A geometric realization of Catalan functions

arXiv:2301.00862

Syu Kato
Kyoto University
Representation Theory of Hecke Algebras and Categorification June 92023

Set up

We consider only $G=G L(n, \mathbb{C})$ and its rational representations. Hence, irreducible rational representations are parametrized by

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}
$$

such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
We refer it as V_{λ}, and it is a polynomial representation $\Leftrightarrow \lambda_{n} \geq 0$. (I.e. when λ is a partition)

If we write $B \subset G$ the subgroup of upper-trigngular matrices, then V_{λ} has a unique B-eigenvector \mathbf{v}_{λ} on which

$$
B \rightarrow B /[B, B]=: H \cong\left(\mathbb{C}^{\times}\right)^{n}
$$

acts by

$$
\left(\mathbb{C}^{\times}\right)^{n} \ni\left(X_{1}, \ldots, X_{n}\right) \mapsto X_{1}^{\lambda_{1}} \ldots X_{n}^{\lambda_{n}} .
$$

Schur polynomials and Hall-Littlewood polynomials

The character of V_{λ} with respect to the action of $\left(\mathbb{C}^{\times}\right)^{n}$ is the Schur polynomial

$$
s_{\lambda}=\sum_{\sigma \in \mathfrak{S}_{n}} \sigma\left(\frac{X^{\lambda}}{\prod_{i<j}\left(1-X_{i}^{-1} X_{j}\right)}\right) \in \mathbb{Z}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]^{\mathfrak{S}_{n}}
$$

where $X^{\lambda}:=X_{1}^{\lambda_{1}} \cdots X_{n}^{\lambda_{n}}$ for $\lambda \in \mathbb{Z}^{n}$.
V_{λ} is polynomial representation $\Leftrightarrow s_{\lambda} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$.
Hall-Littlewood polynomial is its variant

$$
H L_{\lambda}:=c_{\lambda} \sum_{\sigma \in \mathfrak{S}_{n}} \sigma\left(X^{\lambda} \frac{\prod_{i<j}\left(X_{i}-q X_{j}\right)}{\prod_{i<j}\left(X_{i}-X_{j}\right)}\right) \in \mathbb{Z}\left[q^{ \pm 1}, X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]
$$

with a normalization factor $c_{\lambda} \in \mathbb{Q}(q)$.

Orthogonality relations

We have an inner product on $\mathbb{Z}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]^{\mathfrak{S}_{n}}$ such that

$$
\left\langle s_{\lambda}, s_{\mu}\right\rangle=\delta_{\lambda, \mu}
$$

We have

$$
\left\langle H L_{\lambda}, H L_{\mu}^{\vee}\right\rangle=\delta_{\lambda, \mu}
$$

by regarding q as a scalar, where we have

$$
H L_{\lambda}^{\vee}:=\sum_{\sigma \in \mathfrak{S}_{n}} \sigma\left(\frac{X^{\lambda} \cdot X_{1}^{2(n-1)} \cdots X_{n-1}^{2}}{\prod_{i<j}\left(\left(X_{i}-X_{j}\right)\left(X_{i}-q X_{j}\right)\right)}\right) \in \mathbb{Z} \llbracket q, X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1} \rrbracket
$$

In order to consider things within $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]^{\mathfrak{G}_{n}}$, we consider the truncation operator

$$
\left[\sum_{\lambda} a_{\lambda} s_{\lambda}\right]:=\sum_{\lambda, \lambda_{n} \geq 0} a_{\lambda} s_{\lambda} \quad a_{\lambda} \in \mathbb{C}((q))
$$

This yields $\left\langle\left[H L_{\lambda}\right],\left[H L_{\mu}^{\vee}\right]\right\rangle=\delta_{\lambda, \mu}$.

Borel-Weil theorem

On $X:=G / B$ (the flag variety) and $\lambda \in \mathbb{Z}^{n}$, we set

$$
L_{\lambda}:=\{(g, v) \in G \times \mathbb{C}\} / \sim
$$

where $(g, v) \sim\left(g b, \chi_{\lambda}(b) v\right)$ for all $b \in B$ and $\chi_{\lambda}: B \rightarrow \mathbb{C}^{\times}$is a character (slightly twisted from λ). This is a fiber bundle on X whose fiber is \mathbb{C} (line bundle).

