Newell-Littlewood Numbers

Alexander Yong
University of Illinois at Urbana-Champaign

Based on joint work with:
Shiliang Gao, Gidon Orelowitz, and Nicolas Ressayre

Okinawa Institute of Science and Technology
Representation Theory Seminar
November 28, 2023

Representations of $G L_{n}$

Def: $G L_{n}$ is the group of invertible $n \times n$ matrices over \mathbb{C}.
Def: A (linear) representation of $G L_{n}$ is a homomorphism $\phi: G L_{n} \rightarrow G L(\bar{V})$ for some d-dimensional vector space V.
Equivalently: V is a $G L_{n}$-module by $g \cdot v=\phi(g) v$.
Ex: $G L_{2} \subset V=\operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)=\mathbb{C}-\operatorname{span}\left\{x^{2}, 2 x y, y^{2}\right\}$
by change of coordinates

$$
x \mapsto a x+c y \quad y \mapsto b x+d y
$$

Hence

$$
x^{2} \mapsto(a x+c y)^{2}, 2 x y \mapsto 2(a x+c y)(b x+d y), y^{2} \mapsto(b x+d y)^{2}
$$

and the homomorphism is defined by

$$
\phi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a c & b c+a d & b d \\
c^{2} & 2 c d & d^{2}
\end{array}\right] .
$$

Representations of $G L_{n}$ II

Def: ϕ is irreducible if V has only trivial $G L_{n}$-submodules.

Theorem (I. Schur 1901)

The irred. polynomial representations ϕ_{λ} of $G L_{n}$ are labelled by $\lambda \in \operatorname{Par}_{n}=\{$ partitions with $\leqslant n$ rows $\}$.

Ex: Let $n=3$. If $\lambda=(4,2,1)$ then its Young diagram is

Def: The character of ϕ is $\operatorname{Trace}\left(\phi\left(\left[\begin{array}{lll}x_{1} & & \\ & \ddots & \\ & & x_{n}\end{array}\right]\right)\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
Ex: $\operatorname{Tr} \phi\left(\left[\begin{array}{cc}x_{1} & 0 \\ 0 & x_{2}\end{array}\right]\right)=\operatorname{Tr}\left[\begin{array}{ccc}x_{1}^{2} & 0 & 0 \\ 0 & x_{1} x_{2} & 0 \\ 0 & 0 & x_{2}^{2}\end{array}\right]=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$
Def: The Schur polynomial $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ is the character of ϕ_{λ}. (Our example is $s_{(2,0)}$).

Def: The tensor product $V \otimes_{\mathbb{k}} W$ of vector spaces over \mathbb{k} is defined by

$$
\begin{gathered}
V \times W \xrightarrow{\text { bilinear } f} V \otimes_{\mathbb{k}} W \\
\text { bilinear } g \searrow \underbrace{\swarrow!l i n e a r ~ h}
\end{gathered}
$$

- Spanned by $v \otimes w$ subject to $\left(v+v^{\prime}\right) \otimes w=v \otimes w+v^{\prime} \otimes w$,

$$
v \otimes\left(w+w^{\prime}\right)=v \otimes w+v \otimes w^{\prime}, r(v \otimes w)=(r v) \otimes w=v \otimes(r w)
$$

- If V and W are $G L_{n}$-modules, so is $V \otimes_{\mathbb{C}} W$, by $g \cdot(v \otimes w)=g v \otimes g w$. Since $G L_{n}$ is reductive,

$$
V_{\lambda} \otimes_{\mathbb{C}} V_{\mu}=\bigoplus_{v} V_{v}^{\oplus c_{\lambda, \mu}^{v}}
$$

- (characters) $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right) s_{\mu}\left(x_{1}, \ldots, x_{n}\right)=\sum_{v} c_{\lambda, \mu}^{v} s_{v}\left(x_{1}, \ldots, x_{n}\right)$.

