From Klyachko models to perfect models

Eric Marberg (HKUST)

joint with Fabrizio Caselli, Zachary Hamaker, Brendan Pawlowski, and Yifeng Zhang

OIST Representation Theory Seminar
December 5, 2023

Outline of the talk

- Preliminaries and conventions
- Klyachko model for $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right) \rightsquigarrow$ involution model for S_{n}
- Involution models for Coxeter groups \rightsquigarrow Geland models for Iwahori-Hecke algebras
- Digression: another Iwahori-Hecke module on involutions and its surprising decomposition
- Canonical bases and W-graphs indexed by involutions

Model representations

In this talk, we will always work over nice fields/rings so that repns are completely reducible. Irreducible (in context of group representations or characters) means irreducible over \mathbb{C}. Write $\operatorname{Irr}(G)$ for the set of irreducible characters of a finite group G.

Some more conventions when G is a finite group:

- For a repn $\rho: H \rightarrow \mathbf{G L}(V)$ of a subgroup $H \subseteq G$, the induced repn is $\operatorname{Ind}_{H}^{G}(\rho)$. As a G-module the induced representation can be realized as $\mathbb{C} G \otimes_{\mathbb{C H}} V$.
- A model for G is a set of 1-dimensional representations $\left\{\lambda_{i}: H_{i} \rightarrow \mathbb{C}^{\times}\right\}$of subgroups.
- The corresponding model representation is $\rho=\bigoplus_{i} \operatorname{Ind}_{H_{i}}^{G}\left(\lambda_{i}\right)$. These are precisely the G-representations that have bases in which $\rho(g)$ is a monomial matrix $\forall g \in G$.

A Gelfand model for G is a representation with character $\sum_{\chi \in \operatorname{Irr}(G)} \chi$. That is, a Gelfand model for a finite group has a unique irreducible subrepresentation from every isomorphism class. A Gelfand model for a semisimple algebra is defined analogously.

Coxeter groups

We are going to talk a lot about (finite) Coxeter systems. A very brief refresher:

- Every Coxeter group W comes with a set of simple generators S that are involutions.
- Call (W, S) a Coxeter system. Its length function $\ell: W \rightarrow\{0,1,2, \ldots\}$ counts the factors in any shortest expression for an element as a product of simple generators.
- Write $s \sim t$ if $s, t \in S$ and $s t \neq t s$. (W, S) is irreducible if S has only one \sim-equiv class.

Finite irreducible crystallographic types: $A_{n}, B_{n} / C_{n}, D_{n}, E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$

- $W_{A_{n-1}}=$ the symmetric group S_{n} of permutations of $\{1,2,3, \ldots, n\}$.
- $W_{B_{n}}=W_{C_{n}}=n \times n$ monomial matrices with all entries in $\{-1,0,1\} \cong C_{S_{2 n}}\left(w_{0}\right)$.
- $W_{D_{n}}=$ subgroup of matrices $W_{B_{n}}$ with even number of -1 entries.

Finite irreducible non-crystallographic types: $H_{3}, H_{4}, I_{2}(m)$ for $m \notin\{2,3,4,6\}$

- $W_{H_{3}}=$ Alt $_{5} \times S_{2}$.
- $W_{l_{2}(m)}=$ dihedral group of order $2 m$. (Gives $A_{1} \times A_{1}, A_{2}, B_{2}, G_{2}$ for $m=2,3,4,6$.)

Model for finite general linear and symmetric groups

Klyachko found a surprisingly simple Gelfand model for $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)$.
Let $\mathbf{U} \mathbf{T}_{n}\left(\mathbb{F}_{q}\right)$ be the group of $n \times n$ unipotent upper triangular matrices over \mathbb{F}_{q} Choose a nontrivial homomorphism $\psi: \mathbb{F}_{q}^{+} \rightarrow \mathbb{C}^{\times}$. For each $0 \leq 2 d \leq n$ let

$$
H_{d}=\left\{\left[\begin{array}{ll}
g & h \\
0 & x
\end{array}\right]: g \in \mathbf{S p}_{d}\left(\mathbb{F}_{q}\right), x \in \mathbf{U T}_{n-2 d}\left(\mathbb{F}_{q}\right)\right\} \text { and } \lambda_{d}\left(\left[\begin{array}{cc}
g & h \\
0 & x
\end{array}\right]\right)=\psi\left(\sum_{i=1}^{n-2 d-1} x_{i, i+1}\right) .
$$