Theorem (Borel-Weil)
When $\lambda=\left(\lambda_{i}\right) \in \mathbb{Z}^{n}$ satisfies $\lambda_{1} \geq \cdots \geq \lambda_{n}$, we have

$$
V_{\lambda}=\Gamma\left(X, L_{\lambda}\right)=\left\{s: X \rightarrow L_{\lambda} \mid \pi \circ s=\mathrm{id}\right\}
$$

where $\pi: L_{\lambda} \rightarrow X$ is the projection map.

Geometric interpretation of $H L_{\lambda}^{\vee}$

On $X:=G / B$ (the flag variety) and $\lambda \in \mathbb{Z}^{n}$, we set

$$
L_{\lambda}:=\{(g, v) \in G \times \mathbb{C}\} / \sim
$$

where $(g, v) \sim\left(g b, \chi_{\lambda}(b) v\right)$ for all $b \in B$ and $\chi_{\lambda}: B \rightarrow \mathbb{C}^{\times}$is a character (obtained from λ).

We pullback L_{λ} from X to $T^{*} X$ (cotangent bundle) and denote by \widetilde{L}_{λ}. Then, we have

Theorem (R.Brylinski, Broer)
When $\lambda=\left(\lambda_{i}\right) \in \mathbb{Z}^{n}$ satisfies $\lambda_{1} \geq \cdots \geq \lambda_{n}$, we have

$$
H L_{\lambda}^{\vee}=\operatorname{char}_{q} \Gamma\left(T^{*} X, \widetilde{L}_{\lambda}\right)=\left\{s: T^{*} X \rightarrow \widetilde{L}_{\lambda} \mid \pi \circ s=\mathrm{id}\right\},
$$

where $\pi: \widetilde{L}_{\lambda} \rightarrow T^{*} X$ is the projection map, and q counts the character coming from the \mathbb{C}^{\times}-action on the fibers of $T^{*} X$.

A naive question

We have

$$
H L_{0}^{\vee}=\operatorname{char}_{q} \mathbb{C}\left[T^{*} X\right]=\left(\prod_{m=1}^{n} \frac{1-q^{m}}{1-q}\right) \cdot\left(\prod_{1 \leq i, j \leq n, i \neq j} \frac{1}{1-q X_{i} X_{j}^{-1}}\right)
$$

and hence

$$
\left[H L_{0}^{\vee}\right]=1=\operatorname{char}_{q} \mathbb{C}\left[\overline{T^{*} X}\right]
$$

where $\overline{T^{*} X}$ is any $G \times \mathbb{C}^{\times}$equivariant compactification of \mathcal{N} by Liouville's theorem (i.e. globally defined rational function on a compact connected variety is constant).

Problem

Can you provide nice $\overline{T^{*} X}$ and line bundles $\widetilde{L}_{\lambda}^{+}$on $\overline{T^{*} X}$ such that

$$
\left[H L_{\lambda}^{\vee}\right]=\operatorname{char}_{q} \Gamma\left(\overline{T^{*} X}, \tilde{L}_{\lambda}^{+}\right)=\left\{s: \overline{T^{*} X} \rightarrow \widetilde{L}_{\lambda} \mid \pi \circ s=\mathrm{id}\right\}
$$

and $\widetilde{L}_{\lambda}^{+}$restricts to \widetilde{L}_{λ} on $T^{*} X$.

Chen-Haiman's proposal

The cotangent bundle $T^{*} X$ admits a vector subbundle $T_{\psi}^{*} X$ (equipped with $G \times \mathbb{C}^{\times}$-action) for each Dyck path of size n :

Precisely, "upside-down" of a Dyck path defines a B-submodule of the fiber of $T^{*} X$ at B / B, the strictly upper triangular matrices:

Figure: Dyck path of size 4 from Wikipedia (upside down) CC BY-SA 3.0 https://en.wikipedia.org/wiki/Catalan_number