Tensor products II

Example: $V_{(2,0)} \otimes V_{(2,0)} \cong \operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right) \otimes \operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)$.
A basis consists of the nine tensors

$$
x^{2} \otimes x^{2}, x^{2} \otimes(2 x y), x^{2} \otimes y^{2}, \ldots, y^{2} \otimes x^{2}, y^{2} \otimes(2 x y), y^{2} \otimes y^{2}
$$

$G L_{2}$ acts diagonally, e.g., $x^{2} \otimes y^{2} \mapsto(a x+c y)^{2} \otimes(b x+d y)^{2}$.
The homomorphism: $\rho^{\otimes 2}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{ccc}a^{2} & 2 a b & b^{2} \\ a c c+a d & b d \\ c^{2} & 2 c d & d^{2}\end{array}\right] \otimes\left[\begin{array}{ccc}a^{2} & 2 a b & b^{2} \\ a c & b c+a d & b d \\ c^{2} & 2 c d & d^{2}\end{array}\right]$

Example: $V_{2,0} \otimes V_{2,0} \cong \operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right) \otimes \operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)$.
A basis consists of the nine tensors

$$
x^{2} \otimes x^{2}, x^{2} \otimes(2 x y), x^{2} \otimes y^{2}, \ldots, y^{2} \otimes x^{2}, y^{2} \otimes(2 x y), y^{2} \otimes y^{2}
$$

$G L_{2}$ acts diagonally, e.g., $x^{2} \otimes y^{2} \mapsto(a x+c y)^{2} \otimes(b x+d y)^{2}$.
The character: $\operatorname{Trace} \rho^{\otimes 2}\left(\left[\begin{array}{cc}x_{1} & 0 \\ 0 & x_{2}\end{array}\right]\right)=\operatorname{Trace}\left[\begin{array}{ccc}x_{1}^{2} & 0 & 0 \\ 0 & x_{1} x_{2} & 0 \\ 0 & 0 & x_{2}^{2}\end{array}\right] \otimes\left[\begin{array}{ccc}x_{1}^{2} & 0 & 0 \\ 0 & x_{1} x_{2} & 0 \\ 0 & 0 & x_{2}^{2}\end{array}\right]$

$$
\begin{gathered}
=\operatorname{Trace}\left[\begin{array}{ccc}
x_{1}^{2}\left[\begin{array}{ccc}
x_{1}^{2} & 0 & 0 \\
0 & x_{1} x_{2} & 0 \\
0 & 0 & x_{2}^{2}
\end{array}\right] & 0 & 0 \\
0 & x_{1} x_{2}\left[\begin{array}{ccc}
x_{1}^{2} & 0 & 0 \\
0 & x_{1} x_{2} & 0 \\
0 & 0 & x_{2}^{2}
\end{array}\right] & 0 \\
0 & x_{2}^{2}\left[\begin{array}{ccc}
x_{1}^{2} & 0 \\
0 & x_{1} x_{2} & 0 \\
0 & 0 & x_{2}^{2}
\end{array}\right] .
\end{array}\right] \\
=\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)^{2}=s_{(2,0)}\left(x_{1}, x_{2}\right)^{2} .
\end{gathered}
$$

The Littlewood-Richardson coefficients $c_{\lambda, \mu}^{\vee}$ I

The tensor product multiplicities $c_{\lambda, \mu}^{\nu}$ are known as the Littlewood-Richardson coefficients.

Theorem (Littlewood-Richardson rule)

$c_{\lambda, \mu}^{\vee}$ counts the number of semistandard Young tableaux T of shape ν / λ with μ_{i}-many i 's that are "ballot".

Ex. Let $\lambda=\square \square, v=\square \square, \mu=\square$.
What is the multiplicity of V_{V} in $V_{\lambda} \otimes V_{\mu}$?
The Theorem counts LR tableaux

$$
\Longrightarrow c_{(3,1),(2,1)}^{(4,2,1)}=2 .
$$

The Littlewood-Richardson coefficients $c_{\lambda, \mu}^{\nu}$ II

Question

Characterize when $c_{\lambda, \mu}^{\gamma}>0$.

