Rouquier / RoCK blocks for Ariki-Koike algebras

Sinéad Lyle

Okinawa Institute of Science and Technology

Rouquier / RoCK blocks for symmetric groups

Example

Abacuses and partitions

Definition

Fix $e \geq 2$ and let \mathscr{A}_{e} denote the set of abacus configurations on e runners. There is a bijection $\Lambda \times \mathbb{Z} \longleftrightarrow \mathscr{A}_{e}$.

$$
\left(\left(13^{3}, 11,8^{2}, 7^{2}, 5,4,2^{4}\right), 28\right) \longleftrightarrow
$$

The Nakayama Conjecture

The Nakayama Conjecture
Let \mathbb{F} be a field of characteristic p. Suppose that $\lambda, \mu \in \Lambda_{n}$. The $\mathbb{F S}_{n}$-modules S^{λ} and S^{μ} lie in the same block if and only if

$$
\bar{\lambda}=\bar{\mu} \text { and } \mathrm{w}(\lambda)=\mathrm{w}(\mu)
$$

\Longrightarrow A block is determined by its core and weight.

The Nakayama Conjecture

The Nakayama Conjecture

Let \mathbb{F} be a field of characteristic p. Suppose that $\lambda, \mu \in \Lambda_{n}$. The $\mathbb{F} \mathfrak{S}_{n}$-modules S^{λ} and S^{μ} lie in the same block if and only if

$$
\bar{\lambda}=\bar{\mu} \text { and } w(\lambda)=w(\mu)
$$

$\Longrightarrow \mathrm{A}$ block is determined by its core and weight.

On the Nakayama Conjecture

It seems to the author that the value of this Theorem [the Nakayama Conjecture] has been overrated; it is certainly useful (but not essential) when trying to find the decompositions matrix of \mathfrak{S}_{n} for a particular small n, but there are few general theorems in which it is helpful.

- Gordon James (1978)

A map between blocks

Definition

Let $0 \leq i \leq e-2$. Define a map $\Phi_{i}: \Lambda \rightarrow \Lambda$ where $\Phi_{i}(\lambda)$ is obtained by swapping runners i and $i+1$ on the abacus configuration for λ.

Lemma

S^{λ} and S^{μ} lie in the same block if and only if $S^{\Phi_{i}(\lambda)}$ and $S^{\Phi_{i}(\mu)}$ lie in the same block.

Scopes equivalence

Definition

Let $\lambda \in \Lambda$. For $0 \leq i \leq e-1$, let \mathfrak{b}_{i} be the number of beads on runner i of the abacus configuration of $\bar{\lambda}$. If $\left|\mathfrak{b}_{i+1}-\mathfrak{b}_{i}\right| \leq w(\lambda)$, say that Φ_{i} is a Scopes map.
Define an equivalence relation $\sim_{S c}$ on the set of blocks of the symmetric group algebras by the closure of the relation $B \sim_{\mathrm{sc}_{c}} B^{\prime}$ if $B=\Phi_{i}\left(B^{\prime}\right)$ for Φ_{i} a Scopes map.

Examples of Scopes equivalence

Example

Not allowed:

Scopes equivalence classes

Example

Let $e=3$. Up to Scopes equivalence, the cores of the blocks of weight 2 are

Scopes equivalence classes

Example

Let $e=3$. Up to Scopes equivalence, the cores of the blocks of weight 2 are

\emptyset

(1)

(2)

$\left(1^{2}\right)$

$\left(3,1^{2}\right)$

Theorem (Scopes)

Suppose the blocks B and B^{\prime} are Scopes equivalent. Then they are Morita equivalent and decomposition equivalent.

Rouquier / RoCK blocks

Definition

Let $\lambda \in \Lambda$. Say that λ is a Rouquier partition if $\mathfrak{b}_{i+1}-\mathfrak{b}_{i}+1 \geq \mathrm{w}(\lambda)$ for all $0 \leq i \leq e-2$.

Rouquier / RoCK blocks

Definition

Let $\lambda \in \Lambda$. Say that λ is a Rouquier partition if $\mathfrak{b}_{i+1}-\mathfrak{b}_{i}+1 \geq \mathrm{w}(\lambda)$ for all $0 \leq i \leq e-2$.

