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Set up

We consider only G = GL(n,C) and its rational representations.

Hence, irreducible rational representations are parametrized by

λ = (λ1, λ2, . . . , λn) ∈ Zn

such that λ1 ≥ λ2 ≥ · · · ≥ λn.

We refer it as Vλ, and it is a polynomial representation ⇔ λn ≥ 0.
(I.e. when λ is a partition)

If we write B ⊂ G the subgroup of upper-trigngular matrices, then
Vλ has a unique B-eigenvector vλ on which

B → B/[B,B] =: H ∼= (C×)n

acts by
(C×)n ∋ (X1, . . . ,Xn) 7→ Xλ1

1 · · ·Xλn
n .



Schur polynomials and Hall-Littlewood polynomials

The character of Vλ with respect to the action of (C×)n is the
Schur polynomial

sλ =
∑
σ∈Sn

σ(
Xλ∏

i<j(1− X−1
i Xj)

) ∈ Z[X±1
1 , . . . ,X±1

n ]Sn ,

where Xλ := Xλ1
1 · · ·Xλn

n for λ ∈ Zn.

Vλ is polynomial representation ⇔ sλ ∈ Z[X1, . . . ,Xn].

Hall-Littlewood polynomial is its variant

HLλ := cλ
∑
σ∈Sn

σ(Xλ

∏
i<j(Xi − qXj)∏
i<j(Xi − Xj)

) ∈ Z[q±1,X±1
1 , . . . ,X±1

n ]

with a normalization factor cλ ∈ Q(q).



Orthogonality relations
We have an inner product on Z[X±1

1 , . . . ,X±1
n ]Sn such that

⟨sλ, sµ⟩ = δλ,µ.

We have 〈
HLλ,HL

∨
µ

〉
= δλ,µ

by regarding q as a scalar, where we have

HL∨λ :=
∑
σ∈Sn

σ(
Xλ · X 2(n−1)

1 · · ·X 2
n−1∏

i<j

(
(Xi − Xj)(Xi − qXj)

)) ∈ Z[[q,X±1
1 , . . . ,X±1

n ]].

In order to consider things within Z[X1, . . . ,Xn]
Sn , we consider the

truncation operator[∑
λ

aλsλ

]
:=

∑
λ,λn≥0

aλsλ aλ ∈ C((q)).

This yields
〈
[HLλ] ,

[
HL∨µ

]〉
= δλ,µ.



Borel-Weil theorem

On X := G/B (the flag variety) and λ ∈ Zn, we set

Lλ := {(g , v) ∈ G × C}/ ∼

where (g , v) ∼ (gb, χλ(b)v) for all b ∈ B and χλ : B → C× is a
character (slightly twisted from λ). This is a fiber bundle on X
whose fiber is C (line bundle).

Theorem (Borel-Weil)

When λ = (λi ) ∈ Zn satisfies λ1 ≥ · · · ≥ λn, we have

Vλ = Γ(X , Lλ) = {s : X → Lλ | π ◦ s = id},

where π : Lλ → X is the projection map.

(We neglect dualities here in order to save our memory.)



Geometric interpretation of HL∨λ

On X := G/B (the flag variety) and λ ∈ Zn, we set

Lλ := {(g , v) ∈ G × C}/ ∼

where (g , v) ∼ (gb, χλ(b)v) for all b ∈ B and χλ : B → C× is a
character (obtained from λ).

We pullback Lλ from X to T ∗X (cotangent bundle) and denote by
L̃λ. Then, we have

Theorem (R.Brylinski, Broer)

When λ = (λi ) ∈ Zn satisfies λ1 ≥ · · · ≥ λn, we have

HL∨λ = charqΓ(T
∗X , L̃λ) = {s : T ∗X → L̃λ | π ◦ s = id},

where π : L̃λ → T ∗X is the projection map, and q counts the
character coming from the C×-action on the fibers of T ∗X.



A naive question
We have

HL∨0 = charq C[T ∗X ] =
( n∏
m=1

1− qm

1− q

)
·
( ∏
1≤i ,j≤n,i ̸=j

1

1− qXiX
−1
j

)
,

and hence [
HL∨0

]
= 1 = charq C[T ∗X ],

where T ∗X is any G × C× equivariant compactification of N by
Liouville’s theorem (i.e. globally defined rational function on a
compact connected variety is constant).

Problem
Can you provide nice T ∗X and line bundles L̃+λ on T ∗X such that[

HL∨λ
]
= charqΓ(T ∗X , L̃+λ ) = {s : T ∗X → L̃λ | π ◦ s = id}

and L̃+λ restricts to L̃λ on T ∗X.



Chen-Haiman’s proposal

The cotangent bundle T ∗X admits a vector subbundle T ∗
ΨX

(equipped with G × C×-action) for each Dyck path of size n:

Precisely, “upside-down” of a Dyck path defines a B-submodule of
the fiber of T ∗X at B/B, the strictly upper triangular matrices:

Figure: Dyck path of size 4 from Wikipedia (upside down) CC BY-SA 3.0
https://en.wikipedia.org/wiki/Catalan number



Catalan polynomials and the Chen-Haiman conjecture

The line bundle L̃λ on T ∗X restricts to T ∗
ΨX for each Dyck path.

