On Temperley-Lieb algebra at odd root of unity

Jun Murakami

Waseda University

Joint with C. Blanchet and M. de Renzi

Diagrammatic construction of representations of small quantum sl_2 , Transformation Groups **27** (2022), 751–795.

Quantum sl_2 at root of unity

• $\mathcal{U}_q(sl_2)$ K, E, F

$$KEK^{-1} = q^2E, \ KFK^{-1} = q^{-2}F, \ EF-FE = \frac{K-K^{-1}}{q-q^{-1}}$$

• Restricted $\mathcal{U}_q(sl_2)$ $q = \exp(\pi \sqrt{-1}/r)$ $K^{2r} = 1, \quad E^r = F^r = 0$

• Small
$$\mathcal{U}_q(sl_2)$$
 $q = \exp(2\pi\sqrt{-1}/r), q$: odd $K^r = 1, \quad E^r = F^r = 0$

- $\mathcal{U}_q(sl_2)$ Mod $\mathcal{U}_q(sl_2)$: cateroty of $\mathcal{U}_q(sl_2)$ modules generated by the natural representation $\longleftrightarrow T(m, n)$
- $\widetilde{\mathcal{U}}$: Restricted $\mathcal{U}_q(sl_2)$ $q = \exp(\pi\sqrt{-1}/r)$ Mod $\widetilde{\mathcal{U}}$ — some extension of T(m, n)

S. Moore, Diagrammatic morphisms between indecomposable modules of $\mathcal{U}_q(sl_2)$, Internat. J. Math. **31** (2020), 2050016.

• $\overline{\mathcal{U}}$: Small $\mathcal{U}_q(sl_2)$ $q = \exp(2\pi\sqrt{-1}/r), q$: odd Mod $\overline{\mathcal{U}}$ — some extension of T(m, n)

Structure of representations

Representations coming from the tensor of the natural representation.

- X_1 : natrural representation, $X_m \subset X_1^{\otimes m}$
- X_{r-1}
- P_m

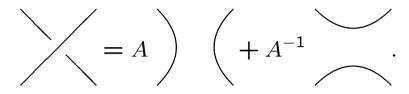
•
$$X_{2r-1} \oplus P_{r-3} = P_{r-2} \otimes X_1$$

Hom spaces

 $\dim_{\mathbb{C}} \operatorname{End}_{\overline{II}}(X_m) = 1$ 0 < m < r - 1, $\dim_{\mathbb{C}} \operatorname{End}_{\overline{II}}(P_m) = 2$ $r \leq m \leq 2r - 2$, $\dim_{\mathbb{C}} \operatorname{End}_{\overline{U}}(X_{2r-1}) = 4$ $\dim_{\mathbb{C}} \operatorname{Hom}_{\overline{U}}(P_m, X_{2r-m-1}) =$ $\dim_{\mathbb{C}} \operatorname{Hom}_{\overline{tt}}(X_{2r-m-1}, P_m) = 1$ r < m < 2r - 2, $\dim_{\mathbb{C}} \operatorname{Hom}_{\overline{tt}}(P_m, P_{3r-m-2}) = 2$ r < m < 2r - 2. $\dim_{\mathbb{C}} \operatorname{Hom}_{\overline{U}}(X_{r-1}, X_{2r-1}) =$ $\dim_{\mathbb{C}} \operatorname{Hom}_{\overline{U}}(X_{2r-1}, X_{r-1}) = 2.$

Temperley-Lieb category T(m,n)

T(m,m) : the quotient of the Hecke algebra by the Kauffman bracket skein relation.



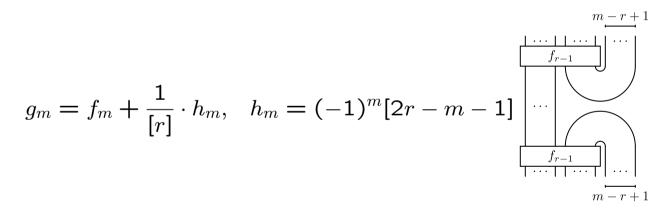
This relation implies that

$$\bigcirc = -A^2 - A^{-2}.$$

Temperley-Lieb category is obtained by adding \cup and \cap .

$$A = q^{(r+1)/2}, q = A^2, \{n\} = q^n - q^{-n}, [n] = \frac{\{n\}}{\{1\}}, [n]! = [n][n-1]\cdots[1], n \in [n]$$

- Jones-Wenzl idempotent $f_m = f_{m-1} + \frac{[m-1]}{[m]} f_{m-1} e_{m-1} f_{m-1}$ idempotent for X_m
- Idenpotent g_m for P_m $(r \le m \le 2r-2)$

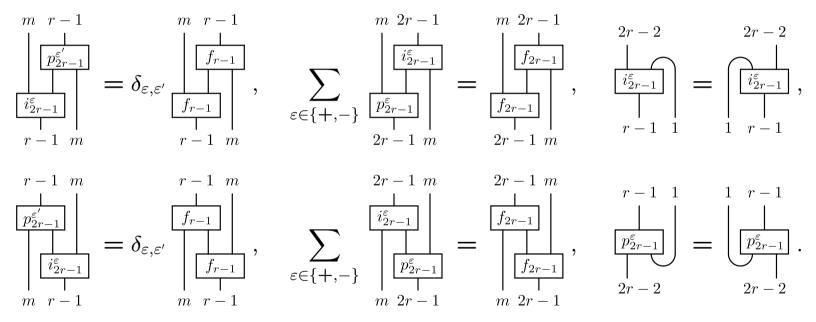


Note that g_m is well-defined (a kind of derivation).

Then these correspond to the idempotents of Mod \overline{U} .

<u>Missing Hom's</u> $X_{2r-1} \cong X_{r-1}^- \oplus X_{r-1}^+, X_{r-1}^{\pm} \cong X_{r-1}.$ There is NO hom between X_{2r-1} and X_{r-1} . So add the following two hom's to T(m, n).

 $p_{r-1}^{\pm} : X_{2r-1} \to X_{r-1}^{\pm}, \qquad i_{r-1}^{\pm} : X_{r-1}^{\pm} \to X_{2r-1}$

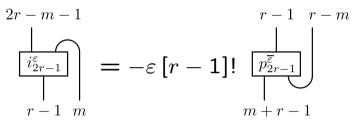


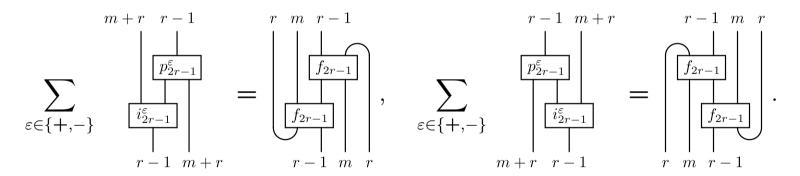
Theorem. The functor from the extended T(m,m) to Mod \overline{U} is well-defined and surjective.

Problem. What is the kernel of this functor?

Additional relations

Following relations hold.





<u>Ploblems</u>

• Construct GOOD TQFT from the projective modules P_m .

In usual construction, trace of a projective module is 0. On the other hand, we have non-vanishing three manifold invariant coming from pseudo trace (integral of Hopf algebra).

• sl_n case.

 sl_n skein theory is known. But its relation to the representations of restricted or small quantum groups is not clear yet (even for sl_2) if q is a root of unity.

• Understand pseudo trace for characteristic p case by 'derivation'.