Definition

If S^{λ} and S^{μ} lie in the same block then λ is a Rouquier partition if and only if μ is a Rouquier partition. We then say that the block is a Rouquier block.

If a block is Scopes equivalent to a Rouquier block, we call it a RoCK block.

A Rouquier partition

Example

The Ariki-Koike algebras

Definition

For each $n \geq 0, r \geq 1, e \geq 2$ and $\boldsymbol{a} \in I^{r}$ where
$I=\{0,1, \ldots, e-1\}$ we have an Ariki-Koike algebra $\mathcal{H}_{r, n}(a)$.

The Ariki-Koike algebras

Definition

For each $n \geq 0, r \geq 1, e \geq 2$ and $\boldsymbol{a} \in I^{r}$ where
$I=\{0,1, \ldots, e-1\}$ we have an Ariki-Koike algebra $\mathcal{H}_{r, n}(a)$.
Specht modules are indexed by r-multipartitions of n :

$$
\boldsymbol{\lambda}=\left(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(r-1)}\right)
$$

The Ariki-Koike algebras

Definition

For each $n \geq 0, r \geq 1, e \geq 2$ and $\boldsymbol{a} \in I^{r}$ where
$I=\{0,1, \ldots, e-1\}$ we have an Ariki-Koike algebra $\mathcal{H}_{r, n}(\boldsymbol{a})$.
Specht modules are indexed by r-multipartitions of n :

$$
\boldsymbol{\lambda}=\left(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(r-1)}\right)
$$

Let $\boldsymbol{\lambda}, \boldsymbol{\mu} \in \Lambda^{r}$.

- Say that $\boldsymbol{\lambda} \sim \boldsymbol{\mu}$ if $S^{\boldsymbol{\lambda}}$ and S^{μ} lie in the same $\mathcal{H}_{r, n}(\mathbf{a})$-block.
- Equivalently $\boldsymbol{\lambda} \sim \boldsymbol{\mu}$ if $\operatorname{Res}(\boldsymbol{\lambda})=\operatorname{Res}(\boldsymbol{\mu})$.
- Say that $\boldsymbol{\lambda} \approx \boldsymbol{\mu}$ if $\boldsymbol{\lambda} \sim \boldsymbol{\mu}$ and $\overline{\boldsymbol{\lambda}}=\overline{\boldsymbol{\mu}}$.

Call the \sim-equivalence classes blocks.
Note that if $r=1$ then $\sim \Longleftrightarrow \approx$.

Abacus configurations for $\mathcal{H}_{r, n}($ a $)$

Definition

Let $\mathcal{H}_{r, n}(\boldsymbol{a})$ be an Ariki-Koike algebra and let $\boldsymbol{\lambda} \in \Lambda^{r}$. The abacus configuration of $\boldsymbol{\lambda}$ with respect to \boldsymbol{a} is the r-tuple of abacus configurations with k th component given by $\left(\lambda^{(k)}, a_{k}\right)$.

Abacus configurations for $\mathcal{H}_{r, n}($ a $)$

Definition

Let $\mathcal{H}_{r, n}(\boldsymbol{a})$ be an Ariki-Koike algebra and let $\boldsymbol{\lambda} \in \Lambda^{r}$. The abacus configuration of $\boldsymbol{\lambda}$ with respect to \boldsymbol{a} is the r-tuple of abacus configurations with k th component given by $\left(\lambda^{(k)}, a_{k}\right)$.

Definition

Extend the map Φ_{i} to multipartitions by applying it to each component. Φ_{i} still maps blocks to blocks.
Say that $\Phi_{i}: B \rightarrow B^{\prime}$ is a Scopes map if for every $\boldsymbol{\lambda} \in B$ the map Φ_{i} restricted to each component is a Scopes map.

Abacus configurations for $\mathcal{H}_{r, n}($ a $)$

Definition

Let $\mathcal{H}_{r, n}(\boldsymbol{a})$ be an Ariki-Koike algebra and let $\boldsymbol{\lambda} \in \Lambda^{r}$. The abacus configuration of $\boldsymbol{\lambda}$ with respect to \boldsymbol{a} is the r-tuple of abacus configurations with k th component given by $\left(\lambda^{(k)}, a_{k}\right)$.

