Groups of *p*-central type

Representation Theory Seminar, OIST

Benjamin Sambale

Leibniz Universität Hannover

10th October 2023

Benjamin Sambale (LUH)

Groups of *p*-central type

10th October 2023 1 / 25

Normal subgroups

- Let G be a finite group with a normal subgroup N.
- Let Irr(G) be the set of irreducible complex characters of G.
- For $\chi \in Irr(G)$ let χ_N be the restriction of χ to N.

Theorem (Clifford)

For every $\chi \in Irr(G)$ there exist $e \in \mathbb{N}$ and $\theta_1, \ldots, \theta_k \in Irr(N)$ such that

$$\chi_N = e(\theta_1 + \ldots + \theta_k).$$

Moreover, $\{\theta_1, \ldots, \theta_k\}$ is a *G*-orbit under conjugation.

Clifford correspondence

- We call e the ramification index of χ with respect to N.
- For $\theta \in \operatorname{Irr}(N)$ let G_{θ} be the stabilizer of θ in G.
- Let $Irr(G|\theta)$ be the set of $\chi \in Irr(G)$ such that θ is a constituent of χ_N .

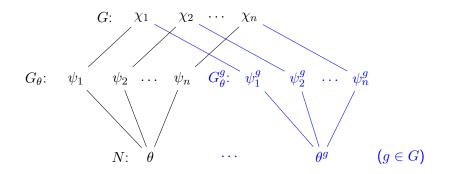
Theorem (Clifford correspondence)

For $\theta \in Irr(N)$ the map

$$\operatorname{Irr}(G_{\theta}|\theta) \to \operatorname{Irr}(G|\theta), \qquad \psi \mapsto \psi^G$$

is a bijection, which preserves the ramification index.

Diagram



Extensions

- Observation: e = 1 if and only if θ extends to $Irr(G_{\theta})$.
- $\bullet~ {\rm Then}~ {\rm Irr}(G|\theta)$ is completely determined by:

Theorem (Gallagher)

If $\hat{\theta} \in \operatorname{Irr}(G_{\theta})$ is an extension of $\theta \in \operatorname{Irr}(N)$, then

 $\operatorname{Irr}(G_{\theta}|\theta) = \left\{ \lambda \hat{\theta} : \lambda \in \operatorname{Irr}(G_{\theta}/N) \right\}.$

Extensions

Example

In each of the following situations $\theta \in Irr(N)$ extends to G_{θ} :

- $gcd(|N|, |G_{\theta}:N|) = 1.$
- all Sylow subgroups of G_{θ}/N are cyclic.
- $\mathrm{H}^2(G_\theta/N, \mathbb{C}^{\times}) = 0$ (Schur multiplier).

Bounds on the ramification index

- Now we consider the opposite situation, where $e=e_{\chi}$ is large.
- By Frobenius reciprocity,

$$\theta^{G_{\theta}} = \sum_{\chi \in \operatorname{Irr}(G_{\theta}|\theta)} e_{\chi}\chi,$$
$$|G_{\theta} : N|\theta(1) = \theta^{G_{\theta}}(1) = \sum_{\chi \in \operatorname{Irr}(G_{\theta}|\theta)} e_{\chi}\chi_{N}(1) = \theta(1) \sum_{\chi \in \operatorname{Irr}(G_{\theta}|\theta)} e_{\chi}^{2},$$
$$|G_{\theta} : N| = \sum_{\chi \in \operatorname{Irr}(G_{\theta}|\theta)} e_{\chi}^{2}.$$

Fully ramified characters

Theorem

For every $\chi \in Irr(G)$ the following assertions are equivalent:

1
$$\chi_N = e\theta$$
 for some $\theta \in Irr(N)$ and $e^2 = |G:N|$.

2
$$e\chi = \theta^G$$
 for some $\theta \in \operatorname{Irr}(N)$ and $e \in \mathbb{N}$ with $G_{\theta} = G$.

Definition

In the situation of the theorem, we call χ and θ fully ramified.

Fully ramified characters

Example

Let

$$G = \langle x, y \mid x^4 = y^2 = 1, \ x^y = x^{-1} \rangle \cong D_8,$$

$$N = \mathbb{Z}(G) = \langle x^2 \rangle \cong C_2$$

and $1 \neq \theta \in Irr(N)$. Then θ is fully ramified and $\theta^G = 2\chi$.

G	1	x^2	x	y	
λ_1	1	1	1	1	1
λ_2	1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ -2 \end{array} $	1	-1	-1
λ_3	1	1	-1	1	-1
λ_4	1	1	-1	-1	1
χ	2	-2	0	0	0

Groups of central type

- Using character triples, we can often assume that N = Z(G).
- Then $\chi(1)^2 = e_\chi^2 \theta(1)^2 = e_\chi^2 \le |G: \mathbf{Z}(G)|$ for every $\chi \in \operatorname{Irr}(G)$.

