A new construction of simple modules for type *A* KLR algebras

Joint work with Robert Muth, Thomas Nicewicz, and Louise Sutton

Liron Speyer

- $e \in \mathbb{Z}_{>1}$: a fixed integer.
- $U_q(\widehat{\mathfrak{sl}}_e(\mathbb{C}))$: quantum group of type $\mathbb{A}_{e-1}^{(1)}$.
- $I = \{\alpha_0, \dots, \alpha_{e-1}\}$: the set of simple roots.
- $\delta = \alpha_0 + \cdots + \alpha_{e-1}$: the null root.
- $\Phi^{\rm re}_+$: the set of real roots.
- $\Phi^{\text{im}}_{+} = \{ d\delta \mid d \in \mathbb{Z}_{>0} \}$: the set of imaginary roots.
- $\Phi_+ = \Phi_+^{re} \sqcup \Phi_+^{im}$: the positive root system of type $A_{e-1}^{(1)}$.
- $\Psi := \Phi^{\mathrm{re}}_{+} \sqcup \{\delta\}$: the set of indivisible roots.
- \mathbb{F} : an arbitrary field.
- R_{ω} : the type $\mathbb{A}_{e-1}^{(1)}$ KLR algebra over \mathbb{F} , for $\omega \in \mathbb{Z}_{\geq 0}I$. These algebras categorify the positive part of $U_q(\widehat{\mathfrak{sl}}_e(\mathbb{C}))$, and their representation theory is studied via *cuspidal systems*, which are associated with PBW bases for the quantum group.

- \succ : fixed convex preorder on Φ_+ .
- A Kostant partition of ω ∈ Z_{≥0}I is a tuple of non-negative integers K = (K_β)_{β∈Ψ} with Σ_{β∈Ψ} K_ββ = ω.
 If β₁ ≻ ··· ≻ β_t are the elements of Ψ such that K_{βi} ≠ 0, then we write K in the form K = (β₁^{K_{β1}} | ··· | β_t^{K_{βt}}).
- A root partition of $\omega \in \mathbb{Z}_{\geq 0}I$ is a pair $\pi = (\mathbf{K}, \mathbf{\nu})$, where $\mathbf{K} = (\beta_1^{K_{\beta_1}} | \cdots | \beta_u^{K_{\beta_u}} | \delta^{K_{\delta}} | \beta_{u+1}^{K_{\beta_{u+1}}} | \cdots | \beta_t^{K_{\beta_t}})$ is a Kostant partition of ω and $\mathbf{\nu} = (\nu^{(1)} | \cdots | \nu^{(e-1)})$ is an (e-1)-multipartition of K_{δ} .
- $\Pi(\omega)$: the set of all root partitions of ω .

Definition

Let $m \in \mathbb{Z}_{>0}$, $\beta \in \Psi$. We say an $R_{m\beta}$ -module M is semicuspidal provided that for all $0 \neq \theta_1, \theta_2 \in \mathbb{Z}_{\geq 0}I$ with $\theta_1 + \theta_2 = m\beta$, we have $\operatorname{Res}_{R_{\theta_1} \otimes R_{\theta_2}}^{R_{m\beta}} M \neq 0$ only if θ_1 is a sum of positive roots $\preccurlyeq \beta$ and θ_2 is a sum of positive roots $\succcurlyeq \beta$. We say moreover that M is cuspidal if m = 1 and the comparisons above are strict.

Cuspidal and semicuspidal modules are key building blocks in the representation theory of R_{ω} .

To each $\beta \in \Phi^{\text{re}}_+$, we associate a simple *cuspidal* R_β -module $L(\beta)$, and to each (e-1)-multipartition ν of $d \in \mathbb{Z}_{>0}$, we associate a simple *semicuspidal* $R_{d\delta}$ -module $L(\nu)$.

Then, to each $\pi = (\mathbf{K}, \mathbf{\nu}) \in \Pi(\omega)$, with $\mathbf{K} = (\beta_1^{K_{\beta_1}} | \cdots | \beta_u^{K_{\beta_u}} | \delta^{K_{\delta}} | \beta_{u+1}^{K_{\beta_{u+1}}} | \cdots | \beta_t^{K_{\beta_t}})$ and $\mathbf{\nu} = (\nu^{(1)} | \cdots | \nu^{(e-1)})$ an (e-1)-multipartition of K_{δ} , we associate the proper standard module

$$\bar{\Delta}(\pi) = L(\beta_1)^{\circ K_{\beta_1}} \circ \cdots \circ L(\beta_u)^{\circ K_{\beta_u}} \circ L(\nu) \circ L(\beta_{u+1})^{\circ K_{\beta_{u+1}}} \circ \cdots \circ L(\beta_t)^{\circ K_{\beta_t}},$$

which has a self-dual simple head $L(\pi)$, and $\{L(\pi) \mid \pi \in \Pi(\omega)\}$ is a complete and irredundant set of simple R_{ω} -modules up to isomorphism and grading shift.