Theorem (Klyachko, 1984). $\sum_{d=0}^{\lfloor n / 2\rfloor} \operatorname{Ind}_{H_{d}}^{\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)}\left(\lambda_{d}\right)=\sum_{\chi \in \operatorname{Irr}\left(\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)\right)} \chi$.
Inglis-Richardson-Saxl observed that a similar Gelfand model exists for symmetric group S_{n}. Define $W_{B_{n}}=C_{S_{2 n}}\left(w_{0}\right)=\operatorname{Weyl}\left(\mathbf{S p}_{n}\right)$ for $w_{0}=2 n \cdots 321$. For each $0 \leq 2 d \leq n$ redefine

$$
H_{d}=W_{B_{d}} \times S_{n-2 d}, \quad \lambda_{d}\left(w_{2 d} \times \sigma_{n-2 d}\right)=\operatorname{sgn}\left(\sigma_{n-2 d}\right), \quad \tilde{\lambda}_{d}\left(w_{2 d} \times \sigma_{n-2 d}\right)=\operatorname{sgn}\left(w_{2 d}\right)
$$

Theorem (IRS, 1990). $\sum_{d=0}^{\lfloor n / 2\rfloor} \operatorname{Ind}_{H_{d}}^{S_{n}}\left(\lambda_{d}\right)=\sum_{d=0}^{\lfloor n / 2\rfloor} \operatorname{Ind}_{H_{d}}^{S_{n}}\left(\tilde{\lambda}_{d}\right)=\sum_{\chi \in \operatorname{Irr}\left(S_{n}\right)} \chi$.

Involution models and generalized involution models

Both $\left\{\lambda_{d}: H_{d} \rightarrow \mathbb{C}\right\}$ and $\left\{\tilde{\lambda}_{d}: H_{d} \rightarrow \mathbb{C}\right\}$ are involution models for S_{n} : the subgroups H_{d} are centralizers of the distinct conjugacy classes of involutions $w=w^{-1} \in S_{n}$, and every irreducible representation of S_{n} appears once as constituent of induced 1-dim repns.

Natural to ask which finite Coxeter groups W have involution models, since:

- involution model for $W \leftrightarrow$ Gelfand model defined on span of $\left\{w=w^{-1} \in W\right\}$,
- all irreducible representations of finite Coxeter groups are realizable over \mathbb{R},
- for finite groups G with this property $\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)=\left|\left\{g=g^{-1} \in G\right\}\right|$,

Theorem (Baddeley, 1990s; Vinroot, 2008). A finite Coxeter group W has an involution model iff all of its irreducible factors are of type $A_{n}, B_{n}, D_{2 n+1}, H_{3}$, or $I_{2}(m)$.

Theorem (M.-Caselli, 2014). A finite Coxeter group W has inv. model iff it has a generalized involution model (GIM), and $G(r, p, n)$ has a GIM iff $G(r, p, n) \cong G(r, n) / \mathbb{Z}_{p}$.

Example: $W_{D_{2 n}}$ has no GIM since $W_{D_{n}}=G(2,2, n) \cong G(2, n) / \mathbb{Z}_{2}=W_{B_{n}} /\{ \pm 1\}$ iff n odd.

Gelfand models for the symmetric group

Let $s_{i}=(i, i+1) \in S_{n}$ so that S_{n} is generated by $S=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$. IRS involution models \leftrightarrow two Gelfand S_{n}-repns spanned by $\left\{M_{w}: w=w^{-1} \in S_{n}\right\}$ with

$$
H_{s} M_{w}=\left\{\begin{array}{ll}
M_{\text {sws }} & \text { if } s \in \operatorname{Asc}^{〔}(w) \sqcup \operatorname{Des}^{〔}(w) \\
\pm M_{w} & \text { if } s \in \operatorname{Des}^{=}(w) \\
\mp M_{w} & \text { if } s \in \operatorname{Asc}^{=}(w)
\end{array} \quad \text { for } s \in S, w=w^{-1} \in S_{n}\right.
$$

for certain strict/weak ascent/descent sets $\operatorname{Asc}^{<}(w), \operatorname{Des}^{<}(w), \operatorname{Des}^{=}(w)$ and $\operatorname{Asc}^{=}(w)$.
Extend $w=w^{-1} \in S_{n}$ fixing $i_{1}<\cdots<i_{k}$ to $\underline{w}=\underline{w}^{-1} \in S_{n+k}$ by $\underline{w}\left(i_{j}\right):=n+j$. Then