Definition (Catalan polynomials)

For each Dyck path Ψ and a partition λ ∈ Zn, we set

HLΨλ :=
[
charq Γ(T

∗
ΨX , L̃λ)

]
∈ Z[q,X1, . . . ,Xn]

Sn .

We claim that this defines a nice family of symmetric functions.
However, the RHS is guaranteed to be calculated by an explicit
algebraic formula whenever the following holds:

Conjecture (Chen-Haiman’s vanishing conjecture (2010))

For each Dyck path Ψ and a partition λ ∈ Zn, we have

H>0(T ∗
ΨX , L̃λ) = {0}.



Little about Catalan polynomials

Even without the vanishing conjecture, we can algebraically define
HLΨλ (through a formal application of the Weyl character formula)
and study them. Some of the reasons we care about this is:

▶ It contains various generalizations of Kostka polynomials from
the combinatorial study of some physics model from 1990s;
(recall that the original Kostka polynomials form the
transition matrix between HL•/HL

∨
• and s•)

▶ It contains the k-Schur polynomials introduced by
LaPonte-Lascoux-Morse, in connection with the structure of
Macdonald polynomials (of type A);

▶ k-Schur polynomial is a basic ingredient of the study of the
quantum cohomology of flag manifolds (of type A);

▶ Some of these features (that were conjectures), as well as the
combinatorial part of the Chen-Haiman conjecture, are
established by Blasiak-Morse-Pun-Summers.



The nilpotent cone

We can also enhance T ∗X by enlarging the fiber (that is B-stable)
into a G -module Mat(n,C) with adjoint action. Then, we have

T ∗X ⊂ G ×B Mat(n,C) ∼= G/B ×Mat(n,C) pr2−→ Mat(n,C).

Its image is the space N of nilpotent matrices in Mat(n,C).

The space N is quite important in representation theory (e.g.
remember the talks by Carl and Peng!). If we set n ⊂ Mat(n,C)
the space of strictly upper triangular matrices (the fiber above),
then we have

N = Gn ⊂ Mat(n,C).

(The action is the adjoint action.)



Loop groups and affine Grassmanianns

We formally extend C to C[[z ]] or C((z)) in the matrix entry to
obtain

G [[z ]] := GL(n,C[[z ]]) and G ((z)) := GL(n,C((z))).

The theory of Kac-Moody algebra tells us that G ((z)) admits a
central extension that we denote by G̃ . In addition, we have its
level one basic representation L(Λ0) that roughly looks like

L(Λ0) = CvΛ0 ⊕ sl(n,C)z−1 ⊕ lower degree terms w.r.t. z

Then, the affine Grassmannian looks as

Gr = G ((z))/G [[z ]] ∼= G̃ [vΛ0 ] ⊂ P(L(Λ0)).

(This is a moral statement and should not be identified with a mathematical statement.)



Lusztig’s compactification of the nilpotent cone

We have:

Gr := G ((z))/G [[z ]] ∼= G̃ [vΛ0 ] ⊂ P(L(Λ0)).

Here, we have

exp(
n

z
) ⊂ G ((z))

that lifts to G̃ . If we apply this to [vΛ0 ] and additionally apply the

G ⊂ G̃ -action, we find an embedding

N ↪→ Gr ⊂ P(L(Λ0)).

This is Lusztig’s embedding (1981). A miracle is that, the closure
of the image is the closure of a particular G [[z ]]-orbit of Gr.



Affine Dynkin diagram of G̃

The affine Lie algebra Lie G̃ is essentially of type A
(1)
n−1, whose

Dynkin diagram is of shape:

Figure: Dynkin diagram of type A
(1)
n−1 and the diagram automorphism θ

In particular, θ acts on G̃ and its set of weights. Therefore, we have

Ki := θn−i (G [[z ]]) ⊂ G̃ that have a character Λi := θn−iΛ0.

We have a G̃ -representation L(Λi ) := (θn−i )∗L(Λ0).



Construction of a variety XΨ when T ∗
ΨX = T ∗X ... step I

We set [vΛi
] = [(θn−i )∗vΛ0 ] ∈ P(L(Λi ))).

We start with [vΛ0 ] ∈ P(L(Λ0)). We have

Pn−1 ∼= Kn−1[vΛ0 ] ⊂ P(L(Λ0))

by inspection. Now we consider

[vΛn−1 ]× Kn−1[vΛ0 ] ⊂ P(L(Λn−1))× P(L(Λ0)).

Apply Kn−2 to this. We can check

StabKn−2(vΛn−1) ⟳ Kn−1[vΛ0 ]
∼= Pn−1.

It follows that

Kn−2([vΛn−1 ]× Kn−1[vΛ0 ]) ⊂ P(L(Λn−1))× P(L(Λ0))

defines a Pn−1-fibration over Pn−1 through the projection to
P(L(Λn−1)).