Catalan polynomials and the Chen-Haiman conjecture

The line bundle \widetilde{L}_{λ} on $T^{*} X$ restricts to $T_{\psi}^{*} X$ for each Dyck path.
Definition (Catalan polynomials)
For each Dyck path Ψ and a partition $\lambda \in \mathbb{Z}^{n}$, we set

$$
H L_{\lambda}^{\psi}:=\left[\operatorname{char}_{q} \Gamma\left(T_{\psi}^{*} X, \tilde{L}_{\lambda}\right)\right] \in \mathbb{Z}\left[q, X_{1}, \ldots, X_{n}\right]^{\mathcal{G}_{n}} .
$$

We claim that this defines a nice family of symmetric functions. However, the RHS is guaranteed to be calculated by an explicit algebraic formula whenever the following holds:
Conjecture (Chen-Haiman's vanishing conjecture (2010))
For each Dyck path Ψ and a partition $\lambda \in \mathbb{Z}^{n}$, we have

$$
H^{>0}\left(T_{\psi}^{*} X, \widetilde{L}_{\lambda}\right)=\{0\}
$$

Little about Catalan polynomials

Even without the vanishing conjecture, we can algebraically define $H L_{\lambda}^{\psi}$ (through a formal application of the Weyl character formula) and study them. Some of the reasons we care about this is:

- It contains various generalizations of Kostka polynomials from the combinatorial study of some physics model from 1990s; (recall that the original Kostka polynomials form the transition matrix between $H L_{\bullet} / H L_{\bullet}^{\vee}$ and s_{\bullet})
- It contains the k-Schur polynomials introduced by

LaPonte-Lascoux-Morse, in connection with the structure of Macdonald polynomials (of type A);

- k-Schur polynomial is a basic ingredient of the study of the quantum cohomology of flag manifolds (of type A);
- Some of these features (that were conjectures), as well as the combinatorial part of the Chen-Haiman conjecture, are established by Blasiak-Morse-Pun-Summers.

The nilpotent cone

We can also enhance $T^{*} X$ by enlarging the fiber (that is B-stable) into a G-module $\operatorname{Mat}(n, \mathbb{C})$ with adjoint action. Then, we have

$$
T^{*} X \subset G \times_{B} \operatorname{Mat}(n, \mathbb{C}) \cong G / B \times \operatorname{Mat}(n, \mathbb{C}) \xrightarrow{\mathrm{pr}_{2}} \operatorname{Mat}(n, \mathbb{C})
$$

Its image is the space \mathcal{N} of nilpotent matrices in $\operatorname{Mat}(n, \mathbb{C})$.
The space \mathcal{N} is quite important in representation theory (e.g. remember the talks by Carl and Peng!). If we set $\mathfrak{n} \subset \operatorname{Mat}(n, \mathbb{C})$ the space of strictly upper triangular matrices (the fiber above), then we have

$$
\mathcal{N}=G \mathfrak{n} \subset \operatorname{Mat}(n, \mathbb{C})
$$

(The action is the adjoint action.)

Loop groups and affine Grassmanianns

We formally extend \mathbb{C} to $\mathbb{C} \llbracket z \rrbracket$ or $\mathbb{C}((z))$ in the matrix entry to obtain

$$
G \llbracket z \rrbracket:=G L(n, \mathbb{C} \llbracket z \rrbracket) \quad \text { and } \quad G((z)):=G L(n, \mathbb{C}((z)))
$$

The theory of Kac-Moody algebra tells us that $G((z))$ admits a central extension that we denote by \widetilde{G}. In addition, we have its level one basic representation $L\left(\Lambda_{0}\right)$ that roughly looks like

$$
L\left(\Lambda_{0}\right)=\mathbb{C} \mathbf{v}_{\Lambda_{0}} \oplus \mathfrak{s l}(n, \mathbb{C}) z^{-1} \oplus \text { lower degree terms w.r.t. } z
$$

Then, the affine Grassmannian looks as

$$
\mathrm{Gr}=G((z)) / G \llbracket z \rrbracket \cong \widetilde{G}\left[\mathbf{v}_{\Lambda_{0}}\right] \subset \mathbb{P}\left(L\left(\Lambda_{0}\right)\right)
$$

Lusztig's compactification of the nilpotent cone

We have:

$$
\mathrm{Gr}:=G((z)) / G \llbracket z \rrbracket \cong \widetilde{G}\left[\mathbf{v}_{\Lambda_{0}}\right] \subset \mathbb{P}\left(L\left(\Lambda_{0}\right)\right)
$$

