Decomposition numbers for unipotent blocks with small $\mathfrak{sl}_2\text{-weight}$ in finite classical groups

Emily Norton

October 24, 2023

Emily Norton

Based on joint work with Olivier Dudas, to appear soon.

Dream of categorification

 $\mathfrak g$ a Lie algebra (finite or affine Dynkin type)

 $\ensuremath{\mathcal{C}}$ an abelian category, finite-length

Definition (Chuang-Rouquier)

A g-categorification on C is a collection of exact endofunctors $\{E_i, F_i\}$ of C, where *i* ranges over the nodes of the Dynkin diagram of g, satisfying:

- For each *i*, *E_i* and *F_i* are a biadjoint pair of functors;
- The functors E_i and F_i for all *i* induce an action of \mathfrak{g} on the (complexified) Grothendieck group $[\mathcal{C}]$ via $[E_i] = e_i$, $[F_i] = f_i$ where e_i , f_i are the Chevalley generators of \mathfrak{g} ;
- The classes [S] in [C] of the simple objects $S \in C$ are g-weight vectors;
- Strong: Set $E = \bigoplus_i E_i$, $F = \bigoplus_i F_i$. There are natural transformations $X \in \text{End}(F)$ and $T \in \text{End}(F^2)$ such that in $\text{End}(F^n)$, $X_j := 1^{j-1}X1^{n-j}$ and $T_k := 1^{k-1}T1^{n-k-1}$ satisfy defining relations of an affine Hecke algebra.

Often: C is a tower of module categories, E and F are restriction and induction functors.

Example: the symmetric groups (Chuang-Rouquier, LLT, Kleshchev) Let char k = p > 0 and consider $C = \bigoplus_{n \ge 0} kS_n$ -mod.

Theorem (Chuang-Rouquier, Lascoux-Leclerc-Thibon)

There is a $\widehat{\mathfrak{sl}}_p$ -categorification on $\mathcal C$ with

$$\operatorname{Res} = E = \bigoplus_{i \in \mathbb{Z}/p\mathbb{Z}} E_i, \qquad \operatorname{Ind} = F = \bigoplus_{i \in \mathbb{Z}/p\mathbb{Z}} F_i$$

If Δ_{λ} , $\lambda \vdash n$, is a Specht module, then

$$[E_{i}(\Delta_{\lambda})] = \sum_{\substack{b \in \text{Remov}(\lambda) \\ ct(b) \equiv i \mod p}} [\Delta_{\lambda \setminus b}], \qquad [F_{i}(\Delta_{\lambda})] = \sum_{\substack{b \in \text{Add}(\lambda) \\ ct(b) \equiv i \mod p}} [\Delta_{\lambda \cup b}]$$

Illustration: $p = 3, \lambda =$
$$[E_{1}(\Delta_{\text{constrained}})] = [\Delta_{\text{constrained}}], \qquad [F_{1}(\Delta_{\text{constrained}})] = [\Delta_{\text{constrained}}] + [\Delta_{\text{constrained}}]$$

The symmetric groups, continued

 $\lambda \vdash n$ a *p*-regular partition, S_{λ} a simple kS_n -module. Fix $i \in \mathbb{Z}/p\mathbb{Z}$. If $F_i(S_{\lambda}) \neq 0$ then:

- $F_i(S_\lambda)$ is indecomposable,
- $F_i(S_\lambda)$ has simple head and socle,
- head($F_i(S_\lambda)$) \cong socle($F_i(S_\lambda)$)

Define $S_{\tilde{f}_i(\lambda)}$ by $F_i(S_{\lambda}) \twoheadrightarrow S_{\tilde{f}_i(\lambda)}$

Combinatorial rule for finding $\tilde{f}_i(\lambda)$: for $i \in \mathbb{Z}/p\mathbb{Z}$,

$$ilde{f}_i(\lambda) = \lambda \cup \{ ext{"good addable i-box"} \}$$

Example (p = 3):

Focus on \mathfrak{sl}_2

Given a g-categorification on C, each pair (E_i, F_i) generates an \mathfrak{sl}_2 -categorification on C. Study one \mathfrak{sl}_2 -categorification at a time.