Previous constructions of simple semicuspidal modules $L(\nu)$ (and therefore $\overline{\Delta}(\pi)$ and $L(\pi)$) were *implicit*, with their existence established via categorification. Here, we use *skew Specht modules* to render a more direct combinatorial description of semicuspidal and simple R_{ω} -modules.

Skew Specht modules

For each skew diagram τ of content $\omega \in \mathbb{Z}_{\geq 0}I$, we can construct an associated skew Specht module, \mathbf{S}^{τ} . This is an R_{ω} -module, generalising Specht modules indexed by multipartitions; it has a presentation via generators and relations, and an explicit basis indexed by standard τ -tableaux.

Specht modules are key objects in the representation theory of *cyclotomic* KLR algebras, Hecke algebras and symmetric groups.

Muth et al. showed that, for all $\beta \in \Phi^{\text{re}}_+$, there exists an explicit ribbon $\zeta(\beta)$ of content β such that $\mathbf{S}^{\zeta(\beta)} \cong L(\beta)$.

We established an analogous result for the *imaginary* simple semicuspidal modules.

Skew Specht modules

To each (e-1)-multipartition ν of d, we construct a skew diagram $\zeta(\nu)$ of content $d\delta$, and show that $L(\nu) \cong hd\mathbf{S}^{\zeta(\nu)}$.

More generally, for each $\pi = (\mathbf{K}, \mathbf{\nu}) \in \Pi(\omega)$, we construct a skew diagram $\zeta(\pi)$ of content ω by concatenating semicuspidal skew diagrams with multiplicities determined by \mathbf{K} :

$$\zeta(\pi) = \left(\zeta(\beta_1)^{K_{\beta_1}} \mid \cdots \mid \zeta(\beta_u)^{K_{\beta_u}} \mid \zeta(\nu) \mid \zeta(\beta_{u+1})^{K_{\beta_{u+1}}} \mid \cdots \mid \zeta(\beta_t)^{K_{\beta_t}}\right).$$

Theorem (Muth-Nicewicz-S.-Sutton, 2024)

Let $\pi = (\mathbf{K}, \mathbf{\nu}) \in \Pi(\omega)$. Then the skew Specht module $\mathbf{S}^{\zeta(\pi)}$ is indecomposable with simple head $\operatorname{hd}(\mathbf{S}^{\zeta(\pi)}) \cong L(\pi)$, and $\left\{\operatorname{hd}(\mathbf{S}^{\zeta(\pi)}) \mid \pi \in \Pi(\omega)\right\}$ gives a complete irredundant set of simple R_{ω} -modules up to grading shift.

Example

Take e = 4, and fix a certain convex preorder \succ on Φ_+ (see [MNSS]).

To each $\beta \in \Phi^{\text{re}}_+$, we associate the ribbon $\zeta(\beta)$ of content β via an algorithm, and have $\mathbf{S}^{\zeta(\beta)} \cong L(\beta)$. For instance, we have:

$$\zeta(2\delta + \alpha_0 + \alpha_1 + \alpha_2) = \underbrace{\begin{smallmatrix} 3 & 0 & 1 & 2 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ \zeta(\delta + \alpha_1) = \underbrace{\begin{smallmatrix} 3 & 0 \\ 3 & 2 \\ 1 & 2$$

Example

We construct distinct ribbons ζ_i of content δ :

$$\zeta_1 = \frac{3}{12}$$
 $\zeta_2 = \frac{3}{12}$ $\zeta_3 = \frac{3}{2}$

and to any multipartition $\boldsymbol{\nu} = (\nu^{(1)} \mid \nu^{(2)} \mid \nu^{(3)})$, we associate the skew diagram $\zeta(\boldsymbol{\nu})$ by 'dilating' nodes in $\nu^{(i)}$ by the ribbon ζ_i . e.g. for $\boldsymbol{\nu} = ((3^2, 1) \mid (2^2) \mid (2))$, we have

Example

Then $\mathbf{S}^{\zeta(\nu)}$ is an indecomposable semicuspidal $R_{13\delta}$ -module with $hd(\mathbf{S}^{\zeta(\nu)}) \cong L(\nu)$.

Now take $\pi \in \Pi(19\alpha_0 + 20\alpha_1 + 21\alpha_2 + 20\alpha_3)$ defined as

$$\pi = \left(\left(2\delta + \alpha_0 + \alpha_1 + \alpha_2 \mid (\delta + \alpha_2 + \alpha_3)^2 \mid \delta^{13} \mid \delta + \alpha_1 \right), \boldsymbol{\nu} \right). \text{ Then}$$

Our theorem says that $\mathbf{S}^{\zeta(\pi)}$ is an indecomposable $R_{19\alpha_0+20\alpha_1+21\alpha_2+20\alpha_3}$ -module with simple head $L(\pi)$.