Irreducible restrictions from symmetric groups to subgroups

(OIST, March 2021)

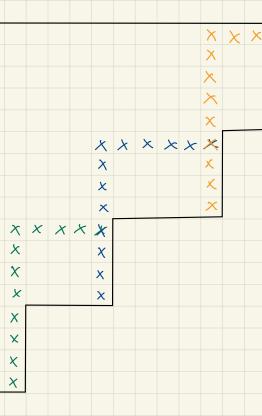
\$1. Introduction.

F algebraically closed field of characteristic p≥0

· D² irreducible FSn-module corresponding to a p-regular partition 2 of n

Theorem 1. (Jantzen-Seitz'92, K'94) D² j is irreducible (=> 2 is a JS partion,

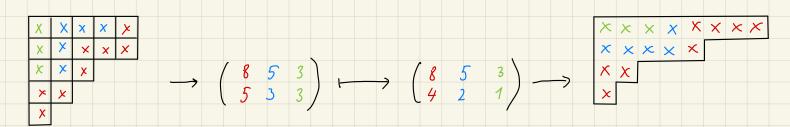
i.e. p divides all hooks as shown:



Theorem 2.
$$(K'.96, Ford - K'.97, Bessenrodt - Olsson'98,...) $D^{2} \otimes sign \cong D^{M(2)}$, where$$

M is the Mullineux involution.

For example, for p=5



Theorem 3. (Gow-K. '99, Bessenrodt -K. OO, Graham - James '00, Morotti'18). Suppose dim D^{λ} , dim $D^{\mu} > 1$, and $D^{\lambda} \otimes D^{\mu} \cong D^{\nu}$. Then p = 2, n = 2m with m odd, and (2, p, v) or (p, 2, v) are in

 $\left\{ \left((m+1, m-1), (2m-2j-1, 2j+1), (m-j, m-j-1, j+1, j) \right) \right\}$ $0 \leq j < \frac{m-1}{2}$

Auestion. Could all these results be made natural parts of one big theorem / program ?

Answer. Yes, they are natural parts of Aschbacher-Scott program on classification of maximal subgroups of finite classical groups.

\$2. Aschbacher-Scott program.

· Meta-goal: undestand maximal subgroups in finite groups I or equivalently, understand primitive permutation groups (a transitive permutation group T is primitive (=> a point stabilizer subgroup is maximal in T)

· A theorem of Aschbacher and Scott (1985) in some sense "reduces" the problem to the case where I is almost quari-ninple:

 $S \leq \Gamma/_{Z(\Gamma)} \leq Aut(S)$ (S a shiple group).

For example, if S=An, we get FE {An, Sn, Ân, Sn, ... }

· From now on let I be almost quan-nimple.

· Due to work of many people (Liebleck-Praeger-Saxel (1987), Liebeck-Seitz (1990), Testerman (1988), Borovik, ...) the problem is mainly reduced to the case where $\Gamma = Cl(V)$ is a classical group of Lie type.

Aschbacher's Theorem (1984). Let T= Cl(V) be a finite clamical group with the natural module V over F (for example, $SL(V) \leq \Gamma \leq GL(V)$, G = Sp(V), G = SU(V), $G = SO^{(4)}(V)$, ...). Let $G < \Gamma$ be a maximal subgroup. Then $G \in \mathcal{C}_1 \cup \dots \cup \mathcal{C}_g \cup \mathcal{S}$ where 61,..., 68 are various "standard constructions", for example, En = { stabilizers of non-trivial proper subspaces UCV s.t. U is non-degenerate or totally isotropic } $\mathcal{E}_{4} = \{ \text{"tensor product subgroups"}: G = Cl(V_{2}) \otimes Cl(V_{2}) \text{ for } V = V_{1} \otimes V_{2} \}$ 68 = Eclamical subgroups 3 $(r, g, Sp(V) \subset SL(V))$ and stand S = { almost quari-ningle groups that act absolutely irreducibly on V }.

• Aschbacher's Theorem is a result in one direction if $G < \Gamma = Cl(V)$ is a maximal subgroup then it is one of the following ... But of course we want the converse, too! Let $H \leq \Gamma$ be one of the subgroups in 6, U. .. U 6, U S. Is it maximal? "As a rule", yes (whatever this means). "As-a-rule-yes-principle".