$$
\begin{aligned}
& \operatorname{Des}^{=}(w)=\{s \in S: \underline{w} s \underline{w}=s\} \\
& \operatorname{Asc}^{=}=(w)=\left\{s \in S: \underline{w} s \underline{w} \in\left\{s_{n+1}, s_{n+2}, \ldots, s_{n+k-1}\right\}\right\},
\end{aligned}
$$

$$
\operatorname{Des}^{<}(w)=\left\{s_{i} \in S: w(i)>w(i+1)\right\}-\operatorname{Des}^{=}(w) \sqcup \operatorname{Asc}^{=}(w)
$$

$$
\operatorname{Asc}^{<}(w)=\left\{s_{i} \in S: w(i)<w(i+1)\right\}-\operatorname{Des}^{=}(w) \sqcup \operatorname{Asc}=(w) .
$$

Involution models for Iwahori-Hecke algebras

Let (W, S) be a Coxeter system with length function ℓ. If $W=S_{n}$ then $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$. The corresponding Iwahori-Hecke algebra $\mathcal{H}(W)=\mathbb{Q}\left[x^{ \pm 1}\right]-\operatorname{span}\left\{H_{w}: w \in W\right\}$ has

$$
H_{s} H_{w}=\left\{\begin{array}{ll}
H_{s w} & \text { if } \ell(s w)>\ell(w) \\
H_{s w}+\left(x-x^{-1}\right) H_{w} & \text { if } \ell(s w)<\ell(w)
\end{array} \quad \text { for } w \in W \text { and } s \in S .\right.
$$

Theorem (Adin-Postnikov-Roichman, 2008). Let $W=S_{n}$. For each sign $\alpha \in\{ \pm 1\}$, there is a Gelfand $\mathcal{H}(W)$-module $\mathbf{G M o d}^{\alpha}$ with basis $\left\{M_{w}: w=w^{-1} \in W\right\}$ such that

$$
H_{s} M_{w}=\left\{\begin{array}{ll}
M_{\text {sws }} & \text { if } s \in \operatorname{Asc}^{<}(w) \\
M_{\text {sws }}+\left(x-x^{-1}\right) M_{w} & \text { if } s \in \operatorname{Des}^{<}(w) \\
x_{\alpha} M_{w} & \text { if } s \in \operatorname{Des}^{=}(w) \\
-x_{\alpha}^{-1} M_{w} & \text { if } s \in \operatorname{Asc}^{=}(w)
\end{array} \text { for } s \in S, w=w^{-1}, \text { where } x_{\alpha}:=\alpha x^{\alpha} .\right.
$$

Theorem (M.-Zhang, 2022). Same result holds if W is any finite Coxeter group with an involution model, for certain explicit sets $\operatorname{Asc}^{<}(w), \operatorname{Des}^{<}(w), \operatorname{Des}^{=}(w), \operatorname{Asc}^{=}(w)$.

Perfect models

The Gelfand models GMod ${ }^{+}$and GMod $^{-}$are not produced directly from an involution model. Instead, they are features of a more technical construction called a perfect model.

Theorem (M.-Zhang, 2022). A finite Coxeter group has an involution model if and only if it has a perfect model.

Any perfect model \mathcal{P} determines a pair of Gelfand $\mathcal{H}(W)$-models analogous to $\mathbf{G M o d}^{ \pm}$.
These modules then gives rise to a pair of W-graphs $\Gamma_{\mathcal{P}}^{+}$and $\Gamma_{\mathcal{P}}^{-}$which will be discussed later.
There is a notion of equivalence, with $\mathcal{P}_{1} \equiv \mathcal{P}_{2} \Rightarrow \operatorname{cells}\left(\Gamma_{\mathcal{P}_{1}}^{+} \sqcup \Gamma_{\mathcal{P}_{1}}^{-}\right) \cong \operatorname{cells}\left(\Gamma_{\mathcal{P}_{2}}^{+} \sqcup \Gamma_{\mathcal{P}_{2}}^{-}\right)$.
Theorem (M.-Zhang, 2022). Outside rank 3, and ignoring a trivial family of exceptions in type B_{n}, each irreducible W has at most one equivalence class of perfect models.