Here, we have

$$
\exp \left(\frac{\mathfrak{n}}{z}\right) \subset G((z))
$$

that lifts to \widetilde{G}. If we apply this to $\left[\mathbf{v}_{\Lambda_{0}}\right]$ and additionally apply the $G \subset \widetilde{G}$-action, we find an embedding

$$
\mathcal{N} \hookrightarrow \operatorname{Gr} \subset \mathbb{P}\left(L\left(\Lambda_{0}\right)\right) .
$$

This is Lusztig's embedding (1981). A miracle is that, the closure of the image is the closure of a particular $G \llbracket z \rrbracket$-orbit of Gr.

Affine Dynkin diagram of \widetilde{G}

The affine Lie algebra Lie \widetilde{G} is essentially of type $A_{n-1}^{(1)}$, whose Dynkin diagram is of shape:

Figure: Dynkin diagram of type $\mathrm{A}_{n-1}^{(1)}$ and the diagram automorphism θ

In particular, θ acts on \widetilde{G} and its set of weights. Therefore, we have

$$
K_{i}:=\theta^{n-i}(G \llbracket z \rrbracket) \subset \widetilde{G} \text { that have a character } \Lambda_{i}:=\theta^{n-i} \Lambda_{0}
$$

We have a \widetilde{G}-representation $L\left(\Lambda_{i}\right):=\left(\theta^{n-i}\right)^{*} L\left(\Lambda_{0}\right)$.

Construction of a variety X_{Ψ} when $T_{\psi}^{*} X=T^{*} X \ldots$ step I We set $\left.\left[\mathbf{v}_{\Lambda_{i}}\right]=\left[\left(\theta^{n-i}\right)^{*} \mathbf{v}_{\wedge_{0}}\right] \in \mathbb{P}\left(L\left(\Lambda_{i}\right)\right)\right)$.
We start with $\left[\mathbf{v}_{\Lambda_{0}}\right] \in \mathbb{P}\left(L\left(\Lambda_{0}\right)\right)$. We have

$$
\mathbb{P}^{n-1} \cong K_{n-1}\left[\boldsymbol{v}_{0}\right] \subset \mathbb{P}\left(L\left(\Lambda_{0}\right)\right)
$$

by inspection. Now we consider

$$
\left[\mathbf{v}_{\Lambda_{n-1}}\right] \times K_{n-1}\left[\mathbf{v}_{\Lambda_{0}}\right] \subset \mathbb{P}\left(L\left(\Lambda_{n-1}\right)\right) \times \mathbb{P}\left(L\left(\Lambda_{0}\right)\right) .
$$

Apply K_{n-2} to this. We can check

$$
\operatorname{Stab}_{K_{n-2}}\left(\mathbf{v}_{\Lambda_{n-1}}\right) \circlearrowright K_{n-1}\left[\mathbf{v}_{\Lambda_{0}}\right] \cong \mathbb{P}^{n-1} .
$$

It follows that

$$
K_{n-2}\left(\left[\mathbf{v}_{\Lambda_{n-1}}\right] \times K_{n-1}\left[\mathbf{v}_{\Lambda_{0}}\right]\right) \subset \mathbb{P}\left(L\left(\Lambda_{n-1}\right)\right) \times \mathbb{P}\left(L\left(\Lambda_{0}\right)\right)
$$

defines a \mathbb{P}^{n-1}-fibration over \mathbb{P}^{n-1} through the projection to $\mathbb{P}\left(L\left(\wedge_{n-1}\right)\right)$.