Definition

Extend the map Φ_{i} to multipartitions by applying it to each component. Φ_{i} still maps blocks to blocks.

Say that $\Phi_{i}: B \rightarrow B^{\prime}$ is a Scopes map if for every $\boldsymbol{\lambda} \in B$ the map Φ_{i} restricted to each component is a Scopes map.

Define an equivalence relation $\sim_{S c}$ on the set of blocks of the symmetric group algebras by the closure of the relation $B \sim_{\mathrm{sc}} B^{\prime}$ if $B=\Phi_{i}\left(B^{\prime}\right)$ for Φ_{i} a Scopes map.

Scopes equivalence

Definition

Suppose that B is a \sim-equivalence class. Set

$$
m=\max \{\operatorname{hook}(\boldsymbol{\lambda}) \mid \boldsymbol{\lambda} \in B\}, \quad B_{0}=\{\boldsymbol{\lambda} \in B \mid w(\boldsymbol{\lambda})=m\} .
$$

Scopes equivalence

Definition

Suppose that B is a \sim-equivalence class. Set

$$
m=\max \{\operatorname{hook}(\boldsymbol{\lambda}) \mid \boldsymbol{\lambda} \in B\}, \quad B_{0}=\{\boldsymbol{\lambda} \in B \mid w(\boldsymbol{\lambda})=m\} .
$$

Proposition (Dell'Arciprete)

$\Phi_{i}: B \rightarrow B^{\prime}$ is a Scopes map if for every $\boldsymbol{\lambda} \in B_{0}$ the map Φ_{i} restricted to each component is a Scopes map.

Scopes equivalence

Definition

Suppose that B is a \sim-equivalence class. Set

$$
m=\max \{\operatorname{hook}(\boldsymbol{\lambda}) \mid \boldsymbol{\lambda} \in B\}, \quad B_{0}=\{\boldsymbol{\lambda} \in B \mid w(\boldsymbol{\lambda})=m\} .
$$

Proposition (Dell'Arciprete)

$\Phi_{i}: B \rightarrow B^{\prime}$ is a Scopes map if for every $\boldsymbol{\lambda} \in B_{0}$ the map Φ_{i} restricted to each component is a Scopes map.

Theorem

Suppose the blocks B and B^{\prime} are Scopes equivalent.

- B and B^{\prime} are decomposition equivalent (Dell'Arciprete).
- B and B^{\prime} are Morita equivalent (Webster).

Rouquier / RoCK blocks for Ariki-Koike algebras

Definition

$\mathcal{H}_{r, n}(\boldsymbol{a})$ an Ariki-Koike algebra.

- $\boldsymbol{\lambda}$ is a Rouquier multipartition if $\left(\lambda^{(k)}, a_{k}\right)$ is a Rouquier partition for all $0 \leq k \leq r-1$.
- A \sim-equivalance class \mathcal{R} is a Rouquier block if every $\boldsymbol{\lambda} \in \mathcal{R}$ is a Rouquier multipartition.
- A \sim-equivalance class \mathcal{R} is a RoCK block if it is Scopes equivalent to a Rouquier block.

Rouquier multipartitions

Example

Rouquier multipartitions

Example

Lemma (Dell'Arciprete)

B is a Rouquier block if and only if every $\boldsymbol{\lambda} \in B_{0}$ is a Rouquier multipartition.

Work of Webster

Lemma (L.)

Say that a stretched Rouquier block is one in which $\mathfrak{b}_{i+1}^{k}-\mathfrak{b}_{i}^{k} \gg 0$ for all $0 \leq i<e-1$ and $0 \leq k \leq r-1$. Then any Rouquier block is Scopes equivalent to a stretched Rouquier block.

Setup (Webster)

\mathcal{C} a categorical module over an affine Lie algebra $\mathfrak{g} \leadsto$ Scopes chambers \sim RoCK chambers

Theorem (Webster)

For any categorical representation \mathcal{C} of $\mathfrak{g}=\mathfrak{s l}_{e}$ with support $V(\Lambda)$, the Scopes equivalence classes will coincide those for the Ariki-Koike algebra, and a Scopes equivalence class is RoCK if and only if it contains a Rouquier weight.