To find perfect model \mathcal{P} : choose $J \subseteq S$, "perfect" $w=w^{-1} \in W_{J}$, repn $\sigma: W_{J} \rightarrow\{ \pm 1\}$ so

$$
\sum_{(J, w, \sigma) \in \mathcal{P}} \operatorname{Ind}_{C_{W_{J}(w)}}^{W} \operatorname{Res}_{C_{W_{J}(w)}}^{W_{J}}(\sigma)=\sum_{\chi \in \operatorname{Irr}(W)} \chi \quad\left[\text { perfect } \Leftrightarrow(w t)^{4}=1 \forall t \in T\right]
$$

Bar operators and canonical bases

An antilinear map $L: \mathcal{H}(W) \rightarrow \mathcal{H}(W)$ is a \mathbb{Q}-linear map with $L\left(x^{n} h\right)=x^{-n} L(h)$.
The bar involution of $\mathcal{H}(W)$ is the antilinear ring automorphism $h \mapsto \bar{h}$ with $\overline{H_{w}}=\left(H_{w^{-1}}\right)^{-1}$.
Theorem (Kazhdan-Lusztig, 1979). $\mathcal{H}(W)$ has a unique basis $\left\{\underline{H}_{w}\right\}_{w \in W}$ satisfying

$$
\underline{H}_{w}=\underline{H}_{w} \in H_{w}+\sum_{\ell(y)<\ell(w)} x^{-1} \mathbb{Z}\left[x^{-1}\right] H_{y} .
$$

Assume W is finite \& has involution model \rightsquigarrow Gelfand $\mathcal{H}(W)$-models GMod $^{ \pm}$are defined.
Theorem (M.-Zhang, 2022). GMod ${ }^{ \pm}$has an antilinear bar involution $m \mapsto \bar{m}$ with

$$
\overline{M_{w}}=M_{w} \text { if } w=w^{-1} \text { has } \operatorname{Des}^{<}(w)=\varnothing \quad \text { and } \quad \overline{h m}=\bar{h} \bar{m} \text { for all } h \in \mathcal{H}(W) .
$$

GMod ${ }^{ \pm}$has a unique canonical basis $\left\{\underline{M}_{w}\right\}_{w=w^{-1}}$ with (for a certain height map ht)

$$
\underline{M}_{w}=\underline{M}_{w} \in M_{w}+\sum_{\mathrm{ht}(y)<\operatorname{ht}(w)} x^{-1} \mathbb{Z}\left[x^{-1}\right] M_{y} . \quad\left[\text { e.g., if } W=S_{n} \text { then ht }(w)=\ell(\underline{w})\right]
$$

Elias-Williamson (2013): $\underline{H}_{w} \in \mathbb{N}\left[x^{-1}\right]$-span $\left\{H_{y}: y \in W\right\}$. No such general positivity for \underline{M}_{w}.

Involution representations for all Iwahori-Hecke algebras

There is another way of lifting the IRS involution representations to Iwahori-Hecke algebra.
Theorem (Lusztig, 2012). Let (W, S) be any Coxeter system. Choose $\alpha \in\{ \pm 1\}$. Then there is an $\mathcal{H}(W)$-module $\operatorname{Invol}{ }^{\alpha}$ with basis $\left\{I_{w}: w=w^{-1} \in W\right\}$ such that

$$
H_{s} I_{w}= \begin{cases}I_{s w s} & \text { if } s w \neq w s>w \\ l_{s w s}+\left(x-x^{-1}\right) I_{w} & \text { if } s w \neq w s<w \quad \text { for } s \in S, w=w^{-1} \in W ; \\ \left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right) I_{s w}+\alpha I_{w} & \text { if } s w=w s>w \quad \text { here } v<w \text { means } \ell(v)<\ell(w) . \\ \alpha\left(x^{\frac{1}{2}}-x^{-\frac{1}{2}}\right) I_{s w}+\left(x-\alpha-x^{-1}\right) I_{w} & \text { if } s w=w s<w\end{cases}
$$

When $x=1$ we have $\mathbf{I n v o l}^{\alpha} \cong \mathbf{I n v o l}^{-\alpha} \otimes$ sgn as W-representations.
Theorem (M., 2013). For finite W, these W-representations are Gelfand models if and only if all irreducible factors of (W, S) are of type A_{n}, H_{3}, or $I_{2}(m)$ with m odd.