Definition

A group G is of central type if the following equivalent conditions hold:

- **()** There exists some $\chi \in Irr(G)$ with $\chi(1)^2 = |G : Z(G)|$.
- **2** There exists a fully ramified character $\theta \in Irr(Z(G))$.

Groups of central type

Theorem (Howlett-Isaacs, 1982)

Groups of central type are solvable.

- The theorem was conjectured in 1964 by Iwahori and Matsumoto.
- There was an incomplete proof attempt by Liebler and Yellen, 1979.
- The proof depends on the classification of finite simple groups.

Theorem (Gagola)

For every solvable group H there exists a group G of central type such that H is a subgroup of G/Z(G).

Groups of central type

The following is still open:

Conjecture (Humphreys)

If there exists $\theta \in Irr(Z(G))$ such that all irreducible constituents of θ^G have the same degree, then G is solvable.

- This was proved by Higgs if θ^G has (at most) two constituents.
- The conjecture also holds if the constituents of θ^G are conjugate in ${\rm Aut}(G)$ by Navarro–Rizo.

Brauer characters

- Replace \mathbb{C} by an algebraically closed field F of characteristic p > 0.
- Let $G_{p'}$ be the set of p'-elements of G (order coprime to p).
- The *F*-representations of *G* correspond to Brauer characters $\chi \colon G_{p'} \to \mathbb{C}$.
- Let IBr(G) be the set of irreducible Brauer characters of G.
- If $p \nmid |G|$, then $G_{p'} = G$ and Irr(G) = IBr(G).
- Clifford theory works in the same way for Brauer characters.

Groups of p-central type

Definition

We call G of p-central type if there exists a fully ramified Brauer character $\theta \in IBr(Z(G))$, i. e. $\theta^G = e\chi$ for some $\chi \in IBr(G)$ and $e \in \mathbb{N}$.

Theorem (S., 2023)

Groups of *p*-central type are solvable.

- The theorem was proved by Navarro–Späth–Tiep for $p \neq 5$.
- For p = 5, they show that a minimal counterexample has order $> 10^{46}$ and involves $6.A_6$.
- The theorem implies Howlett–Isaacs by choosing $p \nmid |G|$.

Groups of p-central type

Proposition (Navarro-Späth-Tiep)

For every solvable group G the following assertions are equivalent:

- **1** G has p-central type.
- 2 There exists $\chi \in IBr(G)$ such that $\chi(1)^2 = |G: Z(G)|_{p'}$.

This is false for the non-solvable group G = SL(2, 17) with p = 17.

Theorem (S.)

For every solvable group H and every prime p there exists a group G of p-central type such that H is a subgroup of G/Z(G).

Blocks

• The group algebra FG splits into indecomposable ideals

$$FG = B_1 \oplus \ldots \oplus B_n,$$

which are called the p-blocks of G.

 \bullet Each block is an $F\-$ algebra and the irreducible representations of G distribute into blocks

$$Irr(G) = Irr(B_1) \dot{\cup} \dots \dot{\cup} Irr(B_n),$$

$$IBr(G) = IBr(B_1) \dot{\cup} \dots \dot{\cup} IBr(B_n).$$

• If $p \nmid |G|$, then $|\operatorname{Irr}(B_i)| = |\operatorname{IBr}(B_i)| = 1$ for $i = 1, \ldots, n$.

Blocks of solvable groups

Let $N := O_{p'}(G)$ be the largest normal p'-subgroup of G.

Theorem (Fong)

Let B be a block of a solvable group G with $\chi \in Irr(B)$. Let $\theta \in Irr(N) = IBr(N)$ be a constituent of χ_N . Then $Irr(B) = Irr(G|\theta)$ and $IBr(B) = IBr(G|\theta)$.

Corollary

If θ is fully ramified as a Brauer character, then l(B) := |IBr(B)| = 1.

Question (Kessar-Linckelmann)

Is every block B with $l(B) = 1 \mbox{ Morita equivalent to a block of a solvable group?}$

Nilpotent blocks

- If G/N is a *p*-group, then every $\theta \in IBr(N)$ is fully ramified by Green's theorem.
- Blocks arising in this way are called nilpotent.
- Every nilpotent block is Morita equivalent to the group algebra of a *p*-group by Puig's theorem.

