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Rouquier / RoCK blocks for symmetric groups

Example



Abacuses and partitions

Definition

Fix e ≥ 2 and let Ae denote the set of abacus configurations on e
runners. There is a bijection Λ× Z←→ Ae .

((133, 11, 82, 72, 5, 4, 24), 28) ←→
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The Nakayama Conjecture

The Nakayama Conjecture

Let F be a field of characteristic p. Suppose that λ, µ ∈ Λn. The
FSn-modules Sλ and Sµ lie in the same block if and only if

λ̄ = µ̄ and w(λ) = w(µ)

=⇒ A block is determined by its core and weight.

On the Nakayama Conjecture

It seems to the author that the value of this Theorem [the
Nakayama Conjecture] has been overrated; it is certainly useful
(but not essential) when trying to find the decompositions matrix
of Sn for a particular small n, but there are few general theorems
in which it is helpful.

– Gordon James (1978)
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A map between blocks

Definition

Let 0 ≤ i ≤ e − 2. Define a map Φi : Λ→ Λ where Φi (λ) is
obtained by swapping runners i and i + 1 on the abacus
configuration for λ.

Lemma

Sλ and Sµ lie in the same block if and only if SΦi (λ) and SΦi (µ) lie
in the same block.



Scopes equivalence

Definition

Let λ ∈ Λ. For 0 ≤ i ≤ e − 1, let bi be the number of beads on
runner i of the abacus configuration of λ̄. If |bi+1 − bi | ≤ w(λ),
say that Φi is a Scopes map.

Define an equivalence relation ∼Sc on the set of blocks of the
symmetric group algebras by the closure of the relation B ∼Sc B

′ if
B = Φi (B

′) for Φi a Scopes map.



Examples of Scopes equivalence

Example

Φ0−→ Φ1−→ Φ0−→ Φ1−→

Not allowed:

→



Scopes equivalence classes

Example

Let e = 3. Up to Scopes equivalence, the cores of the blocks of
weight 2 are

∅ (1) (2) (12) (3, 12)

Theorem (Scopes)

Suppose the blocks B and B ′ are Scopes equivalent. Then they are
Morita equivalent and decomposition equivalent.
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Rouquier / RoCK blocks

Definition

Let λ ∈ Λ. Say that λ is a Rouquier partition if
bi+1 − bi + 1 ≥ w(λ) for all 0 ≤ i ≤ e − 2.

Definition

If Sλ and Sµ lie in the same block then λ is a Rouquier partition if
and only if µ is a Rouquier partition. We then say that the block is
a Rouquier block.

If a block is Scopes equivalent to a Rouquier block, we call it a
RoCK block.
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A Rouquier partition

Example
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b0 = 2

b1 = 6

b2 = 10

b3 = 14

b4 = 18

w(λ) = 5



The Ariki-Koike algebras

Definition

For each n ≥ 0, r ≥ 1, e ≥ 2 and a ∈ I r where
I = {0, 1, . . . , e − 1} we have an Ariki-Koike algebra Hr ,n(a).

Specht modules are indexed by r -multipartitions of n:

λ = (λ(0), λ(1), . . . , λ(r−1)).

Let λ,µ ∈ Λr .

I Say that λ ∼ µ if Sλ and Sµ lie in the same Hr ,n(a)-block.

I Equivalently λ ∼ µ if Res(λ)=Res(µ).

I Say that λ ≈ µ if λ ∼ µ and λ̄ = µ̄.

Call the ∼-equivalence classes blocks.

Note that if r = 1 then ∼ ⇐⇒ ≈.
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Abacus configurations for Hr ,n(a)

Definition

Let Hr ,n(a) be an Ariki-Koike algebra and let λ ∈ Λr . The abacus
configuration of λ with respect to a is the r -tuple of abacus
configurations with kth component given by (λ(k), ak).

Definition

Extend the map Φi to multipartitions by applying it to each
component. Φi still maps blocks to blocks.

Say that Φi : B → B ′ is a Scopes map if for every λ ∈ B the map
Φi restricted to each component is a Scopes map.

Define an equivalence relation ∼Sc on the set of blocks of the
symmetric group algebras by the closure of the relation B ∼Sc B

′ if
B = Φi (B

′) for Φi a Scopes map.
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Scopes equivalence

Definition

Suppose that B is a ∼-equivalence class. Set

m = max{hook(λ) | λ ∈ B}, B0 = {λ ∈ B | w(λ) = m}.

Proposition (Dell’Arciprete)

Φi : B → B ′ is a Scopes map if for every λ ∈ B0 the map Φi

restricted to each component is a Scopes map.

Theorem

Suppose the blocks B and B ′ are Scopes equivalent.

I B and B ′ are decomposition equivalent (Dell’Arciprete).

I B and B ′ are Morita equivalent (Webster).
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Rouquier / RoCK blocks for Ariki-Koike algebras

Definition

Hr ,n(a) an Ariki-Koike algebra.

I λ is a Rouquier multipartition if (λ(k), ak) is a Rouquier
partition for all 0 ≤ k ≤ r − 1.