Fact: If $c_{\lambda, \mu}^{\gamma}>0$ and $c_{\alpha, \beta}^{\gamma}>0 \Longrightarrow c_{\lambda+\alpha, \mu+\beta}^{\nu+\gamma}>0$ (semigroup)
Def: The LR-semigroup is

$$
L R_{n}=\left\{(\lambda, \mu, v) \in \operatorname{Par}_{n}^{3}: c_{\lambda, \mu}^{v}>0\right\}
$$

Def: The saturated LR-semigroup is

$$
\operatorname{LRsat}_{n}=\left\{(\lambda, \mu, v) \in\left(\operatorname{Par}_{n}^{\mathbb{Q}}\right)^{3}: \exists t \in \mathbb{Q}>0 \text { s.t. } c_{t \lambda, t \mu}^{t v}>0\right\} .
$$

Theorem (Knutson-Tao '99)

The $L R$ coefficients are saturated: $L R_{n}=L R s a t_{n} \cap \mathbb{Z}^{3 n}$ and both generate the same rational polyhedral cone $P x \geqslant 0$.

LRsat=eigencone

Def: A complex valued matrix M is Hermitian if $M={ }^{t} \bar{M}$.
The Spectral Theorem: M is diagonalizable; has real eigenvalues.

Eigenvalue problem (19th century):

Which $(\lambda, \mu, v) \in\left(P a r_{n}^{\mathbb{R}}\right)^{3}$ occur as eigenvalues of three Hermitian $n \times n$ matrices A, B, C under the condition $A+B=C$?

Def: The set Eigen $_{n}$ of such $(\lambda, \mu, v) \in\left(\operatorname{Par}_{n}^{\mathbb{R}}\right)^{3}$ is the eigencone. Klyachko solved the Eigenvalue problem. One of his theorems is:

Theorem (Klyachko, '98)

$L R s a t_{n}$ and Eigen $_{n}$ generate the same rational polyhedral cone $P x \geqslant 0$.

An example

$(\lambda, \mu, v)=(\square \square, \square \neg, \square \square \square) \in L R_{2} \subseteq L R^{\square} \operatorname{sat}_{2}$.
Klyachko's theorem: $\exists A, B, C \in$ Hermitian $_{2 \times 2}$ with eigenvalues
$\lambda=(41), \mu=(31), v=(63)$ and $A+B=C$.
After conjugating by a unitary, we may solve for a, b, c :

$$
\left(\begin{array}{ll}
a & b \\
\bar{b} & c
\end{array}\right)+\left(\begin{array}{cc}
6-a & -b \\
-\bar{b} & 3-c
\end{array}\right)=\left(\begin{array}{ll}
6 & 0 \\
0 & 3
\end{array}\right) .
$$

Using Trace $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)=\lambda_{1}+\lambda_{2}, \operatorname{det}\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)=\lambda_{1} \lambda_{2}$, etc. reduces to two linear equations in a and $c \Longrightarrow$

$$
\left(\begin{array}{cc}
\frac{11}{3} & \sqrt{\frac{8}{9}} e^{i \theta} \\
\sqrt{\frac{8}{9}} e^{-i \theta} & \frac{4}{3}
\end{array}\right)+\left(\begin{array}{cc}
\frac{7}{3} & -\sqrt{\frac{8}{9}} e^{i \theta} \\
-\sqrt{\frac{8}{9}} e^{-i \theta} & \frac{5}{3}
\end{array}\right)=\left(\begin{array}{ll}
6 & 0 \\
0 & 3
\end{array}\right) .
$$

Klyachko's inequalities for L Rsat $_{n}=$ Eigen $_{n}$

Def: For $n \in \mathbb{Z}_{\geqslant 0}$, the Klyachko inequalities are

$$
\sum_{k \in K} v_{k} \leqslant \sum_{i \in I} \lambda_{i}+\sum_{j \in J} \mu_{j}
$$

for $\varnothing \subseteq I, J, K \subseteq[n]$ such that $t=\# I=\# J=\# K$ and $c_{\tau(I), \tau(J)}^{\tau(K)}>0$, where $\tau(S)=\left(s_{t}-t, s_{t-1}-(t-1), \ldots, s_{1}-1\right) \in \operatorname{Par}_{n}$ for $\mathrm{S}=\left\{\mathrm{s}_{1}<s_{2}<\ldots<s_{t}\right\} \in 2^{[n]}$.

