase shape" (n-1, n-2, n-3,...).
- M.-Pawlowski (2018): in type B_n this is also # of maximal chains in Γ_{Invol} .
- Hamaker-M.-Pawlowski (2015): if $W = S_n$ then # of maximal chains in Γ_{Invol} is # of standard shifted tableaux of shape (n - 1, n - 3, n - 5, ...). This is also the # of maximal chains in component of w_0 in $\overrightarrow{\Gamma}_{\text{GMod}}$ if n is odd and $W = S_{n+1}$.
- Conjecture (M.-Pawlowski, 2018): in type D_n the # maximal chains in Γ_{Invol} is # of standard Young tableaux of shape $(n-1, n-2, \dots, \lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor, \dots, 2, 1)$.

Many stronger results for **fundamental quasisymmetric descent generating functions** of maximal chains: these are always symmetric, Schur positive, Schur *P*-positive, etc.

Canonical basis W-graphs: interesting representations, but mysterious

Now suppose instead $\{b_v\}_{v \in V}$ is canonical basis $\{\underline{H}_w\}_{w \in W}$, $\{\underline{M}_w\}_{w=w^{-1}}$, or $\{\underline{I}_w\}_{w=w^{-1}}$.

• Let Γ_L and Γ_R be resulting W-graphs when $\mathcal{B} = \mathcal{H}(W)$ as left module or right module.

• Write Γ_{GMod}^+ , Γ_{GMod}^- , Γ_{Invol}^+ , Γ_{Invol}^- for Γ when $\mathcal{B} = GMod^+$, $GMod^-$, $Invol^+$, or $Invol^-$. Unlike in standard basis case, no automatic relationship $\Gamma_{GMod}^+ \leftrightarrow \Gamma_{GMod}^-$ or $\Gamma_{Invol}^+ \leftrightarrow \Gamma_{Invol}^-$.

The *W*-graphs Γ_L and Γ_R are the classical **left and right Kazhdan-Lusztig** *W*-graphs. Their cells are often referred to simply as the **left cells** and **right cells** in *W*.

Theorem (Kazhdan–Lusztig, 1979). Assume $W = S_n$.

- Then each left and right cell representation is irreducible.
- In fact, each left/right cell is a molecule (connected by bidirected edges).
- Moreover if w → (P_{RSK}(w), Q_{RSK}(w)) is the RSK correspondence then the left (resp. right) cells are the subsets where Q_{RSK} (resp. P_{RSK}) is constant.

Cells in Gelfand models and involution modules

Some things are known about cells in Γ^+_{GMod} and Γ^-_{GMod} when W has type A_n , B_n , D_{2n+1} :

Theorem (M.–Zhang, 2022). Assume $W = S_n$ is of type A.

- The molecules in Γ^+_{GMod} are classified by $P_{RSK}(w) = Q_{RSK}(w)$ for $w = w^{-1}$.
- The molecules in Γ^-_{GMod} are classified by a novel RSK-like insertion algorithm.

Conjecture. In type A all cells in Γ^{\pm}_{GMod} are molecules and all cell reprise are irreducible.

Neither property is true in other classical types. However:

Theorem (M.–Zhang, 2022). For types B_n and D_{2n+1} , Γ^+_{GMod} and Γ^-_{GMod} are dual: one graph is obtained from the other by reversing all edges. This is not true in type A_n .

Theorem (Lusztig, 2012). If $W = S_n$ then every cell repn in Γ^+_{Invol} is irreducible.

Proof is very indirect, more concrete argument is desired! Nothing seems known about $\Gamma_{\text{Invol}}^{-}$.

Gelfand model *W*-graphs for $W = S_4 = W_{A_3}$

Gelfand model W-graphs for $W = W_{B_3} = W_{C_3}$

Gelfand model W-graphs for $W = W_{D_3}$

Thanks for listening!