Decomposition numbers for unipotent blocks with small $\mathfrak{s l}_{2}$-weight in finite classical groups

Emily Norton

October 24, 2023

Based on joint work with Olivier Dudas, to appear soon.

Dream of categorification

\mathfrak{g} a Lie algebra (finite or affine Dynkin type)
\mathcal{C} an abelian category, finite-length

Definition (Chuang-Rouquier)

A \mathfrak{g}-categorification on \mathcal{C} is a collection of exact endofunctors $\left\{E_{i}, F_{i}\right\}$ of \mathcal{C}, where i ranges over the nodes of the Dynkin diagram of \mathfrak{g}, satisfying:

- For each i, E_{i} and F_{i} are a biadjoint pair of functors;
- The functors E_{i} and F_{i} for all i induce an action of \mathfrak{g} on the (complexified) Grothendieck group $[\mathcal{C}]$ via $\left[E_{i}\right]=e_{i},\left[F_{i}\right]=f_{i}$ where e_{i}, f_{i} are the Chevalley generators of \mathfrak{g};
- The classes $[S]$ in $[\mathcal{C}]$ of the simple objects $S \in \mathcal{C}$ are \mathfrak{g}-weight vectors;
- Strong: Set $E=\bigoplus_{i} E_{i}, F=\bigoplus_{i} F_{i}$. There are natural transformations $X \in \operatorname{End}(F)$ and $T \in \operatorname{End}\left(F^{2}\right)$ such that in $\operatorname{End}\left(F^{n}\right), X_{j}:=1^{j-1} X 1^{n-j}$ and $T_{k}:=1^{k-1} T 1^{n-k-1}$ satisfy defining relations of an affine Hecke algebra.

Often: \mathcal{C} is a tower of module categories, E and F are restriction and induction functors.

Example: the symmetric groups (Chuang-Rouquier, LLT, Kleshchev) Let char $k=p>0$ and consider $\mathcal{C}=\underset{n \geq 0}{\bigoplus} k S_{n}$-mod.

Theorem (Chuang-Rouquier, Lascoux-Leclerc-Thibon)

There is a $\widehat{\mathfrak{s l}}_{p}$-categorification on \mathcal{C} with

$$
\text { Res }=E=\bigoplus_{i \in \mathbb{Z} / p \mathbb{Z}} E_{i}, \quad \text { Ind }=F=\bigoplus_{i \in \mathbb{Z} / p \mathbb{Z}} F_{i}
$$

If $\Delta_{\lambda}, \lambda \vdash n$, is a Specht module, then

$$
\begin{equation*}
\left[E_{i}\left(\Delta_{\lambda}\right)\right]=\sum_{\substack{b \in \operatorname{Remov}(\lambda) \\ \operatorname{ct}(b) \equiv i}}\left[\Delta_{\lambda \backslash b}\right], \quad\left[F_{i}\left(\Delta_{\lambda}\right)\right]=\sum_{\substack{b \in \operatorname{Add}(\lambda) \\ \bmod p}}\left[\Delta_{\lambda \cup b}\right] \tag{tabular}
\end{equation*}
$$

Illustration: $p=3, \lambda=$

The symmetric groups, continued
$\lambda \vdash n$ a p-regular partition, S_{λ} a simple $k S_{n}$-module. Fix $i \in \mathbb{Z} / p \mathbb{Z}$.
If $F_{i}\left(S_{\lambda}\right) \neq 0$ then:

- $F_{i}\left(S_{\lambda}\right)$ is indecomposable,
- $F_{i}\left(S_{\lambda}\right)$ has simple head and socle,
- head $\left(F_{i}\left(S_{\lambda}\right)\right) \cong \operatorname{socle}\left(F_{i}\left(S_{\lambda}\right)\right)$

Define $S_{\tilde{f}_{i}(\lambda)}$ by $F_{i}\left(S_{\lambda}\right) \rightarrow S_{\tilde{f}_{i}(\lambda)}$
Combinatorial rule for finding $\tilde{f}_{i}(\lambda)$: for $i \in \mathbb{Z} / p \mathbb{Z}$,

$$
\tilde{f}_{i}(\lambda)=\lambda \cup\{\text { "good addable i-box" }\}
$$

Example $(p=3)$:

Focus on $\mathfrak{s l}_{2}$

Given a \mathfrak{g}-categorification on \mathcal{C}, each pair $\left(E_{i}, F_{i}\right)$ generates an $\mathfrak{s l}_{2}$-categorification on \mathcal{C}. Study one $\mathfrak{s l}_{2}$-categorification at a time.