Example

Let $G = S_3$ and let θ be the trivial character of $N = O_{2'}(G) = A_3$. Then the principal 2-block B of G is nilpotent, $B \cong F[G/N] \cong FC_2$ and

$$\operatorname{Irr}(B) = \operatorname{Irr}(G|\theta) = \operatorname{Irr}(G/N) = \{1_G, \operatorname{sgn}\}.$$

Non-nilpotent blocks

- So far, all non-nilpotent blocks with l(B) = 1 were constructed for solvable groups G with abelian Sylow p-subgroups.
- In this case $G/O_{p'}(G)$ has a normal Sylow *p*-subgroup (Hall-Higman lemma).
- In general, let $\mathcal{O}_{pp'}(G)/\mathcal{O}_{p'}(G) := \mathcal{O}_p(G/\mathcal{O}_{p'}(G)).$

Definition

For a solvable group G, define the *p*-length $l_p(G)$ inductively:

$$l_p(G) := \begin{cases} 0 & \text{if } p \nmid |G|, \\ 1 + l_p(G/\mathcal{O}_{pp'}(G)) & \text{otherwise.} \end{cases}$$

Non-nilpotent blocks

Theorem (S.)

There exist solvable groups with arbitrarily large p-length and non-nilpotent p-blocks B (of maximal defect) with l(B) = 1.

Proof.

- Let H be of p-central type with "large" p-length and Z := Z(H).
- Let V be an \mathbb{F}_p -vector space on which H/Z acts faithfully.
- Then $G = V \rtimes H$ has a non-nilpotent block B (of maximal defect) with l(B) = 1.

Non-nilpotent blocks

Example

The group

$$H := \texttt{SmallGroup}(54, 8) \cong 3^{1+2}_+ \rtimes C_2$$

is of 2-central type with $Z \cong C_3$ and H/Z acts faithfully on $V \cong \mathbb{F}_2^4$. Now

$$G := V \rtimes H =$$
SmallGroup $(864, 3996)$

has 2-length 2 and possess a non-nilpotent 2-block B with defect 5 and l(B)=1.

Lifting Brauer characters

- For $\chi \in Irr(G)$ the restriction χ^0 to $G_{p'}$ is a Brauer character of G.
- Conversely, every $\varphi \in IBr(G)$ is an integral linear combination of characters χ^0 for some $\chi \in Irr(G)$.

Conjecture (basic sets)

For every block B of G there exists $C \subseteq Irr(B)$ such that $\{\chi^0 : \chi \in C\}$ is a \mathbb{Z} -basis of $\mathbb{Z}IBr(B)$.

For solvable groups, the conjecture follows from the Fong–Swan theorem: every $\varphi \in IBr(G)$ lifts to Irr(G), i.e. $\varphi = \chi^0$ for some $\chi \in Irr(G)$.

Lifting Brauer characters

This does not hold for non-solvable groups:

Example

For the principle 2-block *B* of *A*₅ we have $Irr(B) = \{\chi_1, ..., \chi_4\}$ and $IBr(B) = \{\chi_1^0, \chi_2^0 - \chi_1^2, \chi_3^0 - \chi_1^0\}.$

			x_2						1	T_{2}	<i>r</i> -	x_{5}^{2}	
	χ_1	1	1	1	1	1					$\frac{x_5}{1}$		
	χ_2	3	-1	0	ω	ω^*		, -			$-\omega^*$		
			-1								$-\omega$ $-\omega$		
	χ_4	5	1	-1	0	0		φ_3	2	-1	$-\omega$	$-\omega$	
where $\omega := \frac{1+\sqrt{5}}{2}$ and $\omega^* := \frac{1-\sqrt{5}}{2}$.													

Unique lifts

Kessar-Linckelmann's question motivates the following theorem:

```
Theorem (Malle-Navarro-Späth)
```

If l(B) = 1 then $IBr(B) = \{\chi^0\}$ for some $\chi \in Irr(B)$.

- The proof relies (again) on the classification of finite simple groups.
- If B is nilpotent, then $\varphi \in IBr(B)$ has at least p lifts unless |Irr(B)| = 1.
- Navarro has asked me whether there exists blocks B with l(B) = 1 such that $\varphi \in IBr(B)$ has a unique lift.
- If a group H acts on a vector space V, we denote the stabilizer of $v \in V$ in H by H_v .

Unique lifts

Theorem (S.)

Let H be a p'-group of central type such that H/Z(H) acts faithfully on an \mathbb{F}_p -vector space V. Suppose $|H : H_v| > |H_v : Z(H)|$ for every $v \in V \setminus \{0\}$. Then $G := V \rtimes H$ has a p-block B with $\operatorname{IBr}(B) = \{\varphi\}$ such that φ has a unique lift.

Example

The group

$$H := \texttt{SmallGroup}(128, 144)$$

has central type and H/Z(H) or order 64 acts faithfully on $V = \mathbb{F}_5^4$ with the desired property. This yields a 5-block of G with |G| = 40,000.