Decomposition Numbers for Hecke algebras

Theorem (Leclerc-Miyachi, Chuang-Tan, James-L.-Mathas)

Let $r=1$. Suppose that \mathcal{R} is a Rouquier block, that $p=0$ or weight $w<p$, and that $\lambda, \mu \in \mathcal{R}$ with μ e-regular. Then

$$
\left[S^{\lambda}: D^{\mu}\right]_{v}=v^{\omega(\lambda)-\omega(\mu)} \sum_{\alpha_{0}, \ldots, \alpha_{e}} \sum_{\beta_{0}, \ldots, \beta_{e-1}} \prod_{i=0}^{e-1} c_{\alpha_{i} \beta_{i}}^{\mu_{i}} c_{\beta_{i}\left(\alpha_{i+1}\right)^{\prime}}^{\lambda_{i}}
$$

where

$$
\begin{gathered}
\left|\alpha_{i}\right|=\sum_{j=0}^{i-1}\left(\left|\lambda_{j}\right|-\left|\mu_{j}\right|\right), \quad\left|\beta_{i}\right|=\left|\lambda_{i}\right|+\sum_{j=0}^{i}\left(\left|\mu_{j}\right|-\left|\lambda_{j}\right|\right) \\
\omega(\lambda)-\omega(\mu)=\sum_{i=0}^{e-1} i\left(\left|\mu_{i}\right|-\left|\lambda_{i}\right|\right)
\end{gathered}
$$

Decomposition numbers for Ariki-Koike algebras

Theorem [L.]

Suppose that $\boldsymbol{\lambda} \approx \boldsymbol{\mu}$ lie in a Rouquier block.

$$
\begin{aligned}
& \boldsymbol{\lambda} \leftrightarrow\left(\left(\lambda_{0}^{0}, \lambda_{1}^{0}, \ldots, \lambda_{e-1}^{0}\right), \ldots,\left(\lambda_{0}^{r-1}, \lambda_{1}^{r-1}, \ldots, \lambda_{e-1}^{r-1}\right)\right), \\
& \boldsymbol{\mu} \leftrightarrow\left(\left(\mu_{0}^{0}, \mu_{1}^{0}, \ldots, \mu_{e-1}^{0}\right), \ldots,\left(\mu_{0}^{r-1}, \mu_{1}^{r-1}, \ldots, \mu_{e-1}^{r-1}\right)\right) .
\end{aligned}
$$

Decomposition numbers for Ariki-Koike algebras

Theorem [L.]

Suppose that $\boldsymbol{\lambda} \approx \boldsymbol{\mu}$ lie in a Rouquier block.

$$
\begin{aligned}
& \boldsymbol{\lambda} \leftrightarrow\left(\left(\lambda_{0}^{0}, \lambda_{1}^{0}, \ldots, \lambda_{e-1}^{0}\right), \ldots,\left(\lambda_{0}^{r-1}, \lambda_{1}^{r-1}, \ldots, \lambda_{e-1}^{r-1}\right)\right), \\
& \boldsymbol{\mu} \leftrightarrow\left(\left(\mu_{0}^{0}, \mu_{1}^{0}, \ldots, \mu_{e-1}^{0}\right), \ldots,\left(\mu_{0}^{r-1}, \mu_{1}^{r-1}, \ldots, \mu_{e-1}^{r-1}\right)\right) .
\end{aligned}
$$

If $\boldsymbol{\mu}$ indexes a simple module $D^{\boldsymbol{\mu}}$ and $p=0$ or $\mathrm{w}\left(\mu^{(k)}\right)<p$ for all k then