I A ∼-equivalance class R is a Rouquier block if every λ ∈ R is
a Rouquier multipartition.

I A ∼-equivalance class R is a RoCK block if it is Scopes
equivalent to a Rouquier block.



Rouquier multipartitions

Example

Rouquier Not Rouquier

Lemma (Dell’Arciprete)

B is a Rouquier block if and only if every λ ∈ B0 is a Rouquier
multipartition.
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Work of Webster

Lemma (L.)

Say that a stretched Rouquier block is one in which bki+1 − bki � 0
for all 0 ≤ i < e − 1 and 0 ≤ k ≤ r − 1. Then any Rouquier block
is Scopes equivalent to a stretched Rouquier block.

Setup (Webster)

C a categorical module over an affine Lie algebra g ; Scopes
chambers ; RoCK chambers

Theorem (Webster)

For any categorical representation C of g = sle with support V (Λ),
the Scopes equivalence classes will coincide those for the
Ariki-Koike algebra, and a Scopes equivalence class is RoCK if and
only if it contains a Rouquier weight.



Decomposition Numbers for Hecke algebras

Theorem (Leclerc-Miyachi, Chuang-Tan, James-L.-Mathas)

Let r = 1. Suppose that R is a Rouquier block, that p = 0 or
weight w < p, and that λ, µ ∈ R with µ e-regular. Then

[Sλ : Dµ]v = vω(λ)−ω(µ)
∑

α0,...,αe

∑
β0,...,βe−1

e−1∏
i=0

cµiαiβi
cλiβi (αi+1)′

where

|αi | =
i−1∑
j=0

(
|λj | − |µj |

)
, |βi | = |λi |+

i∑
j=0

(
|µj | − |λj |

)
,

ω(λ)− ω(µ) =
e−1∑
i=0

i
(
|µi | − |λi |

)
.



Decomposition numbers for Ariki-Koike algebras

Theorem [L.]

Suppose that λ ≈ µ lie in a Rouquier block.

λ↔ ((λ0
0, λ

0
1, . . . , λ

0
e−1), . . . , (λr−1

0 , λr−1
1 , . . . , λr−1

e−1)),

µ↔ ((µ0
0, µ

0
1, . . . , µ

0
e−1), . . . , (µr−1

0 , µr−1
1 , . . . , µr−1

e−1)).

If µ indexes a simple module Dµ and p = 0 or w(µ(k)) < p for all
k then

[Sλ : Dµ]v = gλµ(v) := vω(λ)−ω(µ)

∑
α∈Γr

e+1

∑
β∈Γr

e

∑
γ∈Γr+1

e

∑
δ∈Γr

e

(
r−1∏
k=0

e−1∏
i=0

c
δki
µki γ

k
i

c
δki
γk+1
i αk

i β
k
i

c
λki
βk
i (αk

i+1)′

)

where γ0
0 = . . . = γ0

e−1 = γr0 = . . . = γre−1 = ∅.
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Example of decomposition numbers

Example

Let r = 2 and e = 3 so that

λ↔ ((λ0
0, λ

0
1, λ

0
2), (λ1

0, λ
1
1, λ

1
2)), µ↔ ((∅, µ0

1, µ
0
2)), (∅, µ1

1, µ
1
2)).

Then [Sλ : Dµ] is equal to

∑
α,β,
γ,δ



c
δ0

0

µ0
0γ

0
0

c
δ0

1

µ0
1γ

0
1

c
δ0

2

µ0
2γ

0
2

c
δ0

0

α0
0β

0
0γ

1
0

c
λ0

0

β0
0 (α0

1)′
c
δ0

1

α0
1β

0
1γ

1
1

c
λ0

1

β0
1 (α0

2)′
c
δ0

2

α0
2β

0
2γ

1
2

c
λ0

2

β0
2 (α0

3)′

c
δ1

0

µ1
0γ

1
0

c
δ1

1

µ1
1γ

1
1

c
δ1

2

µ1
2γ

1
2

c
δ1

0

α1
0β

1
0γ

2
0

c
λ1

0

β1
0 (α1

1)′
c
δ1

1

α1
1β

1
1γ

2
1

c
λ1

1

β1
1 (α1

2)′
c
δ1

2

α1
2β

1
2γ

2
2

c
λ1

2

β1
2 (α1

3)′


where γ0

0 = γ0
1 = γ0

2 = ∅ and γ2
0 = γ2

1 = γ2
2 = ∅.



Ariki’s Theorem

The Fock space

Fa is the Fock space representation of U = Uq(ŝle).

I Basis {sλ | λ ∈ Λr}.
I Canonical basis elements G (µ) =

∑
λ∼µ dλµ(v)sλ.

Ariki’s Theorem

Suppose p = 0. Suppose that λ,µ ∈ Λr
n with µ indexing a simple

H-module. Then
[Sλ : Dµ]v = dλµ(v).

Theorem (L.)