Fix $\mathfrak{g} = \mathfrak{sl}_2$, have \mathfrak{sl}_2 -categorification:

$$\mathcal{C} = \bigoplus_{\omega \in \mathbb{Z}} \mathcal{C}_{\omega}$$

where the C_{ω} are weight categories. Exact, biadjoint functors *E*, *F* shift weights by ± 2 :

and [E][F] - [F][E] acts by multiplication by ω on $[\mathcal{C}_{\omega}]$. Divided power operators $E^{(n)}$ and $F^{(n)}$ satisfy

$${\sf E}^n\simeq ig({\sf E}^{(n)}ig)^{\oplus n!}$$
 and ${\sf F}^n\simeq ig({\sf F}^{(n)}ig)^{\oplus n!}.$

Functors E, F on simple modules

R a ring, *C* an *R*-linear abelian category, finite length, with \mathfrak{sl}_2 -categorification. Assume $\operatorname{End}(S) \cong R$ for every simple object $S \in C$.

- If $E(S) \neq 0$ then E(S) has simple head and simple socle, and
- head(E(S)) \cong socle(E(S)).

Extend to the divided power functors:

Lemma (Chuang-Rouquier)

Let $S \in \operatorname{Irr} \mathcal{C}_{\omega}$ and $n \geq 0$ be such that $E^{n+1}(S) = 0$ and $E^n(S) \neq 0$.

- $E^{(n)}(S)$ is simple.
- 2 The socle and head of $F^{(n)}E^{(n)}(S)$ are isomorphic to S.
- The simple module S occurs in $F^{(n)}E^{(n)}(S)$ with multiplicity $\binom{\omega+2n}{n}$ as a composition factor.

Decomposition numbers

 \mathcal{O} a complete DVR with residue field k, fraction field K; char $k = \ell > 0$, char K = 0. Let $\{G_r\}_{r \in \mathbb{N}}$ be a family of finite groups, $\Lambda \in \{\mathcal{O}, k, K\}$,

$$\Lambda \mathcal{G} = \bigoplus_{r \ge 0} \Lambda \mathcal{G}_r - \mathsf{mod}.$$

Assume k and K are "large enough." Then:

- Every $S \in \operatorname{Irr}_k \mathcal{G}$ has a projective cover P_S in $k\mathcal{G}$, unique up to isomorphism.
- Every projective module P in $k\mathcal{G}$ lifts uniquely to a projective module \widetilde{P} in \mathcal{OG} .
- *KG* is semisimple.
- $k\mathcal{G}$ has finite length and $\operatorname{End}(S) \cong k$ for all simples $S \in \operatorname{Irr}_k \mathcal{G}$.

Let $S \in Irr_{\kappa}G$ and $\Delta \in Irr_{\kappa}G$. The decomposition number

 $[P_S : \Delta]$

is the multiplicity of Δ as a direct summand of $K \otimes_{\mathcal{O}} \widetilde{P_S}$.

Finite classical groups and modular representation theory

 G_n a finite classical group, one of

 $\mathrm{SO}_{2n+1}(q), \mathrm{Sp}_{2n}(q), \mathrm{O}^+_{2n}(q), \mathrm{O}^-_{2n}(q),$

so Weyl group of G_n is B_n or D_n .

 $|\operatorname{Irr}_{\kappa}(G_n)|$ depends on q, however $\operatorname{Irr}_{\kappa}(G_n)$ contains a subset of **unipotent** representations indexed by elements of various Weyl groups of types B and D independent of q.

Fix an ℓ -modular system (\mathcal{O}, k, K), with k and K large enough. char $k = \ell > 0$, $|q| = d \mod \ell$, $d \ge 2$ even: "unitary prime case."

The "quantum characteristic" d plays the role that characteristic p did for kS_n . Analogous to Hecke algebra at a d'th root of 1.

 $\Delta \in \operatorname{Irr}_{\kappa}(G_n)$ unipotent, $S \in \operatorname{Irr}_{k}G$.

Problem (open)

Describe the decomposition numbers $[P_S : \Delta]$ of G_n .