Fix $\mathfrak{g}=\mathfrak{s l}_{2}$, have $\mathfrak{s l}_{2}$-categorification:

$$
\mathcal{C}=\bigoplus_{\omega \in \mathbb{Z}} \mathcal{C}_{\omega}
$$

where the \mathcal{C}_{ω} are weight categories. Exact, biadjoint functors E, F shift weights by ± 2 :

and $[E][F]-[F][E]$ acts by multiplication by ω on $\left[\mathcal{C}_{\omega}\right]$.
Divided power operators $E^{(n)}$ and $F^{(n)}$ satisfy

$$
E^{n} \simeq\left(E^{(n)}\right)^{\oplus n!} \quad \text { and } \quad F^{n} \simeq\left(F^{(n)}\right)^{\oplus n!}
$$

Functors E, F on simple modules
R a ring, \mathcal{C} an R-linear abelian category, finite length, with $\mathfrak{s l}_{2}$-categorification. Assume $\operatorname{End}(S) \cong R$ for every simple object $S \in \mathcal{C}$.

- If $E(S) \neq 0$ then $E(S)$ has simple head and simple socle, and
- head $(E(S)) \cong \operatorname{socle}(E(S))$.

Extend to the divided power functors:
Lemma (Chuang-Rouquier)
Let $S \in \operatorname{Irr} \mathcal{C}_{\omega}$ and $n \geq 0$ be such that $E^{n+1}(S)=0$ and $E^{n}(S) \neq 0$.
(1) $E^{(n)}(S)$ is simple.
(2) The socle and head of $F^{(n)} E^{(n)}(S)$ are isomorphic to S.

- The simple module S occurs in $F^{(n)} E^{(n)}(S)$ with multiplicity $\binom{\omega+2 n}{n}$ as a composition factor.

Decomposition numbers

\mathcal{O} a complete DVR with residue field k, fraction field K; char $k=\ell>0$, char $K=0$.
Let $\left\{G_{r}\right\}_{r \in \mathbb{N}}$ be a family of finite groups, $\Lambda \in\{\mathcal{O}, k, K\}$,

$$
\wedge \mathcal{G}=\bigoplus_{r \geq 0} \wedge G_{r}-\bmod
$$

Assume k and K are "large enough." Then:

- Every $S \in \operatorname{Irr}_{k} \mathcal{G}$ has a projective cover P_{S} in $k \mathcal{G}$, unique up to isomorphism.
- Every projective module P in $k \mathcal{G}$ lifts uniquely to a projective module \widetilde{P} in $\mathcal{O G}$.
- $K \mathcal{G}$ is semisimple.
- $k \mathcal{G}$ has finite length and $\operatorname{End}(S) \cong k$ for all simples $S \in \operatorname{Irr}_{k} \mathcal{G}$.

Let $S \in \operatorname{Irr}_{k} \mathcal{G}$ and $\Delta \in \operatorname{Irr}_{k} \mathcal{G}$. The decomposition number

$$
\left[P_{S}: \Delta\right]
$$

is the multiplicity of Δ as a direct summand of $K \otimes_{\mathcal{O}} \widetilde{P_{S}}$.

Finite classical groups and modular representation theory
G_{n} a finite classical group, one of

$$
\mathrm{SO}_{2 n+1}(q), \mathrm{Sp}_{2 n}(q), \mathrm{O}_{2 n}^{+}(q), \mathrm{O}_{2 n}^{-}(q),
$$

so Weyl group of G_{n} is B_{n} or D_{n}.
$\left|\operatorname{Irr}_{\kappa}\left(G_{n}\right)\right|$ depends on q, however $\operatorname{Irr}_{\kappa}\left(G_{n}\right)$ contains a subset of unipotent representations indexed by elements of various Weyl groups of types B and D independent of q.

Fix an ℓ-modular system (\mathcal{O}, k, K), with k and K large enough. char $k=\ell>0,|q|=d \bmod \ell, d \geq 2$ even: "unitary prime case."
The "quantum characteristic" d plays the role that characteristic p did for $k S_{n}$.
Analogous to Hecke algebra at a d'th root of 1 .
$\Delta \in \operatorname{Irr}_{k}\left(G_{n}\right)$ unipotent, $S \in \operatorname{Irr}_{k} G$.

Problem (open)

Describe the decomposition numbers $\left[P_{s}: \Delta\right]$ of G_{n}.
$\widehat{\mathfrak{s l}}_{d}$-action on the unipotent category of G_{n}
$\Lambda=k$ or k
$\mathcal{C}_{n}=\Lambda G_{n}^{\text {unip }}$ the sum of those blocks of ΛG_{n} containing a unipotent representation
$\mathcal{C}=\underset{n \geq 0}{\oplus} \mathcal{C}_{n}$
$\operatorname{Res}_{n-1}^{n}: \mathcal{C}_{n} \rightarrow \mathcal{C}_{n-1}$ Harish-Chandra restriction, Ind $_{n-1}^{n}: \mathcal{C}_{n-1} \rightarrow \mathcal{C}_{n}$ Harish-Chandra induction.