Obtaining the converse of Aschbacher's Theorem and thus classifying the maximal subgroups in finite clamical groups is sometimes called the Aschbacher-Scott program.

The case, HE & U. U & were mostly dealt with by Kleidman - Liebeck '1990 (see also Bray - Holt - Roney Dougal '2013).

· So we may assume that $H \in S$, i.e. H is an AQS group acting on V absolutely irreducibly. If H is not maximal, by Aschbacher's Theorem applied again,

 $H < G \in \mathcal{C}_1 \cup \dots \cup \mathcal{C}_g \cup \mathcal{S}.$

For example, GE & means that V is tensor decomposable, which is exactly how Theorem 3 fits into the program.

Note that Theorem 3 has infinitely many examples of tensor decomposable irreducible V's over Sn, yet there are "few of them", and they are classifiable - this is an illustration of the above "As -a -rule-yes-principle".

• The most difficult and the most open case is when GES, i.e. we have an absolutely irreducible FG-module s.t. VIH is irreducible Note that Theorem 1 about irreducible restrictions $D^{2}J_{s_{n-1}}$ fits right in, as does Theorem 2 because in characteristic > 2 $D^{2}J_{A_{n}}$ is irreducible if and only if $M(\lambda) \neq \lambda$. For p=2, the irreducible restrictions $D^{\lambda}J_{A}$ were described by Benson 1988. So for all p, we have the explicit class P'(n) of (p-regular) partitions for which D² J_{An} is irreducible.

Irreducible Restriction Problem. Let G be an almost quari-nuple group. Describe pairs (V, H), where V is an FG-module of dimension >1 and H<G is a mbgroup such that VIH is irreducible.

· This is more general than what Aschbacher-Scott program requires (H is artitrary), but also nore natural/seautiful.

Today I want to discuss the problem where G=Sn. Other relevant cases, which I will skip are:

• G=An (done: Saxl'1987 (p=0), K. - Sheth '2002 (p=3), K. - Morotti-Tiep '2020)

• G = Ŝn, Ân (done: for p=0 (Kleidman - Wales '1991), mbrtantial partial results for p>0 (K. - Tiep '2004)).

• G = GLn (Fq), (p,q) = 1 (done: K. - Tiep'2010).

- From now on, G=Sn.
- <u>p=0</u> : Saxl'1987 (Stunning!)
- <u>p>3</u>: Brundan K. 2001
- <u>p=2,3</u>: K-Morotti-Tiep 2020

I want to show you the main result for p > 0 (the characteristic O case is recovered by taking p > n), and explain none steps of the proof (werything I know about Sn goes into the proof...)

Here is a "prettified version" of the Main Theorem:

Main Theorem (Pretty Version). Let n>25 and exclude the cases where D'or D'osgn is the natural module D^(n-1,1) as well as the case where p=2 and D' is the basic spin module D(12, 2). Then the restriction of an irreducible FSn-module D' of dimension >1 to a nebyroup H=Sn is irreducible if and only if one of the fellowing holds: (i) G=An and ZE D'(n). (ii) A is Jantzen-Seitz, and G=Sn-1 (iii) $\lambda \in \mathcal{P}'(n)$ is Jantzen-Seitz, and $G = A_{n-1}$. (iv) $p \neq 2$, λ or $M(\lambda)$ is $(n-2,1^2)$, $n=2^m$, and $G = AGL_m(2)$ embedded into Snvia its natural action on the points of F_2^m . (v) $p \neq 2$, λ or $M(\lambda)$ is $(n-2, 1^2)$, $n = 2^m + 1 \equiv 0 \pmod{p}$, and $G = AGL_m(2)$ embedded into S_{n-1} via its natural action on the points of F_2^m .

As you can see, there are "few" exceptions ... ("As -a -rule-yes-principle".)

The case we have excluded have many more exceptions. For example, if we allow λ or M(x) = (n-1, 1), we get a let of doubly transitive subgroups of S_n (and a few doubly-transitive subgroups of S_{n-1}) acting irreducibly on D^{λ} .