Natural to ask what is the irreducible decomposition of Invol $^{+}$and Invol $^{-}$in the typical case when they are not Gelfand models. The answer is known for finite W, and sort of amazing.

Unipotent characters, formally

Lusztig attaches to each finite Coxeter group W a set of unipotent characters $\operatorname{Uch}(W)$.
We consider $\Phi \in \operatorname{Uch}(W)$ to be a formal object with 3 properties:

- FakeDeg $(\Phi) \in \mathbb{N}[x]$, called the fake degree.
- $\operatorname{Deg}(\Phi) \in \mathbb{R}[x]$, called the generic degree.
- $\operatorname{Eig}(\Phi) \in \mathbb{C}^{\times}$, called the Frobenius eigenvalue.

There is always an inclusion $\operatorname{Irr}(W) \subset \mathrm{U} \operatorname{ch}(W)$, which is equality only in type A.

- FakeDeg $(\Phi)=0$ for $\Phi \in \operatorname{Uch}(W) \backslash \operatorname{Irr}(W)$.
- FakeDeg (Φ) is graded multiplicity of $\Phi \in \operatorname{Irr}(W)$ in coinvariant algebra of W.
- $\left.\operatorname{Deg}(\Phi)\right|_{x=1}=\Phi(1)$ and $\operatorname{Eig}(\Phi)=1$ for all $\Phi \in \operatorname{Irr}(W) \subset \operatorname{Uch}(W)$.
$\mathrm{Uch}(W)$ has further a decomposition into disjoint families.
For crystallographic types, $\operatorname{Uch}(W)$ is the set of irreducible characters in a finite group of Lie type G not orthogonal to all Deligne-Lusztig generalized characters R_{ψ} for $\psi \in \operatorname{Irr}(W)$.

Fourier transform on unipotent characters

Each W has an involution $\mathbf{F T} \in \mathbf{G L}(\{$ maps $\operatorname{Uch}(W) \rightarrow \mathbb{R}\})$ called its Fourier transform.
FT is a real matrix with rows/columns indexed by $\operatorname{Uch}(W) . ~ F T=1$ in type A. For (W, S) crystallographic, $\mathbf{F T}$ is essentially matrix of scalar products $\left\langle\Phi, R_{\psi}\right\rangle$.

Distinguished (almost determining) properties of FT in all types:

- FT sends fake degrees of $\operatorname{Uch}(W)$ to (a certain permutation of) its generic degrees.
- FT is block diagonal with respect to the division of $\operatorname{Uch}(W)$ into families.
- FT fixes vector of irreducible multiplicities of left cell representations of W.
- FT and diagonal matrix of Frobenius eigenvalues determine a "fusion datum."

Even in crystallographic types, Lusztig's original definition of FT is heuristic. In non-crystallographic types, listed properties determine FT except on two large families of unipotent characters of size 74 in type H_{4} and size $\left\lfloor\frac{m}{2}\right\rfloor\left\lceil\frac{m}{2}\right\rceil$ in type $I_{2}(m+2)$.
Matrices for these families were found experimentally by Malle (1994) and Lusztig (1994).

Malle's 74×74 Fourier transform matrix block in type H_{4}

An amazing decomposition

Recall that we have two $\mathcal{H}(W)$-modules Invol $^{ \pm}$spanned by $\left\{I_{w}: w=w^{-1} \in W\right\}$. When we specialize $x=1$ these become W-representations. These turn out to be isomorphic.

Building off and summarizing prior work of Casselman, Geck, Kottwitz, and Lusztig:
Theorem (M., 2013). There is a unique function $\varepsilon: \operatorname{Uch}(W) \rightarrow\{-1,0,1\}$ such that
(a) $\varepsilon(\Phi)=0$ if and only if $\operatorname{Eig}(\Phi) \notin \mathbb{R}$,
(b) $\mathbf{F T}(\varepsilon)$ gives the multiplicities in irreducible decomposition of $\operatorname{Invol}^{ \pm}$when $x=1$.

And when (W, S) is crytallographic, the map ε is exactly the Frobenius-Schur indicator

$$
\varepsilon(\Phi)=\frac{1}{|G|} \sum_{g \in G} \Phi\left(g^{2}\right)= \begin{cases}1 & \text { if } \Phi \text { is character of a representation defined over } \mathbb{R} \\ 0 & \text { if } \Phi \text { not real-valued } \\ -1 & \text { otherwise }\end{cases}
$$

There are only two unipotent characters Φ with $\varepsilon(\Phi)=-1$, in type H_{4} only.