$$
\begin{aligned}
{\left[S^{\boldsymbol{\lambda}}: D^{\mu}\right]_{v}=} & g_{\boldsymbol{\lambda} \boldsymbol{\mu}}(v):=v^{\omega(\boldsymbol{\lambda})-\omega(\boldsymbol{\mu})} \\
& \sum_{\boldsymbol{\alpha} \in \Gamma_{e+1}^{r}} \sum_{\boldsymbol{\beta} \in \Gamma_{e}^{r}} \sum_{\boldsymbol{\gamma} \in \Gamma_{e}^{r+1}} \sum_{\boldsymbol{\delta} \in \Gamma_{e}^{r}}\left(\prod_{k=0}^{r-1} \prod_{i=0}^{e-1} c_{\mu_{i}^{k} \gamma_{i}^{k}}^{\delta_{i}^{k}} c_{\gamma_{i}^{k+1} \alpha_{i}^{k} \beta_{i}^{k}}^{\delta_{\beta_{i}^{k}} c_{i}^{k}}\left(\alpha_{i+1}^{k}\right)^{\prime}\right)
\end{aligned}
$$

where $\gamma_{0}^{0}=\ldots=\gamma_{e-1}^{0}=\gamma_{0}^{r}=\ldots=\gamma_{e-1}^{r}=\emptyset$.

Example of decomposition numbers

Example

Let $r=2$ and $e=3$ so that

$$
\left.\boldsymbol{\lambda} \leftrightarrow\left(\left(\lambda_{0}^{0}, \lambda_{1}^{0}, \lambda_{2}^{0}\right),\left(\lambda_{0}^{1}, \lambda_{1}^{1}, \lambda_{2}^{1}\right)\right), \quad \boldsymbol{\mu} \leftrightarrow\left(\left(\emptyset, \mu_{1}^{0}, \mu_{2}^{0}\right)\right),\left(\emptyset, \mu_{1}^{1}, \mu_{2}^{1}\right)\right) .
$$

Then $\left[S^{\boldsymbol{\lambda}}: D^{\mu}\right.$] is equal to

$$
\sum_{\substack{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\delta}}}\left(\begin{array}{cccccc}
c_{\mu_{0}^{0} \gamma_{0}^{0}}^{\delta_{0}^{0}} & & c_{\mu_{1}^{0} \gamma_{1}^{0}}^{\delta_{0}^{0}} & & c_{\mu_{2}^{0} \gamma_{2}^{0}}^{\delta_{0}^{0}} & \\
c_{\alpha_{0}^{0} \beta_{0}^{0} \gamma_{0}^{1}}^{\delta_{0}^{0}} & c_{\beta_{0}^{0}\left(\alpha_{1}^{0}\right)^{\prime}}^{\lambda_{0}^{0}} & c_{\alpha_{1}^{0} \beta_{1}^{0} \gamma_{1}^{1}}^{\delta_{1}^{0}} & c_{\beta_{1}^{0}\left(\alpha_{2}^{0}\right)^{\prime}}^{\lambda_{1}^{0}} & c_{\alpha_{2}^{0} \beta_{2}^{0} \gamma_{2}^{1}}^{\delta_{2}^{0}} & c_{\beta_{2}^{0}\left(\alpha_{3}^{0}\right)^{\prime}}^{\lambda_{2}^{0}} \\
c_{\mu_{0}^{1} \gamma_{0}^{1}}^{\delta_{1}^{1}} & & c_{\mu_{1}^{1} \gamma_{1}^{1}}^{\delta_{1}^{1}} & & & c_{\mu_{2}^{1} \gamma_{2}^{1}}^{\delta_{2}^{1}} \\
\\
c_{\alpha_{0}^{1} \beta_{0}^{1} \gamma_{0}^{2}}^{\delta_{0}^{1}} & c_{\beta_{0}^{1}\left(\alpha_{1}^{1}\right)^{\prime}}^{\lambda_{0}^{1}} & c_{\alpha_{1}^{1} \beta_{1}^{1} \gamma_{1}^{2}}^{\delta_{1}^{1}} & c_{\beta_{1}^{1}\left(\alpha_{2}^{1}\right)^{\prime}}^{\lambda_{1}^{1}} & c_{\alpha_{2}^{1} \beta_{2}^{1} \gamma_{2}^{2}}^{\delta_{2}^{1}} & c_{\beta_{2}^{1}\left(\alpha_{3}^{1}\right)^{\prime}}^{\lambda^{1}}
\end{array}\right)
$$

where $\gamma_{0}^{0}=\gamma_{1}^{0}=\gamma_{2}^{0}=\emptyset$ and $\gamma_{0}^{2}=\gamma_{1}^{2}=\gamma_{2}^{2}=\emptyset$.