$\widehat{\mathfrak{sl}}_d$ -action on the unipotent category of G_n

$$\begin{split} &\Lambda = k \text{ or } \mathcal{K} \\ &\mathcal{C}_n = \Lambda G_n^{\mathrm{unip}} \text{ the sum of those blocks of } \Lambda G_n \text{ containing a unipotent representation} \\ &\mathcal{C} = \bigoplus_{n > 0} \mathcal{C}_n \end{split}$$

$$\begin{split} \mathsf{Res}_{n-1}^n &: \mathcal{C}_n \to \mathcal{C}_{n-1} \text{ Harish-Chandra restriction,} \\ \mathsf{Ind}_{n-1}^n &: \mathcal{C}_{n-1} \to \mathcal{C}_n \text{ Harish-Chandra induction.} \end{split}$$

 $\mathsf{Res} = \bigoplus_{n} \mathsf{Res}_{n-1}^{n}, \, \mathsf{Ind} = \bigoplus_{n} \mathsf{Ind}_{n-1}^{n} \text{ are exact, biadjoint endofunctors of } \mathcal{C}.$

Theorem (Dudas-Varagnolo-Vasserot (type B)+others (type D, in progress))

There is a $\widehat{\mathfrak{sl}}_d$ -categorification on \mathcal{C} with $\operatorname{Res} = E$ and $\operatorname{Ind} = F$.

$$\operatorname{Res} \cong \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} E_i, \qquad \qquad \operatorname{Ind} \cong \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} F_i$$

As with kS_n , have combinatorial recipes for action of E_i , F_i on Δ , S.

Combinatorics of unipotent representations

Unipotent representations $\Delta \in \operatorname{Irr}_{\kappa}(G_n)$ are labeled by **symbols**.

A symbol is a charged bipartition $|\lambda^1.\lambda^2, (\sigma_1, \sigma_2)\rangle$ presented as a 2-row abacus.

 $\Delta = B_{3^2+3} : \lambda^1 . \lambda^2.$

Addable *i*-box:

- row 2: bead in position $i + \frac{d}{2} \mod d$, space in position i + 1,
- row 1: bead in position $i \mod d$, space in position i + 1.

 F_i acts on unipotent Δ analogously to symmetric group case: add all possible *i*-boxes.

When does the categorification control decomposition numbers?

The $\widehat{\mathfrak{sl}}_d$ -categorification comes from induction and restriction, so it should not know decomposition numbers $[P_S : \Delta]$ if $S \in \operatorname{Irr}_k(G_n)$ is cuspidal.

But we can use it to understand chunks of the decomposition matrix of G_n . This will be square submatrices with rows and columns labeled by "*d*-small symbols" with the same charge.

Rather than define *d*-small, an example.

The left region, middle region, and right region are indicated by the bars. The left and right regions each have length $\frac{d}{2}$ and are relatively positioned by a shift of $\frac{d}{2} \mod d$.

The up-down diagram of a *d*-small symbol

We will associate to *d*-small symbols some combinatorics due to Brundan and Stroppel.

 Θ a *d*-small symbol

Define the *up-down diagram* of a *d*-small symbol: $w_{\wedge\vee}(\Theta) = w_1 w_2 \dots w_{\frac{d}{2}},$ where $w_i \in \{\wedge, \lor, \circ, \times\}$ for each $i = 1, \dots, \frac{d}{2}.$

 $w_{\wedge\vee}(\Theta)$ is determined by the left and right regions of Θ .

The *i*'th letter w_i records what happens in the *i*'th position in the left and right regions:

- if the right region has a bead and the left region has two beads then $w_i = \times$,
- if the right region has a bead and the left region has one bead, then $w_i = \wedge$,
- if the right region has no bead and the left region has two beads, then $w_i = \lor$,
- if the right region has no bead and the left region has one bead, then $w_i = 0$.

Example

Continuing with the symbol from the previous example, we have $w_{\wedge\vee}(\Theta) = \wedge \vee \times \wedge \vee$.

The cup diagram of a *d*-small symbol

Form the cup diagram $c_{\wedge\vee}(\Theta)$ of $w_{\wedge\vee}(\Theta)$ by attaching counter-clockwise oriented arcs ("cups") and rays below the \wedge 's and \vee 's of $w_{\wedge\vee}(\Theta)$.

Do this recursively:

- attach a cup to adjacent $\lor \land \land \lor \lor \ldots \land \lor$ where \ldots only contains $\times \mathsf{and} \circ \mathsf{symbols}$,
- attach a cup to $\vee \ldots \wedge$ where \ldots contains only \times , \circ , or previously constructed cups,
- when no more cups can be attached, attach rays to remaining \land and \lor symbols.