Examples in classical types

Let $\operatorname{ch}\left(\mathbf{I n v o l}^{ \pm}\right)$be the character of the isomorphic W-modules $\mathbf{I n v o l}^{+}$or Invol $^{-}$when $x=1$.

- In type A_{n} one has $\operatorname{ch}\left(\mathbf{I n v o l}^{ \pm}\right)=\sum_{\lambda \vdash n+1} \chi^{\lambda}=\operatorname{ch}\left(\mathbf{G M o d}^{ \pm}\right)$.
- In type B_{n} / C_{n} one has

$$
\operatorname{ch}\left(\boldsymbol{I n v o l}^{ \pm}\right)=\sum_{(\lambda, \mu) \vdash n} 2^{d(\lambda, \mu)} \chi^{(\lambda, \mu)}
$$

where in the sum it is required that $\mu_{i} \leq \lambda_{i}+1$ and $\lambda_{i}^{\top} \leq \mu_{i}^{\top}+1$ for all i.

- In type D_{n} one has

$$
\operatorname{ch}\left(\boldsymbol{\operatorname { I n v o l }}{ }^{ \pm}\right)=\sum_{\lambda \vdash \frac{n}{2}}\left(\chi^{\{\lambda\}, 1}+\chi^{\{\lambda\}, 2}\right)+\sum_{(\lambda, \mu) \vdash n} 2^{e(\lambda, \mu)} \chi^{\{\lambda, \mu\}}
$$

where in second sum $\lambda \subsetneq \mu$ and skew diagram $\mu \backslash \lambda$ must contain no 2×2 squares. Here $d(\lambda, \mu)$ and $e(\lambda, \mu)$ are certain combinatorially defined nonnegative integers.
For example: $e(\lambda, \mu)$ is the number of connected components of skew diagram $\mu \backslash \lambda$ minus one.

Pictures of constituents of $\operatorname{ch}\left(\right.$ Invol $\left.^{ \pm}\right)$

$$
\text { type } B_{n} / C_{n} \text { : }
$$

$$
\mu_{i} \leq \lambda_{i}+1 \text { and } \lambda_{i}^{\top} \leq \mu_{i}^{\top}+1 \text { means: }
$$

$\lambda=$ grey, μ formed by adding \square or deleting
type D_{n} :
$\mu \backslash \lambda$ has no 2×2 squares means:

$\lambda=$ grey, μ formed by adding \square 's

Two more canonical bases

$\mathcal{H}(W)$ has two 1-dim representations, generated by $\sum_{w \in W}\left(\alpha x^{\alpha}\right)^{\ell(w)} w \in \mathcal{H}(W)$ for $\alpha= \pm 1$.
Theorem (Lusztig, 2014). Invol ${ }^{\alpha}$ is generated by $\sum_{w \in W}\left(\alpha x^{\frac{\alpha}{2}}\right)^{\ell(w)} w$ for $\alpha= \pm 1$.
Theorem (Lusztig, 2012). Each Invol ${ }^{ \pm}$has an antilinear bar involution $m \mapsto \bar{m}$ with

$$
\overline{I_{1}}=I_{1} \quad \text { and } \quad \overline{h m}=\bar{h} \bar{m} \text { for all } h \in \mathcal{H}(W) \text { and } m \in \operatorname{lnvol}^{ \pm} .
$$

Also each Invol ${ }^{ \pm}$has a unique canonical basis $\left\{\underline{I}_{w}\right\}_{w=w^{-1}}$ with

$$
\underline{I}_{w}=\bar{I}_{w} \in I_{w}+\sum_{\ell(y)<\ell(w)} x^{-\frac{1}{2}} \mathbb{Z}\left[x^{-\frac{1}{2}}\right] I_{y} .
$$

As with \underline{M}_{w}, coefficients of \underline{I}_{w} in standard basis $\left\{I_{y}: y=y^{-1} \in W\right\}$ not always positive.
Now we have the Kazhdan-Lusztig basis $\left\{\underline{H}_{w}\right\}$ for $\mathcal{H}(W)$, viewed as a left and right module. Also have canonical bases $\left\{\underline{M}_{w}\right\}$ for $\mathbf{G M o d}^{+}$and $\mathbf{G M o d}^{-}$, and $\left\{\underline{I}_{w}\right\}$ for $\mathbf{I n v o l}^{+}$and Invol ${ }^{-}$. What can one do with all of these constructions?