Res $=\bigoplus_{n} \operatorname{Res}_{n-1}^{n}, \operatorname{Ind}=\bigoplus_{n} \operatorname{Ind}_{n-1}^{n}$ are exact, biadjoint endofunctors of \mathcal{C}.

Theorem (Dudas-Varagnolo-Vasserot (type B)+others (type D, in progress))

There is a $\widehat{\mathfrak{s l}}_{d}$-categorification on \mathcal{C} with Res $=E$ and Ind $=F$.

$$
\operatorname{Res} \cong \bigoplus_{i \in \mathbb{Z} / d \mathbb{Z}} E_{i}, \quad \quad \text { Ind } \cong \bigoplus_{i \in \mathbb{Z} / d \mathbb{Z}} F_{i}
$$

As with $k S_{n}$, have combinatorial recipes for action of E_{i}, F_{i} on Δ, S.

Combinatorics of unipotent representations

Unipotent representations $\Delta \in \operatorname{Irr}_{\kappa}\left(G_{n}\right)$ are labeled by symbols.
A symbol is a charged bipartition $\left|\lambda^{1} \cdot \lambda^{2},\left(\sigma_{1}, \sigma_{2}\right)\right\rangle$ presented as a 2 -row abacus.

Example

The following symbol labels a unipotent character of type B :

The bipartition is $\lambda^{1} \cdot \lambda^{2}=\left(1^{3}\right) \cdot\left(2^{2}, 1\right)$. The charge is $\left(\sigma_{1}, \sigma_{2}\right)=(-4,3)$. We recover the Harish-Chandra series of the unipotent character from $\left(\sigma_{1}, \sigma_{2}\right)$. We have $\Delta=B_{3^{2}+3}: \lambda^{1} \cdot \lambda^{2}$.

Addable i-box:

- row 2: bead in position $i+\frac{d}{2} \bmod d$, space in position $i+1$,
- row 1: bead in position i mod d, space in position $i+1$.
F_{i} acts on unipotent Δ analogously to symmetric group case: add all possible i-boxes.

When does the categorification control decomposition numbers?

The $\widehat{\mathfrak{s l}}_{d}$-categorification comes from induction and restriction, so it should not know decomposition numbers $\left[P_{S}: \Delta\right]$ if $S \in \operatorname{Irr}_{k}\left(G_{n}\right)$ is cuspidal.

But we can use it to understand chunks of the decomposition matrix of G_{n}. This will be square submatrices with rows and columns labeled by " d-small symbols" with the same charge.

Rather than define d-small, an example.

Example

Let $d=10$. The following symbol is d-small:

The left region, middle region, and right region are indicated by the bars. The left and right regions each have length $\frac{d}{2}$ and are relatively positioned by a shift of $\frac{d}{2} \bmod d$.

The up-down diagram of a d-small symbol

We will associate to d-small symbols some combinatorics due to Brundan and Stroppel.
Θ a d-small symbol
Define the up-down diagram of a d-small symbol:
$w_{\wedge \vee}(\Theta)=w_{1} w_{2} \ldots w_{\frac{d}{2}}$,
where $w_{i} \in\{\wedge, \vee, \circ, \times\}$ for each $i=1, \ldots, \frac{d}{2}$.
$w_{\wedge \vee}(\Theta)$ is determined by the left and right regions of Θ.
The i 'th letter w_{i} records what happens in the i 'th position in the left and right regions:

- if the right region has a bead and the left region has two beads then $w_{i}=\times$,
- if the right region has a bead and the left region has one bead, then $w_{i}=\wedge$,
- if the right region has no bead and the left region has two beads, then $w_{i}=V$,
- if the right region has no bead and the left region has one bead, then $w_{i}=0$.

Example

Continuing with the symbol from the previous example, we have $w_{\wedge \vee}(\Theta)=\wedge \vee \times \wedge \vee$.

The cup diagram of a d-small symbol

Form the cup diagram $c_{\wedge \vee}(\Theta)$ of $w_{\wedge \vee}(\Theta)$ by attaching counter-clockwise oriented arcs ("cups") and rays below the \wedge 's and \vee 's of $w_{\wedge \vee}(\Theta)$.

Do this recursively:

- attach a cup to adjacent $\vee \wedge$ or $\vee \ldots \wedge$ where \ldots only contains \times and \circ symbols,
- attach a cup to $\vee \ldots \wedge$ where \ldots contains only \times, \circ, or previously constructed cups,
- when no more cups can be attached, attach rays to remaining \wedge and \vee symbols.