Theorem (Klyachko '98)

$(\lambda, \mu, v) \in L R S a t_{n}("=$ "Eigen $n) \Longleftrightarrow(\lambda, \mu, v)$ satisfies Klyachko's inequalities and $|v|=|\lambda|+|\mu|$.

Theorem (Klyachko '98 + Knutson-Tao '99)

Horn's inequalities for Eigen ${ }_{n}$ hold.

Preview of NL results

Summary of theorems (Gao-Orelowitz-Ressayre-Y. '21):

We give "Newell-Littlewood generalizations" of Klyachko's results for the classical groups $\mathrm{SO}_{2 n+1}, \mathrm{Sp}_{2 n}$ and $\mathrm{SO}_{2 n}$.

Definition: $S O_{m}$ are the $m \times m$ matrices M of determinant 1 that preserve a non-degenerate symmetric bilinear form $\langle\bullet, \bullet\rangle$, that is

$$
\langle\vec{v}, \vec{w}\rangle=\langle M \vec{v}, M \vec{w}\rangle .
$$

$S p_{2 n}$ is defined similarly, except for a skew-symmetric bilinear form.

Theorem (Weyl '39)

For each classical group G there is a construction of representations V_{λ} for each $\lambda \in$ Par $_{n}$. These are irreducible except for $\mathrm{SO}_{2 n}$ when $\lambda_{n} \neq 0$ (in that case it is a sum of two irreducibles).

Newell-Littlewood Numbers I

Let G be classical group. Tensor products of irreps decompose:

$$
V_{\lambda} \otimes V_{\mu} \cong \bigoplus_{\lambda \in \operatorname{Par}_{n}} V_{v}^{\oplus t_{\lambda, \mu}^{\nu}(G)}
$$

Definition

For $\lambda, \mu, v \in \operatorname{Par}_{n}$, the Newell-Littlewood number is

$$
N_{\lambda, \mu, v}=\sum_{\alpha, \beta, \gamma \in \operatorname{Par}_{n}} c_{\alpha, \beta}^{\lambda} c_{\beta, \gamma}^{\mu} c_{\gamma, \alpha}^{\nu}
$$

Theorem (Koike-Terada '87)

- $t_{\lambda, \mu}^{\nu}(G)=N_{\lambda, \mu, v}$ when $\ell(\lambda)+\ell(\mu) \leqslant n$.
- In particular, this number doesn't depend on which classical group $G\left(=S O_{2 n}, S O_{2 n+1}, S p_{2 n}\right)$.
- There is a basis of symmetric functions $\left\{s_{[\lambda]}\right\}$ that are the "universal characters".

Newell-Littlewood numbers II

$$
N_{\lambda, \mu, v}=\sum_{\alpha, \beta, \gamma \in \operatorname{Par}_{n}} c_{\alpha, \beta}^{\lambda} c_{\beta, \gamma}^{\mu} c_{\gamma, \alpha}^{\nu}
$$

Facts from the definition:

- $|v|=|\lambda|+|\mu| \Longrightarrow N_{\lambda, \mu, v}=c_{\lambda, \mu}^{v}$ (generalizes LR).
- If $N_{\lambda, \mu, v}>0, N_{\pi, \theta, \kappa}>0 \Longrightarrow N_{\lambda+\pi, \mu+\theta, v+\kappa}>0$ (semigroup).
- $N_{\lambda, \mu, v}>0$ only if $|\lambda|+|\mu|+|v| \equiv 0(\bmod 2)$ (parity).