Construction of a variety XΨ when T ∗
ΨX = T ∗X ... step II

In fact, we can continue this by lowering the index by one for each
time (alternatively rotate one step by θ) since

StabKn−k
(vΛn−k

) ⟳ previous output = Kn−k+1([vΛn−k+2
]× Y ),

where Y is the variety constructed two steps before.

This yields the n-times (= number of Λi ’s) repeated application of
Pn−1-bundle, that we denote by XΨ. In particular, we have

dim XΨ = n(n − 1) = dim T ∗X .

Examining Lustig’s construction, the projection to P(L(Λ0)) yields

XΨ → N ⊂ Gr.



The variety XΨ when T ∗
ΨX = T ∗X ... part I

By construction, we have

XΨ ↪→
n−1∏
i=0

P(L(Λi )).

Note that the top z-grading part of L(Λi ) is trivial (i = 0) or
fundamental representation of G (i ̸= 0). Since we have

{[vΛi
]}i ∈ XΨ

by construction, we find X ∼= G{[vΛi
]}i ⊂ XΨ. Since we already

have n ⊂ P(L(Λ0)), we conclude that

T ∗X ⊂ XΨ,

with the natural C×-action reverted. It must be dense by the
dimension counting.



The variety XΨ when T ∗
ΨX = T ∗X ... part II

The embedding

XΨ ↪→
n−1∏
i=0

P(L(Λi ))

defines a line bundle OXΨ
(ϖi ) (0 ≤ i < n) by the pullback of the

corresponding O(1).

Theorem
The line bundle OXΨ

(ϖi ) restricts to L̃λ for

λ =


(1, 1, . . . , 1) (i = 0)

(

i︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0) (i ̸= 0)

through the embedding T ∗
ΨX ⊂ XΨ. In addition, the open subset

T ∗
ΨX ⊂ XΨ is defined as v∗Λ0

̸= 0 (this must be affine embedding).



The case of general Ψ ... properties

We define
XΨ := T ∗

ΨX ⊂ T ∗X = XΨ+ ,

where Ψ+ is the maximal Dyck path that yields T ∗
Ψ+

X = T ∗X .

▶ In particular, XΨ′ ⊂ XΨ if we have T ∗
Ψ′X ⊂ T ∗

ΨX , that is
equivalent to say that the Dyck path Ψ′ is always below Ψ
(before upsidedown);

▶ This is a consequence of the original definition;

▶ Our original construction of XΨ makes it possible to see it is a
successive P•-bundle (and hence is smooth projective);

▶ Though there is no logical dependence, some intermediate
steps of the proof (not exhibited here) employs the contents
of the talk I had originally planned to give.



The case of general Ψ ... statement

We define
XΨ := T ∗

ΨX ⊂ T ∗X = XΨ+ ,

where Ψ+ is the maximal Dyck path that yields T ∗
Ψ+

X = T ∗X .

For a partition λ ∈ Zn, we set the coefficient of ϖi as (λi − λi+1)
(λn for i = 0) to obtain a line bundle OXΨ+

(λ) on XΨ+ .

Theorem (Geometric realization of Catalan polynomials)

For a Dyck path Ψ of size n and a partition λ, we have a line
bundle OXΨ

(λ) obtained as the restriction of OXΨ+
(λ) such that:

1. We have a surjective restriction map

H0(XΨ+ ,OXΨ+
(λ)) −→→ H0(XΨ,OXΨ

(λ));

2. charqH
0(XΨ,OXΨ

(λ)) = HLΨλ ;

3. H>0(XΨ,OXΨ
(λ)) = 0.



The Chen-Haiman conjecture
Recall that H>0(XΨ,OXΨ

(λ)) = 0 when λ is a partition.

Corollary (Chen-Haiman’s vanishing conjecture)

H>0(T ∗
ΨX , L̃λ) = 0 when λ is a partition.

We have

H>0(T ∗
ΨX , L̃λ) = lim−→

m

H>0(XΨ,OXΨ
(λ+mϖ0))⊗ Cm det.

Here we have

j∗OT∗
ΨX

=
⋃
m

OXΨ
(λ+mϖ0))⊠ Cm det and R>0j∗OT∗

ΨX
= 0

for j : T ∗
ΨX ⊂ XΨ since j is an affine embedding.

NB The Chen-Haiman vanishing conjecture is previously shown to
hold when T ∗

ΨX = X (BWB), T ∗X (Broer), sufficiently dominant
weights (Panyshev), and other special cases.



A consequence

The map
µ : T ∗X → N

sends T ∗
ΨX to a G -invariant closed subset of N , i.e. the nilpotent

orbit closure. This yields a surjection

{Dyck paths of size n} → {partitions of n},

and we find that

HLΨ(m,m,...,m) = HLΨ
′

(m,m,...,m) m ≥ 0

whenever Ψ and Ψ′ have a common image. For us, this is a
consequence of

Γ(T ∗
ΨX ,OT∗

ΨX
) = C[µ(T ∗

ΨX )] ≡ C[µ(T ∗
Ψ′X )] = Γ(T ∗

Ψ′X ,OT∗
Ψ′X )

This is the discussion in the paper of Shimozono-Weyman, that
they have casted out their conjectures little modestly.