Example

For $w \wedge \vee(\Theta)=\wedge \vee \times \wedge \vee$ we get

$$
c_{\wedge v}(\Theta)=\uparrow Y \times \hat{\jmath} Y
$$

Theorem

Our main theorem is a closed combinatorial formula for the square submatrix of the decomposition matrix cut out by a d-small Harish-Chandra series within a block.

Theorem (Dudas-N. '23)

Suppose Θ, Θ^{\prime} are d-small symbols with the same charge and describing bipartitions of the same size. Then

$$
\left[P_{\Theta}: \Delta_{\Theta^{\prime}}\right]=\left\{\begin{array}{l}
1 \text { if } \mathrm{w}_{\wedge \vee}\left(\Theta^{\prime}\right) \text { is obtained from } \mathrm{w}_{\wedge \vee}(\Theta) \text { by reversing the orientation } \\
\text { on a subset of the cups of } \mathrm{c}_{\wedge \vee}(\lambda), \\
0 \text { otherwise. }
\end{array}\right.
$$

This is the same formula given by Brundan and Stroppel for the decomposition numbers of the extended Khovanov arc algebra $K_{m, n}$ where $m=\#\{\wedge\}$ and $n=\#\{\vee\}$. From results of Stroppel it follows that:

Corollary

With the same assumptions on Θ, Θ^{\prime}, the decomposition number $\left[P_{\Theta}: \Delta_{\Theta^{\prime}}\right]$ is given by a parabolic Kazhdan-Lusztig polynomial $p_{\lambda, \mu}(t)$ of type $S_{m} \times S_{n} \subset S_{m+n}$ evaluated at $t=1$. The partitions λ, μ may be read off of $\mathrm{w}_{\wedge \vee}(\Theta), \mathrm{w}_{\wedge \mathrm{V}}\left(\Theta^{\prime}\right)$.

How do we get such a formula?

Restriction preserves d-small symbols: if Θ is d-small then $\tilde{e}_{i}(\Theta), e_{i}(\Theta)$ are again d-small, or 0 .

Moreover, a d-small symbol has at most 2 total addable and removable i-boxes.
It follows that fixing any $i \in \mathbb{Z} / d \mathbb{Z}$, the d-small symbols belong to irreducible $\mathfrak{s l}_{2}$-representations of highest weight 0,1 , or 2 for each pair $\left(E_{i}, F_{i}\right)$.

We show that belonging to an irreducible $\mathfrak{s l}_{2}$-representation of highest weight at most 2 determines the decomposition numbers [$P_{\Theta}: \Delta_{\Theta^{\prime}}$] by induction using some E_{i}, unless S_{\ominus} is cuspidal.

We can easily classify cuspidals S_{Θ} if Θ is d-small, and it is trivial to understand [$P_{\Theta}: \Delta_{\Theta^{\prime}}$] in that case.

The effect of the i-induction F_{i} can be described directly on $w_{\wedge \vee}(\Theta)$ and $c_{\wedge \vee}(\Theta)$. This allows us to prove the formula for decomposition numbers inductively.

Some motivation for the result

The d-small symbols are constructed so that "it's as if $d=\infty$ " from the perspective of the E_{i} 's acting on simples and Δ 's.

In the case $d=\infty$, Brundan and Stroppel showed that the blocks of the Hecke algebra of B_{n} are equivalent to $K_{k, m}$-mod for various k, m. The Hecke algebra of B_{n} has Specht (standard) and simple modules labeled by charged bipartitions, that is by symbols. Our construction of $w \wedge \vee(\Theta)$ is an adaptation of Brundan-Stroppel's construction.

It is known that the decomposition matrix of a Hecke algebra of type B embeds in the decomposition matrix of G_{n} for each Harish-Chandra series (excepting the principal series in types D_{n} and ${ }^{2} D_{n}$ which give rise to Hecke algebras of type D, but principal series aren't d-small).

For d large enough relative to the size of bipartitions, the Hecke algebra decomposition matrix will be given by the same rules as in the $d=\infty$ case. Our result extends this to the whole square submatrix of the d-small Harish-Chandra series in its block.

Obligatory example to finish

The matrix of parabolic Kazhdan-Lusztig polynomials of type $(W, P)=\left(S_{4}, S_{2} \times S_{2}\right)$, evaluated at $1 \ldots$

The decomposition matrix of the extended Khovanov arc algebra $K_{2,2} \ldots$
The submatrix of the decomposition matrix of $\mathrm{Sp}_{40}(q)$ given by the $B_{3^{2}+3^{\prime}}$-series in the block of $B_{3^{2}+3}:\left(1^{3}\right) \cdot\left(2^{2}, 1\right)$ when $d=10 \ldots$