Def: The NL-semigroup is $N L_{n}=\left\{(\lambda, \mu, v) \in \operatorname{Par} r_{n}^{3}: N_{\lambda, \mu, v}>0\right\}$.
Def: The saturated NL-semigroup is

$$
N L s a t_{n}=\left\{(\lambda, \mu, v) \in \operatorname{Par}_{n}^{3}: \exists t \in \mathbb{Q}_{>0} \text { s.t. } N_{t \lambda, t \mu, t v}>0\right\} .
$$

Conjecture: (Gao-Orelowitz-Y., 2020)

$$
N L_{n}=N L \operatorname{sat} t_{n} \cap\left\{\left(x_{1}, x_{2}, \ldots, x_{3 n}\right) \in \mathbb{Z}_{\geqslant 0}^{3 n}: \sum x_{i} \equiv 0(\bmod 2)\right\} .
$$

$N L s a t_{n}$ is an eigencone

Theorem (Gao-Orelowitz-Ressayre-Y., '21)

Let $\lambda, \mu, v \in \operatorname{Par}_{n}$. Then $(\lambda, \mu, v) \in N L s a t_{n} \Longleftrightarrow$ there exist three matrices

$$
M_{1}, M_{2}, M_{3} \in\left\{\left(\begin{array}{cc}
A & B \\
{ }^{t} \bar{B} & -{ }^{t} A
\end{array}\right):{ }^{t} \bar{A}=A \text { and }{ }^{t} B=B\right\}
$$

such that $M_{1}+M_{2}+M_{3}=0$ which have eigenvalues $\hat{\lambda}, \hat{\mu}, \hat{\nu}$, where

$$
\hat{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n},-\lambda_{n}, \ldots,-\lambda_{1}\right)
$$

The set of matrices in the theorem is $\mathfrak{s p}(2 n, \mathbb{C}) \cap$ Hermitian $_{2 n}$ and is derived from a theorem of [Belkale-Kumar '06] (more later).

Extended Horn/Klyachko Inequalities

Def: (Gao-Orelowitz-Y., '20) For $n \in \mathbb{N}$, the extended Horn/Klyachko inequalities are

$$
\sum_{i \in I^{\prime}} \lambda_{i}+\sum_{j \in J^{\prime}} \mu_{j}+\sum_{k \in K^{\prime}} v_{k} \leqslant \sum_{i \in l} \lambda_{i}+\sum_{j \in J} \mu_{j}+\sum_{k \in K} v_{k}
$$

for $I, I^{\prime}, J, J^{\prime}, K, K^{\prime} \in 2^{[n]}$ s.t.
(i) $I \cap I^{\prime}=J \cap J^{\prime}=K \cap K^{\prime}=\varnothing$;
(ii) $\# I=\# J^{\prime}+\# K^{\prime}, \# J=\# I^{\prime}+\# K^{\prime}, \# K=\# I^{\prime}+\# J^{\prime}$;
(iii) $\sum_{\alpha^{1}, \alpha^{2}, \beta^{1}, \beta^{2}, \gamma^{1}, \gamma^{2}} c_{\alpha^{1}, \alpha^{2}}^{\tau\left(I^{\prime}\right)} c_{\alpha^{2}, \beta^{1}}^{\tau(J)} c_{\beta^{1}, \beta^{2}}^{\tau\left(K^{\prime}\right)} c_{\beta^{2}, \gamma^{1}}^{\tau(I)} c_{\gamma^{1}, \gamma^{2}}^{\tau\left(J^{\prime}\right)}{ }_{\gamma^{2}, \alpha^{1}}^{\tau(K)}>0$

NLsat-conjecture: (Gao-Orelowitz-Y., '20)

$(\lambda, \mu, v) \in N L s a t_{n} \Longleftrightarrow(\lambda, \mu, v)$ satisfy above inequalities.

Main results I

Theorem A (Gao-Orelowitz-Ressayre-Y., '21)

The NLsat-conjecture (and a better version) is true.

The proof uses:

Theorem B (Gao-Orelowitz-Ressayre-Y., '21)

For any $m \geqslant n \geqslant 1, N L s a t_{n}=S p_{2 m}-$ sat $\cap\left(\operatorname{Par}_{n}^{\mathbb{Q}}\right)^{3}$, where

$$
S p_{2 m}-\text { sat }=\left\{(\lambda, \mu, v) \in \operatorname{Par}_{m}: \exists k \in \mathbb{Q}_{>0}, t_{k \lambda, k \mu}^{k v}\left(S p_{2 m}\right)>0\right\} .
$$

Theorem B is trivial for $m \geqslant 2 n$ by definition of NL numbers, but is nontrivial for $n \leqslant m<2 n$. The argument uses [Ressayre '10] plus a dose of "Schubert calculus".