Suppose that λ ≈ µ lie in a Rouquier block with µ e-regular. Then

dλµ(v) = gλµ(v).



Ariki’s Theorem

The Fock space

Fa is the Fock space representation of U = Uq(ŝle).
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We want to show:

Theorem

Suppose that µ lies in a Rouquier block. Then

G (µ) =
∑
λ≈µ

gλµ(v)sλ +
∑
λ∼µ
λ6≈µ

dλµ(v)sλ.



Sketch of proof

r = 1

Case r = 1: Known by work of Leclerc and Miyachi.

Theorem (Fayers)

Suppose

λ̂ = (µ(1), . . . , λ(r−1)), µ̂ = (µ(1), . . . , µ(r−1)),

λ = (∅, λ(1), . . . , λ(r−1)), µ = (∅, µ(1), . . . , µ(r−1)).

Then
dλµ(v) = dλ̂µ̂(v).
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Induction on r

Suppose r > 1

Suppose that µ = (µ(0), µ(1), . . . , µ(r−1)) ∈ R and that
w(µ(0)) = 0. Let

µ̂ = (µ(1), . . . , µ(r−1)), µ̂∅ = (∅, µ(1), . . . , µ(r−1)).

By the inductive hypothesis,

G (µ̂) =
∑
λ≈µ̂

gλµ̂(v)sλ +
∑
λ∼µ̂
λ6≈µ̂

dλµ̂(v)sλ.

Applying Fayers’ result,

G (µ̂∅) =
∑
λ≈µ̂∅
λ(0)=∅

gλ̂µ̂(v)sλ +
∑

λ∼µ̂∅,λ 6≈µ̂∅
λ(0)=∅

dλ̂µ̂(v)sλ.



Assume w(µ(0)) = 0

LLT induction

G (µ̂∅) =
∑
λ≈µ̂∅
λ(0)=∅

gλ̂µ̂(v)sλ +
∑

λ∼µ̂∅,λ6≈µ̂∅
λ(0)=∅

dλ̂µ̂(v)sλ.

Use LLT induction to go from ∅ to µ(0).

f (G (µ̂∅)) =
∑
λ≈µ

λ(0)=µ(0)

gλµ(v)sλ+
∑

λ∼µ,λ 6≈µ
λ(0)=µ(0)

dλ̂µ̂(v)sλ+
∑
τ∼µ

|τ (0)|<|µ(0)|

bτ (v)sτ

=⇒ G (µ) =
∑
λ≈µ

gλµ(v)sλ +
∑
λ∼µ
λ 6≈µ

dλµ(v)sλ



Induction on w(µ(0))

Definition

Define
Q(µ) =

∑
λ≈µ

gλµ(v)sλ.

For s > 0 and 1 ≤ j ≤ e − 1, define

f (s,j) = f
(s)
j . . . f

(s)
2 f

(s)
1 f

(s)
j+1 . . . f

(s)
e−1f

(s)
0 ∈ U .

Lemma

If ν ∈ R̄s then f (s,j)sν is a sum of terms sλ where λ is formed
from ν by moving beads down on runners j − 1 and j on
components of the abacus configuration of ν.
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Action of f (s,j)

Proposition

Q(ν) =
∑
λ≈ν

gλν(v)sλ.

Then
f (s,j)Q(ν) =

∑
∆

c∆
ν0
j (1s)Q(ε)

where ε has quotient

(ν0
0 , . . . , ν

0
j−1,∆, ν

0
j+1, . . . , ν

0
e−1), (ν1

0 , ν
1
1 , . . . , ν

1
e−1),

. . . , (νr−1
0 , νr−1

1 , . . . , νr−1
e−1)).



Final step

Proof

Take µ with w(µ(0)) > 0. Form ν by moving s beads up on runner
j of the first component of µ. By the inductive hypothesis

G (ν) =
∑
λ≈ν

gλν(v)sλ +
∑
λ∼ν
λ6≈ν

dλν(v)sλ = Q(ν) +
∑
λ∼ν
λ6≈ν

dλν(v)sλ

=⇒ f (s,j)G (ν) =
∑

∆

c∆
ν0
j (1s)Q(ε) +

∑
λ6≈µ

rλsλ

By induction, assume that Q(ε) =
∑

λ gλε(v)sλ for ε 6= µ. Then

G (µ) =
∑
λ≈µ

gλµ(v)sλ +
∑
λ∼µ
λ6≈µ

dλµ(v)sλ.



Characteristic p > 0

Theorem

Suppose λ,µ ∈ R with µ ≈ λ where µ indexes a Kleshchev
multipartition and w(µ(k)) < p for all k. Then

[Sλ : Dµ]v = gλµ(v).

Sketch of proof

I The theory of adjustment matrices gives a lower bound for the
graded decomposition numbers [Sλ : Dµ].

I Try to repeat the proof for p = 0. Problems come when you
look at r ≥ 1 and w(µ(0)) > 0. The multipartition ν we
defined before may not index a simple module.

I Work with the cyclotomic q-Schur algebra instead.



Gordon James (1945 – 2020)