W-graphs in principle

Suppose \mathcal{A} is an R-algebra with generators $\left\{a_{s}\right\}_{s \in S}$ and \mathcal{B} is an \mathcal{A}-module with basis $\left\{b_{v}\right\}_{v \in V}$. Create a directed graph Γ with vertex set V and edges $v \underset{s}{c(v, w)} w$ whenever

$$
a_{s} b_{v}=\sum_{w \in V} c(v, w) b_{w} \quad \text { and } \quad 0 \neq c(v, w) \in R .
$$

Observations. We can recover \mathcal{B} from Γ, and we can try to decompose \mathcal{B} using Γ :

- A cell in Γ is a strongly connected component.
- Cells don't span literal subrepns of \mathcal{B}, but form vertices in a directed acyclic graph.
- This DAG defines a filtration of \mathcal{B}, in which each cell spans a successive quotient.
- When completely reducible, \mathcal{B} is direct sum of these quotient cell representations.

This talk: a W-graph means an instance of Γ for $\mathcal{A}=\mathcal{H}(W)$ with generators $\left\{H_{s}: s \in S\right\}$.
In literature, " W-graph" has more specific meaning: refers to Γ 's that determine \mathcal{B} even if we remove all s-labels from edges, as long as vertices remember a form of "descent set."

Standard basis W-graphs: boring representations, interesting graphs

Let $\mathcal{A}=\mathcal{H}(W)=\left\langle H_{s}: s \in S\right\rangle$ and suppose $\mathcal{B}=\mathcal{H}(W)$ or GMod $^{ \pm}$or Invol ${ }^{ \pm}$. Take $\left\{b_{v}\right\}_{v \in V}$ to be the standard bases $\left\{H_{w}\right\}_{w \in W}$ or $\left\{M_{w}\right\}_{w=w^{-1}}$ or $\left\{I_{w}\right\}_{w=w^{-1}}$.

Resulting W-graphs Γ are boring for representation theory:

- Every edge is bidirected: if $v \rightarrow w$ is an edge then so is $w \rightarrow v$ (for some labels).
- Every connected component is strongly connected: one cell if $\mathcal{B}=\mathcal{H}(W)$ or Invol ${ }^{ \pm}$.
- If $\mathcal{B}=\mathbf{G M o d}^{ \pm}$then $\#$ of cells is number of conjugacy classes of involutions in W.

But interesting for combinatorics:

- Form $\vec{\Gamma}$ from Γ by retaining only edges $v \underset{s}{ } w$ with $\ell(v)<\ell(w)$ or $\mathrm{ht}(v)<\operatorname{ht}(w)$.
- If $\mathcal{B}=\mathcal{H}(W)$ then $\vec{\Gamma}$ is left weak order lattice for W.
- If $\mathcal{B}=$ Invol $^{ \pm}, W=S_{n}$ then $\vec{\Gamma}$ is weak order on \mathbf{O}_{n}-orbit closures in $\mathbf{F I}_{n}$.
- If $\mathcal{B}=\mathbf{G M o d}^{ \pm}, W=S_{2 n}$ then $\vec{\Gamma} \leftrightarrow$ weak order on $\mathbf{S p}_{n}$-orbit closures in $\mathbf{F I}_{2 n}$.

Maximal chains in standard basis W-graphs

Write $\vec{\Gamma}_{\mathcal{H}}, \vec{\Gamma}_{\text {Invol }}, \vec{\Gamma}_{\mathbf{G M o d}}$ for $\vec{\Gamma}^{\text {when }} \mathcal{B}=\mathcal{H}(W)$, Invol ${ }^{ \pm}$, GMod $^{ \pm}$. (Same for either \pm) Maximal chains in $\vec{\Gamma}_{\mathcal{H}}$ correspond to reduced words for longest element $w_{0} \in W$.