In fact, let me remind you a classical result in characteristic O: a subgroup $G < S_n$ is irreducible on the natural complex module $D_c^{(n-1)}$ if and only if G is doubly transitive on $\{1, ..., n\}$.

The result is false in characteristic p in both directions, but one can describe the exceptions explicitly - this was mostly done a while ago, for example by Mortimer' 1980, although there was still a let of work left, and we have discovered some new exceptions. There is now a full list of exceptions - a couple of long tables.

Degree n	Transitivity	Conditions on p
n	n	
n	n-2	
r^m	2 or 3	$p \neq r$
$\frac{q^d-1}{q-1}$	2	$p \nmid q$
15	2	$p \neq 2$
$2^{m-1}(2^m \pm 1)$	2	$p \neq 2$
q+1	3	
q+1	2	$p \neq 2$
q+1	3	
$q^2 + 1$	2	$p \nmid (q+1+\sqrt{2q})$
$q^{3} + 1$	2	$p \nmid (q+1)$
$q^{3} + 1$	2	$p \nmid (q+1)(q+1+\sqrt{3q})$
24	5	$p \neq 2$
23	4	$p \neq 2$
22	3	$p \neq 2$
12	5	
11	4	
12	3	p eq 3
11	2	$p \neq 3$
176	2	$p \neq 2, 3$
276	2	$p \neq 2, 3$
	$\begin{array}{c} n \\ n \\ r^m \\ \hline q^d - 1 \\ \hline q - 1 \\ 15 \\ 2^{m-1}(2^m \pm 1) \\ \hline q + 1 \\ q + 1 \\ \hline q + 1 \\ \hline q^2 + 1 \\ \hline q^3 + 1 \\ 24 \\ 23 \\ 22 \\ 12 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 176 \\ \end{array}$	$\begin{array}{c cccccc} n & n & \\ n & n-2 \\ \hline r^m & 2 \ {\rm or} \ 3 \\ \hline q^d-1 & 2 \\ 15 & 2 \\ 2^{m-1}(2^m\pm 1) & 2 \\ \hline q+1 & 3 \\ q+1 & 2 \\ q+1 & 3 \\ q^2+1 & 2 \\ q^3+1 & 2 \\ 24 & 5 \\ 23 & 4 \\ 22 & 3 \\ 12 & 5 \\ 11 & 4 \\ 12 & 3 \\ 11 & 2 \\ 176 & 2 \\ \end{array}$

Table II Irreducibility of $D^{(n-1,1)}$ over doubly transitive subgroups.

Case	$\lambda \ \ { m or} \ \ \lambda^{\tt M}$	G	n	2-transitive on	p
(S1)	(n - 2, 2)	$SL_{3}(2)$	7		p = 5
		$P\Gamma L_2(8)$	9		$p \neq 2, 7$
		M_{11}	11		$p \neq 3, 5$
		M_{11}	12	$\{1,\ldots,n\}$	p = 2
		M_{12}	12		$p \neq 5$
		M_{23}	23		$p \neq 2, 3$
		M_{24}	24		$p \neq 2$
(S2)	(n-2,2)	M_{11}	12		p = 2
		M_{12}	13	$\{1,, n-1\}$	p = 11
		M_{23}	24	$\{1,\ldots,n-1\}$	p = 11
		M_{24}	25		p = 23
(S3)		S_5	6		p = 3
		M_{11}	11		$p \neq 2, 1$
	$(n-2,1^2)$	M_{11}	12		$p \neq 2, 3$
		M_{12}	12	$\{1,\ldots,n\}$	$p \neq 2$
		$M_{22}, Aut(M_{22})$	22		$p \neq 2$
		M_{23}	23		$p \neq 2$
		M_{24}	24		$p \neq 2$
(S4)	$(n-2,1^2)$	M_{11}	12		p = 3
		M_{11}	13		p = 13
		M_{12}	13	$\{1,, n-1\}$	p = 13
		$M_{22}, \operatorname{Aut}(M_{22})$	23	$\{1,\ldots,n\}$	p = 23
		M_{23}	24		p = 3
		M_{24}	25		p = 5
(S5)	$(14, 1^2)$	$C_2^4 \rtimes A_7$	16	$\{1,\ldots,16\}$	$p \neq 2$
(S6)	$(15, 1^2)$	$C_2^4 \rtimes A_7$	17	$\{1,\ldots,16\}$	p = 17
(S7)	(5,3)	$AGL_3(2)$	8	$\{1,\ldots,8\}$	p = 5
(S8)	(6,3)	$AGL_3(2)$	9	$\{1,\ldots,8\}$	p = 5
(S9)	(21,2,1)	M_{24}	24	$\{1,\ldots,24\}$	$p \neq 2, 3$
(S10)	$(21, 1^3)$	M_{24}	24	$\{1,\ldots,24\}$	$p \neq 2, 3$
(S11)	$(22,1^3)$	M_{24}	25	$\{1,\ldots,24\}$	p = 5
(S12)	(3,2)	$C_5 times C_4$	5	$\{1,\ldots,5\}$	p = 2
(S13)	(4, 2)	S_5	6	$\{1,\ldots,6\}$	p=2
(S14)	(6,4)	$S_6, M_{10}, \operatorname{Aut}(A_6)$	10	$\{1,\ldots,10\}$	p = 2