Example

For $w_{\wedge\vee}(\Theta) = \wedge \vee \times \wedge \vee$ we get $c_{\wedge\vee}(\Theta) = \bigwedge \qquad \bigvee \qquad \times \qquad \checkmark \qquad \checkmark$

Theorem

Our main theorem is a closed combinatorial formula for the square submatrix of the decomposition matrix cut out by a d-small Harish-Chandra series within a block.

Theorem (Dudas-N. '23)

Suppose Θ,Θ' are d-small symbols with the same charge and describing bipartitions of the same size. Then

$$[P_{\Theta} : \Delta_{\Theta'}] = \begin{cases} 1 \text{ if } w_{\wedge\vee}(\Theta') \text{ is obtained from } w_{\wedge\vee}(\Theta) \text{ by reversing the orientation} \\ \text{ on a subset of the cups of } c_{\wedge\vee}(\lambda), \\ 0 \text{ otherwise.} \end{cases}$$

This is the same formula given by Brundan and Stroppel for the decomposition numbers of the extended Khovanov arc algebra $K_{m,n}$ where $m = \#\{\wedge\}$ and $n = \#\{\vee\}$. From results of Stroppel it follows that:

Corollary

With the same assumptions on Θ, Θ' , the decomposition number $[P_{\Theta} : \Delta_{\Theta'}]$ is given by a parabolic Kazhdan-Lusztig polynomial $p_{\lambda,\mu}(t)$ of type $S_m \times S_n \subset S_{m+n}$ evaluated at t = 1. The partitions λ, μ may be read off of $w_{\wedge\vee}(\Theta), w_{\wedge\vee}(\Theta')$.

How do we get such a formula?

Restriction preserves *d*-small symbols: if Θ is *d*-small then $\tilde{e}_i(\Theta)$, $e_i(\Theta)$ are again *d*-small, or 0.

Moreover, a *d*-small symbol has at most 2 total addable and removable *i*-boxes.

It follows that fixing any $i \in \mathbb{Z}/d\mathbb{Z}$, the *d*-small symbols belong to irreducible \mathfrak{sl}_2 -representations of highest weight 0, 1, or 2 for each pair (E_i, F_i) .

We show that belonging to an irreducible \mathfrak{sl}_2 -representation of highest weight at most 2 determines the decomposition numbers $[P_{\Theta} : \Delta_{\Theta'}]$ by induction using some E_i , unless S_{Θ} is cuspidal.

We can easily classify cuspidals S_{Θ} if Θ is *d*-small, and it is trivial to understand $[P_{\Theta} : \Delta_{\Theta'}]$ in that case.

The effect of the *i*-induction F_i can be described directly on $w_{\wedge\vee}(\Theta)$ and $c_{\wedge\vee}(\Theta)$. This allows us to prove the formula for decomposition numbers inductively.

Some motivation for the result

The *d*-small symbols are constructed so that "it's as if $d = \infty$ " from the perspective of the E_i 's acting on simples and Δ 's.

In the case $d = \infty$, Brundan and Stroppel showed that the blocks of the Hecke algebra of B_n are equivalent to $K_{k,m}$ -mod for various k, m. The Hecke algebra of B_n has Specht (standard) and simple modules labeled by charged bipartitions, that is by symbols. Our construction of $w_{\wedge\vee}(\Theta)$ is an adaptation of Brundan-Stroppel's construction.

It is known that the decomposition matrix of a Hecke algebra of type B embeds in the decomposition matrix of G_n for each Harish-Chandra series (excepting the principal series in types D_n and 2D_n which give rise to Hecke algebras of type D, but principal series aren't d-small).

For *d* large enough relative to the size of bipartitions, the Hecke algebra decomposition matrix will be given by the same rules as in the $d = \infty$ case. Our result extends this to the whole square submatrix of the *d*-small Harish-Chandra series in its block.

Obligatory example to finish

The matrix of parabolic Kazhdan-Lusztig polynomials of type $(W, P) = (S_4, S_2 \times S_2)$, evaluated at 1...

The decomposition matrix of the extended Khovanov arc algebra $K_{2,2}$...

The submatrix of the decomposition matrix of $\text{Sp}_{40}(q)$ given by the B_{3^2+3} -series in the block of B_{3^2+3} : (1³).(2², 1) when $d = 10 \dots$