Ariki's Theorem

The Fock space

$\mathcal{F}^{\mathbf{a}}$ is the Fock space representation of $\mathcal{U}=\mathcal{U}_{q}\left(\hat{\mathfrak{s}} l_{e}\right)$.

- Basis $\left\{s_{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in \Lambda^{r}\right\}$.
- Canonical basis elements $G(\mu)=\sum_{\lambda \sim \mu} d_{\lambda \mu}(v) s_{\lambda}$.

Ariki's Theorem

The Fock space

$\mathcal{F}^{\mathbf{a}}$ is the Fock space representation of $\mathcal{U}=\mathcal{U}_{q}\left(\hat{\mathfrak{s}}_{e}\right)$.

- Basis $\left\{s_{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in \Lambda^{r}\right\}$.
- Canonical basis elements $G(\boldsymbol{\mu})=\sum_{\boldsymbol{\lambda} \sim \mu} d_{\lambda \mu}(v) s_{\lambda}$.

Ariki's Theorem

Suppose $p=0$. Suppose that $\boldsymbol{\lambda}, \boldsymbol{\mu} \in \Lambda_{n}^{r}$ with $\boldsymbol{\mu}$ indexing a simple \mathcal{H}-module. Then

$$
\left[S^{\lambda}: D^{\mu}\right]_{v}=d_{\lambda \mu}(v)
$$

Ariki's Theorem

The Fock space

$\mathcal{F}^{\mathbf{a}}$ is the Fock space representation of $\mathcal{U}=\mathcal{U}_{q}\left(\hat{\mathfrak{s}}_{e}\right)$.

- Basis $\left\{s_{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in \Lambda^{r}\right\}$.
- Canonical basis elements $G(\mu)=\sum_{\lambda \sim \mu} d_{\lambda \mu}(v) s_{\lambda}$.

Ariki's Theorem

Suppose $p=0$. Suppose that $\boldsymbol{\lambda}, \boldsymbol{\mu} \in \Lambda_{n}^{r}$ with $\boldsymbol{\mu}$ indexing a simple \mathcal{H}-module. Then

$$
\left[S^{\lambda}: D^{\mu}\right]_{V}=d_{\lambda \mu}(v)
$$

Theorem (L.)

Suppose that $\boldsymbol{\lambda} \approx \boldsymbol{\mu}$ lie in a Rouquier block with $\boldsymbol{\mu}$ e-regular. Then

$$
d_{\lambda \mu}(v)=g_{\lambda \mu}(v)
$$

We want to show:

Theorem
Suppose that $\boldsymbol{\mu}$ lies in a Rouquier block. Then

$$
G(\mu)=\sum_{\lambda \approx \mu} g_{\lambda \mu}(v) s_{\lambda}+\sum_{\substack{\lambda \sim \mu \\ \lambda \not \approx \mu}} d_{\lambda \mu}(v) s_{\lambda} .
$$

Sketch of proof

$$
r=1
$$

Case $r=1$: Known by work of Leclerc and Miyachi.

Sketch of proof

$r=1$

Case $r=1$: Known by work of Leclerc and Miyachi.
Theorem (Fayers)
Suppose

$$
\begin{array}{ll}
\hat{\boldsymbol{\lambda}}=\left(\mu^{(1)}, \ldots, \lambda^{(r-1)}\right), & \hat{\boldsymbol{\mu}}=\left(\mu^{(1)}, \ldots, \mu^{(r-1)}\right), \\
\boldsymbol{\lambda}=\left(\emptyset, \lambda^{(1)}, \ldots, \lambda^{(r-1)}\right), & \boldsymbol{\mu}=\left(\emptyset, \mu^{(1)}, \ldots, \mu^{(r-1)}\right) .
\end{array}
$$

Then

$$
d_{\lambda \mu}(v)=d_{\hat{\lambda} \hat{\mu}}(v)
$$

Induction on r

Suppose $r>1$

Suppose that $\boldsymbol{\mu}=\left(\mu^{(0)}, \mu^{(1)}, \ldots, \mu^{(r-1)}\right) \in \mathcal{R}$ and that $w\left(\mu^{(0)}\right)=0$. Let

$$
\hat{\boldsymbol{\mu}}=\left(\mu^{(1)}, \ldots, \mu^{(r-1)}\right), \quad \hat{\boldsymbol{\mu}}^{\emptyset}=\left(\emptyset, \mu^{(1)}, \ldots, \mu^{(r-1)}\right)
$$