Table IIINon-serial examples of irreducible restrictions from S_n .

Some key steps of the proof:

· Reduction Theorem. Let n28 and D' be an irreducible representation of FSn with dim $D^2 > 1$. If G < Sn is a subgroup such that $D^2 \int_G$ is irreducible, the one of the following holds:

(i) $G \leq S_{n-1}$

(ii) G is 2-transitive

(iii) p=2 and D² is basic spin

(iv) p=2, $n=2 \pmod{4}$, $\beta = (n-1,1)$, $G \in S_{N_2} 2S_2$ and $G \notin S_{N_2} \times S_{N_2}$

Dealing with doubly transitive groups is difficult, and requires nuch work, in particular, new dimension bounds to be described in the end of the talk.

Proof of Reduction Theorem for $p \neq 2$ is based on the following remarkably nuple

Key Lemma (K.-Sheth' 2000) Let p>2, $n \neq 4$ and $\dim D^2 > 1$. Then

 $\begin{array}{ll} \dim \ End \\ S_{n-1} \\ (D^{\lambda} J_{S_{n-1}}) \\ (D^{\lambda} J_{S_{n-1}}) \\ (D^{\lambda} J_{S_{n-2}} S_{2}) \\ (D^{\lambda} J_{S_{n-2}} S_{n-2} S_{n-2} S_{n-2} S_{n-2} S_{n-2} S_{n-2} S_{n-2} S_{n-2} S_{n-2} S_{n-2}$

For G≤Sn,

 $\dim (M^{(n-1,1)})^G = \# G - \text{orbits on } \{1, ..., n\}$ $dim\left(M^{(n-2,2)}\right)^{G} = \#G - orbits on$!! 0(G) pairs $\{i_j\} =: O_2(G)$

If the group is intransitive then Let 6 be transitive but not 2-transitive. Then almost always $G \leq S_{\lambda_1} \times S_{\lambda_2} \times \dots$ and then (for p > 2) it is known that $D^{2}_{S_{A_{1}} \times S_{A_{2}} \times \cdots}$ is irreducible $O_2(G) > 1 = O_1(G)$. => $(\lambda_{1}, \lambda_{2}, ...) = (h-1, 1), n G \leq S_{n-1}$

· Dimension Bounds.

James (1983) : for $\lambda_{2+...} + \lambda_{k} = m$, we have

dim D $(n-m,\lambda_2,\dots,\lambda_k)$ $(m,D^{(\lambda_2,\dots,\lambda_k)})$ $\sim \frac{dim D^{(\lambda_2,\dots,\lambda_k)}}{m!} n^m$ $(a_{s} n \rightarrow \infty)$

For m = 1, 2, 3, 4, James also gives explicit lower bounds:

lower bound for dim D^(n-m, 22,..., 2k) m n-2 1 $\frac{1}{2}n(n-5)$ 2 $\frac{1}{6}n^2(n-g)$ 3 $\frac{1}{24}$ n³(n-14) 4

While the asymptic results are very difficult to use, these lower bounds are extremely useful, and we want them for arbitrary m.