Main results II

[Belkale-Kumar '06] gives minimal inequalities for the saturated tensor cone in general type and prove an eigencone description. Thus Theorem B implies our earlier NL eigencone description and

Corollary C: (Gao-Orelowitz-Ressayre-Y., '21)

We give the first minimal set of inequalities (explicit description omitted here) for $N L s a t_{n}$.

Corollary C to Theorem A uses a result of R . King that expresses the " 6 -fold NL numbers" as an LR coefficient. Hence we obtain the first "tensor product-free" (i.e., Horn-like) description of NLsat ${ }_{n}$.

Theorem D: (Gao-Orelowitz-Ressayre-Y., '21); [Rough version]
NL numbers factor as $\mathrm{LR} \times$ (smaller NL) on the boundary of NLsat ${ }_{n}$.

Theorem D is an NL analogue of the LR factorization theorems of

Main Results III

Theorem A also shows:

Corollary E: (Gao-Orelowitz-Ressayre-Y., '21)

The NL-saturation conjecture of [Gao-Orelowitz-Y., '20] $\Longrightarrow N L_{n}$ is also described by the extended Horn/Klyachko inequalities + the parity constraint.

In 2020, Gao-Orelowitz-Y., proves results giving evidence for the implication (true for $n=2$; the EH/K inequalities are necessary for $N_{\lambda, \mu, v}>0$; sufficient when λ, μ, or v is a row or column).
[Gao-Orelowitz-Ressayre-Y., '21] proves (computationally) that it holds for $n \leqslant 5$.

Thank you!

Horn vs extended inequalities, $n=2$

Horn inequalities
Extended Horn/Klyachko inequalities

$v_{1} \leqslant \lambda_{1}+\mu_{1}$	$v_{1} \leqslant \lambda_{1}+\mu_{1}, \lambda_{1} \leqslant \mu_{1}+v_{1}, \mu_{1} \leqslant v_{1}+\lambda_{1}$
$v_{2} \leqslant \lambda_{1}+\mu_{2}$,	$v_{2} \leqslant \lambda_{1}+\mu_{2}, \lambda_{2} \leqslant \mu_{1}+v_{2}, \mu_{2} \leqslant v_{1}+\lambda_{2}$,
$v_{2} \leqslant \lambda_{2}+\mu_{1}$	$v_{2} \leqslant \lambda_{2}+\mu_{1}, \lambda_{2} \leqslant \mu_{2}+v_{1}, \mu_{2} \leqslant v_{2}+\lambda_{1}$
$\|v\|=\|\lambda\|+\|\mu\|$,	$\|v\| \leqslant\|\lambda\|+\|\mu\|,\|\lambda\| \leqslant\|\mu\|+\|v\|,\|\mu\| \leqslant\|v\|+\|\lambda\|$
	$\lambda_{1}+\mu_{2} \leqslant \lambda_{2}+\mu_{1}+\|v\|, \mu_{1}+v_{2} \leqslant \mu_{2}+v_{1}+\|\lambda\|$
	$v_{1}+\lambda_{2} \leqslant v_{2}+\lambda_{1}+\|\mu\|, \lambda_{1}+v_{2} \leqslant \lambda_{2}+v_{1}+\|\mu\|$
	$\mu_{1}+\lambda_{2} \leqslant \mu_{2}+\lambda_{1}+\|v\|, v_{1}+\mu_{2} \leqslant v_{2}+\mu_{1}+\|\lambda\|$

Papers presented

[1] Shiliang Gao, Gidon Orelowitz, and Alexander Yong, Newell-Littlewood numbers, Trans. Amer. Math. Soc. 374 (2021), 6331-6366.
[2] Shiliang Gao, Gidon Orelowitz, and Alexander Yong, Newell-Littlewood numbers II: extended Horn inequalities, Algebr. Comb. 5 (2022), no. 6, 1287-1297.
[3] Shiliang Gao, Gidon Orelowitz, Nicolas Ressayre, and Alexander Yong, Newell-Littlewood numbers III: eigencones and GIT-semigroups, arXiv:2107.03152.