By the inductive hypothesis,

$$
G(\hat{\mu})=\sum_{\lambda \approx \hat{\mu}} g_{\lambda \hat{\mu}}(v) s_{\lambda}+\sum_{\substack{\lambda \sim \hat{\hat{\mu}} \\ \lambda \not \approx \hat{\mu}}} d_{\lambda \hat{\mu}}(v) s_{\lambda} .
$$

Applying Fayers' result,

$$
G\left(\hat{\mu}^{\emptyset}\right)=\sum_{\substack{\lambda \approx \hat{\mu}^{\emptyset} \\ \lambda^{(0)}=\emptyset}} g_{\hat{\lambda} \hat{\mu}}(v) s_{\lambda}+\sum_{\substack{\lambda \sim \hat{\mu}^{\emptyset}, \boldsymbol{\lambda} \neq \hat{\mu}^{\emptyset} \\ \lambda^{(0)}=\emptyset}} d_{\hat{\lambda} \hat{\mu}}(v) s_{\lambda} .
$$

Assume $\mathrm{w}\left(\mu^{(0)}\right)=0$

LLT induction

$$
G\left(\hat{\mu}^{\emptyset}\right)=\sum_{\substack{\lambda \approx \hat{\mu}^{\emptyset} \\ \lambda^{(0)}=\emptyset}} g_{\hat{\lambda} \hat{\mu}}(v) s_{\lambda}+\sum_{\substack{\lambda \sim \hat{\mu}^{\emptyset}, \boldsymbol{\lambda} \neq \hat{\mu}^{\emptyset} \\ \lambda^{(0)}=\emptyset}} d_{\hat{\lambda} \hat{\mu}}(v) s_{\lambda} .
$$

Use LLT induction to go from \emptyset to $\mu^{(0)}$.

$$
\begin{aligned}
f\left(G\left(\hat{\mu}^{\emptyset}\right)\right)= & \sum_{\substack{\lambda \approx \mu \\
\lambda^{(0)}=\mu^{(0)}}} g_{\lambda \mu}(v) s_{\lambda}+\sum_{\substack{\lambda \sim \mu, \lambda \nsim \mu \\
\lambda(0)=\mu^{(0)}}} d_{\hat{\lambda} \hat{\mu}}(v) s_{\lambda}+\sum_{\substack{\tau \sim \mu \\
\left|\tau^{(0)}\right|<\left|\mu^{(0)}\right|}} b_{\tau}(v) s_{\tau} \\
& \Longrightarrow G(\mu)=\sum_{\lambda \approx \mu} g_{\lambda \mu}(v) s_{\boldsymbol{\lambda}}+\sum_{\substack{\lambda \sim \mu \\
\lambda \not \approx \mu}} d_{\lambda \mu}(v) s_{\lambda}
\end{aligned}
$$

Induction on $w\left(\mu^{(0)}\right)$

Definition

Define

$$
Q(\mu)=\sum_{\lambda \approx \mu} g_{\lambda \mu}(v) s_{\lambda}
$$

For $s>0$ and $1 \leq j \leq e-1$, define

$$
f^{(s, j)}=f_{j}^{(s)} \ldots f_{2}^{(s)} f_{1}^{(s)} f_{j+1}^{(s)} \ldots f_{e-1}^{(s)} f_{0}^{(s)} \in \mathcal{U}
$$

Induction on $w\left(\mu^{(0)}\right)$

Definition

Define

$$
Q(\mu)=\sum_{\lambda \approx \mu} g_{\lambda \mu}(v) s_{\lambda}
$$

For $s>0$ and $1 \leq j \leq e-1$, define

$$
f^{(s, j)}=f_{j}^{(s)} \ldots f_{2}^{(s)} f_{1}^{(s)} f_{j+1}^{(s)} \ldots f_{e-1}^{(s)} f_{0}^{(s)} \in \mathcal{U}
$$

Lemma

If $\boldsymbol{\nu} \in \bar{R}^{s}$ then $f^{(s, j)} s_{\nu}$ is a sum of terms $s_{\boldsymbol{\lambda}}$ where $\boldsymbol{\lambda}$ is formed from ν by moving beads down on runners $j-1$ and j on components of the abacus configuration of ν.

