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Quantum sl2 at root of unity

• Uq(sl2) K, E, F

KEK−1 = q2E, KFK−1 = q−2F, EF−FE =
K −K−1

q − q−1

• Restricted Uq(sl2) q = exp(π
√
−1/r)

K2r = 1, Er = F r = 0

• Small Uq(sl2) q = exp(2π
√
−1/r), q : odd

Kr = 1, Er = F r = 0



• Uq(sl2)
Mod Uq(sl2) : cateroty of Uq(sl2) modules generated

by the natural representation ←→ T (m,n)

• Ũ : Restricted Uq(sl2) q = exp(π
√
−1/r)

Mod Ũ ←− some extension of T (m,n)

S. Moore, Diagrammatic morphisms between indecomposable

modules of Uq(sl2), Internat. J. Math. 31 (2020), 2050016.

• U : Small Uq(sl2) q = exp(2π
√
−1/r), q : odd

Mod U ←− some extension of T (m,n)



Structure of representations

Representations coming from the tensor of tne natural
representation.

• X1 : natrural representatiion,
Xm ⊂ X⊗m1

• Xr−1

• Pm

• X2r−1 ⊕ Pr−3 = Pr−2 ⊗X1



Hom spaces

dimCEndU(Xm) = 1 0 ≤ m ≤ r − 1,

dimCEndU(Pm) = 2 r ≤ m ≤ 2r − 2,

dimCEndU(X2r−1) = 4

dimCHomU(Pm, X2r−m−1) =

dimCHomU(X2r−m−1, Pm) = 1 r ≤ m ≤ 2r − 2,

dimCHomU(Pm, P3r−m−2) = 2 r ≤ m ≤ 2r − 2,

dimCHomU(Xr−1, X2r−1) =

dimCHomU(X2r−1, Xr−1) = 2.



Temperley-Lieb category T (m,n)

T (m,m) : the quotient of the Hecke algebra by the Kauffman
bracket skein relation.
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= A +A−1 .

This relation implies that

'
&

$
%= −A2 −A−2.

Temperley-Lieb category is obtained by adding ∪ and ∩.



A = q(r+1)/2, q = A2, {n} = qn−q−n, [n] =
{n}
{1}

, [n]! = [n][n−1] · · · [1].

• Jones-Wenzl idempotent

fm = fm−1 +
[m− 1]

[m]
fm−1em−1fm−1

idempotent for Xm

• Idenpotent gm for Pm (r ≤ m ≤ 2r − 2)

gm = fm +
1

[r]
· hm, hm = (−1)m[2r −m− 1]

Note that gm is well-defined (a kind of derivation).

Then these correspond to the idempotents of ModU .



Missing Hom’s X2r−1
∼= X−r−1 ⊕X+

r−1, X±r−1
∼= Xr−1.

There is NO hom between X2r−1 and Xr−1.

So add the following two hom’s to T (m,n).

p±r−1 : X2r−1 → X±r−1, i±r−1 : X±r−1 → X2r−1

= δε,ε′ ,
∑

ε∈{+,−}

= , = ,

= δε,ε′ ,
∑

ε∈{+,−}

= , = .

Theorem. The functor from the extended T (m,m) to ModU is
well-defined and surjective.

Problem. What is the kernel of this functor?



Additional relations

Following relations hold.

= −ε [r − 1]!

∑
ε∈{+,−}

= ,
∑

ε∈{+,−}

= .



Ploblems

• Construct GOOD TQFT from the projective mod-
ules Pm.

In usual construction, trace of a projective module
is 0. On the other hand, we have non-vanishing
three manifold invariant coming from pseudo trace
(integral of Hopf algebra).

• sln case.

sln skein theory is known. But its relation to the rep-
resentations of restricted or small quantum groups
is not clear yet (even for sl2) if q is a root of unity.

• Understand pseudo trace for characteristic p case by
’derivation’.