- Stanley (1984): if $W=S_{n}$ then \# of maximal chains in $\vec{\Gamma}_{\mathcal{H}}$ is \# of standard Young tableaux of "staircase shape" ($n-1, n-2, n-3, \ldots$).
- M.-Pawlowski (2018): in type B_{n} this is also \# of maximal chains in $\vec{\Gamma}_{\text {Invol }}$.
- Hamaker-M.-Pawlowski (2015): if $W=S_{n}$ then \# of maximal chains in $\vec{\Gamma}_{\text {Invol }}$ is \# of standard shifted tableaux of shape ($n-1, n-3, n-5, \ldots$). This is also the \# of maximal chains in component of w_{0} in $\vec{\Gamma}_{G M o d}$ if n is odd and $W=S_{n+1}$.
- Conjecture (M.-Pawlowski, 2018): in type D_{n} the \# maximal chains in $\vec{\Gamma}_{\text {Invol }}$ is \# of standard Young tableaux of shape ($n-1, n-2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor, \ldots, 2,1$).

Many stronger results for fundamental quasisymmetric descent generating functions of maximal chains: these are always symmetric, Schur positive, Schur P-positive, etc.

Canonical basis W-graphs: interesting representations, but mysterious

Now suppose instead $\left\{b_{v}\right\}_{v \in V}$ is canonical basis $\left\{\underline{H}_{w}\right\}_{w \in W},\left\{\underline{M}_{w}\right\}_{w=w^{-1}}$, or $\left\{\underline{I}_{w}\right\}_{w=w^{-1}}$.

- Let Γ_{L} and Γ_{R} be resulting W-graphs when $\mathcal{B}=\mathcal{H}(W)$ as left module or right module.
- Write $\Gamma_{\text {GMod }}^{+}, \Gamma_{\text {GMod }}^{-}, \Gamma_{\text {Invol }}^{+}, \Gamma_{\text {Invol }}^{-}$for Γ when $\mathcal{B}=\mathbf{G M o d}^{+}, \mathbf{G M o d}^{-}$, Invol ${ }^{+}$, or Invol ${ }^{-}$.

Unlike in standard basis case, no automatic relationship $\Gamma_{\text {GMod }}^{+} \leftrightarrow \Gamma_{\mathbf{G} \text { Mod }}^{-}$or $\Gamma_{\text {Invol }}^{+} \leftrightarrow \Gamma_{\text {Invol }}^{-}$.
The W-graphs Γ_{L} and Γ_{R} are the classical left and right Kazhdan-Lusztig W-graphs.
Their cells are often referred to simply as the left cells and right cells in W.
Theorem (Kazhdan-Lusztig, 1979). Assume $W=S_{n}$.

- Then each left and right cell representation is irreducible.
- In fact, each left/right cell is a molecule (connected by bidirected edges).
- Moreover if $w \xrightarrow{\text { RSK }}\left(P_{\mathrm{RSK}}(w), Q_{\mathrm{RSK}}(w)\right)$ is the RSK correspondence then the left (resp. right) cells are the subsets where Q_{RSK} (resp. P_{RSK}) is constant.

Cells in Gelfand models and involution modules

Some things are known about cells in $\Gamma_{\mathbf{G} \text { Mod }}^{+}$and $\Gamma_{\mathbf{G} \text { Mod }}^{-}$when W has type $A_{n}, B_{n}, D_{2 n+1}$:
Theorem (M.-Zhang, 2022). Assume $W=S_{n}$ is of type A.

- The molecules in $\Gamma_{\mathrm{GMod}}^{+}$are classified by $P_{\mathrm{RSK}}(w)=Q_{\mathrm{RSK}}(w)$ for $w=w^{-1}$.
- The molecules in $\Gamma_{\mathbf{G M o d}}^{-}$are classified by a novel RSK-like insertion algorithm.

Conjecture. In type A all cells in $\Gamma_{\mathbf{G} \text { Mod }}^{ \pm}$are molecules and all cell repns are irreducible.
Neither property is true in other classical types. However:
Theorem (M.-Zhang, 2022). For types B_{n} and $D_{2 n+1}, \Gamma_{\mathbf{G M o d}}^{+}$and $\Gamma_{\mathbf{G M o d}}^{-}$are dual: one graph is obtained from the other by reversing all edges. This is not true in type A_{n}.

Theorem (Lusztig, 2012). If $W=S_{n}$ then every cell repn in $\Gamma_{\text {Invol }}^{+}$is irreducible.
Proof is very indirect, more concrete argument is desired! Nothing seems known about $\Gamma_{\text {Invol }}^{-}$.

Gelfand model W-graphs for $W=S_{4}=W_{A_{3}}$

Gelfand model W-graphs for $W=W_{B_{3}}=W_{C_{3}}$

Gelfand model W-graphs for $W=W_{D_{3}}$

Thanks for listening!