Action of $f(s, j)$

Proposition

$$
Q(\nu)=\sum_{\lambda \approx \nu} g_{\lambda \nu}(v) s_{\lambda} .
$$

Then

$$
f^{(s, j)} Q(\boldsymbol{\nu})=\sum_{\Delta} c_{\nu_{j}^{0}\left(1^{s}\right)}^{\Delta} Q(\boldsymbol{\epsilon})
$$

where $\boldsymbol{\epsilon}$ has quotient

$$
\begin{aligned}
\left(\nu_{0}^{0}, \ldots, \nu_{j-1}^{0}, \Delta, \nu_{j+1}^{0}, \ldots, \nu_{e-1}^{0}\right) & \left(\nu_{0}^{1}, \nu_{1}^{1}, \ldots, \nu_{e-1}^{1}\right) \\
& \left.\ldots,\left(\nu_{0}^{r-1}, \nu_{1}^{r-1}, \ldots, \nu_{e-1}^{r-1}\right)\right)
\end{aligned}
$$

Final step

Proof

Take $\boldsymbol{\mu}$ with $\mathrm{w}\left(\boldsymbol{\mu}^{(0)}\right)>0$. Form $\boldsymbol{\nu}$ by moving s beads up on runner j of the first component of $\boldsymbol{\mu}$. By the inductive hypothesis

$$
\begin{aligned}
G(\nu) & =\sum_{\boldsymbol{\lambda} \approx \nu} g_{\lambda \nu}(v) s_{\boldsymbol{\lambda}}+\sum_{\substack{\boldsymbol{\lambda} \sim \nu \\
\boldsymbol{\lambda} \not \approx \boldsymbol{\nu}}} d_{\lambda \nu}(v) s_{\boldsymbol{\lambda}}=Q(\boldsymbol{\nu})+\sum_{\substack{\boldsymbol{\lambda} \sim \boldsymbol{\nu} \\
\boldsymbol{\lambda} \neq \boldsymbol{\nu}}} d_{\lambda \nu}(v) s_{\boldsymbol{\lambda}} \\
& \Longrightarrow f^{(s, j)} G(\boldsymbol{\nu})=\sum_{\Delta} c_{\nu_{j}^{0}\left(1^{s}\right)}^{\Delta} Q(\epsilon)+\sum_{\boldsymbol{\lambda} \neq \mu} r_{\boldsymbol{\lambda}} s_{\boldsymbol{\lambda}}
\end{aligned}
$$

By induction, assume that $Q(\epsilon)=\sum_{\lambda} g_{\lambda \epsilon}(v) s_{\lambda}$ for $\epsilon \neq \mu$. Then

$$
G(\mu)=\sum_{\lambda \approx \mu} g_{\lambda \mu}(v) s_{\lambda}+\sum_{\substack{\lambda \sim \mu \\ \lambda \nsim \mu}} d_{\lambda \mu}(v) s_{\lambda} .
$$

Characteristic $p>0$

Theorem

Suppose $\boldsymbol{\lambda}, \boldsymbol{\mu} \in \mathcal{R}$ with $\boldsymbol{\mu} \approx \boldsymbol{\lambda}$ where $\boldsymbol{\mu}$ indexes a Kleshchev multipartition and $\mathrm{w}\left(\mu^{(k)}\right)<p$ for all k. Then

$$
\left[S^{\lambda}: D^{\mu}\right]_{v}=g_{\lambda \mu}(v)
$$

Sketch of proof

- The theory of adjustment matrices gives a lower bound for the graded decomposition numbers $\left[S^{\lambda}: D^{\mu}\right]$.
- Try to repeat the proof for $p=0$. Problems come when you look at $r \geq 1$ and $\mathrm{w}\left(\mu^{(0)}\right)>0$. The multipartition ν we defined before may not index a simple module.
- Work with the cyclotomic q-Schur algebra instead.

Gordon James (1945-2020)