Construction of a variety X_{Ψ} when $T_{\Psi}^{*} X=T^{*} X \ldots$ step II

In fact, we can continue this by lowering the index by one for each time (alternatively rotate one step by θ) since

$$
\operatorname{Stab}_{K_{n-k}}\left(\mathbf{v}_{\Lambda_{n-k}}\right) \circlearrowright \text { previous output }=K_{n-k+1}\left(\left[\mathbf{v}_{\Lambda_{n-k+2}}\right] \times Y\right),
$$

where Y is the variety constructed two steps before.
This yields the n-times ($=$ number of Λ_{i} 's) repeated application of \mathbb{P}^{n-1}-bundle, that we denote by X_{ψ}. In particular, we have

$$
\operatorname{dim} X_{\Psi}=n(n-1)=\operatorname{dim} T^{*} X
$$

Examining Lustig's construction, the projection to $\mathbb{P}\left(L\left(\Lambda_{0}\right)\right)$ yields

$$
X_{\Psi} \rightarrow \overline{\mathcal{N}} \subset \mathrm{Gr} .
$$

The variety X_{Ψ} when $T_{\psi}^{*} X=T^{*} X \ldots$ part I

By construction, we have

$$
X_{\psi} \hookrightarrow \prod_{i=0}^{n-1} \mathbb{P}\left(L\left(\Lambda_{i}\right)\right)
$$

Note that the top z-grading part of $L\left(\Lambda_{i}\right)$ is trivial $(i=0)$ or fundamental representation of $G(i \neq 0)$. Since we have

$$
\left\{\left[\mathbf{v}_{\Lambda_{i}}\right]\right\}_{i} \in X_{\Psi}
$$

by construction, we find $X \cong G\left\{\left[\mathbf{v}_{\Lambda_{i}}\right]\right\}_{i} \subset X_{\Psi}$. Since we already have $\mathfrak{n} \subset \mathbb{P}\left(L\left(\Lambda_{0}\right)\right)$, we conclude that

$$
T^{*} X \subset X_{\Psi}
$$

with the natural \mathbb{C}^{\times}-action reverted. It must be dense by the dimension counting.

The variety X_{ψ} when $T_{\psi}^{*} X=T^{*} X \ldots$ part II

The embedding

$$
X_{\psi} \hookrightarrow \prod_{i=0}^{n-1} \mathbb{P}\left(L\left(\Lambda_{i}\right)\right)
$$

defines a line bundle $\mathcal{O}_{X_{\psi}}\left(\varpi_{i}\right)(0 \leq i<n)$ by the pullback of the corresponding $\mathcal{O}(1)$.

Theorem
The line bundle $\mathcal{O}_{X_{\psi}}\left(\varpi_{i}\right)$ restricts to \widetilde{L}_{λ} for

$$
\lambda= \begin{cases}(1,1, \ldots, 1) & (i=0) \\ (\overbrace{1,1, \ldots, 1}^{i}, 0, \ldots, 0) & (i \neq 0)\end{cases}
$$

through the embedding $T_{\Psi}^{*} X \subset X_{\Psi}$. In addition, the open subset $T_{\Psi}^{*} X \subset X_{\Psi}$ is defined as $\mathbf{v}_{\Lambda_{0}}^{*} \neq 0$ (this must be affine embedding).

The case of general Ψ... properties

We define

$$
X_{\Psi}:=\overline{T_{\Psi}^{*} X} \subset \overline{T^{*} X}=X_{\Psi_{+}}
$$

where Ψ_{+}is the maximal Dyck path that yields $T_{\Psi_{+}}^{*} X=T^{*} X$.

- In particular, $X_{\Psi^{\prime}} \subset X_{\Psi}$ if we have $T_{\Psi^{\prime}}^{*} X \subset T_{\Psi}^{*} X$, that is equivalent to say that the Dyck path Ψ^{\prime} is always below Ψ (before upsidedown);
- This is a consequence of the original definition;
- Our original construction of X_{ψ} makes it possible to see it is a successive \mathbb{P}^{\bullet}-bundle (and hence is smooth projective);
- Though there is no logical dependence, some intermediate steps of the proof (not exhibited here) employs the contents of the talk I had originally planned to give.

The case of general Ψ... statement

We define

$$
X_{\Psi}:=\overline{T_{\Psi}^{*} X} \subset \overline{T^{*} X}=X_{\Psi_{+}}
$$

where Ψ_{+}is the maximal Dyck path that yields $T_{\Psi_{+}}^{*} X=T^{*} X$.
For a partition $\lambda \in \mathbb{Z}^{n}$, we set the coefficient of ϖ_{i} as $\left(\lambda_{i}-\lambda_{i+1}\right)$ $\left(\lambda_{n}\right.$ for $\left.i=0\right)$ to obtain a line bundle $\mathcal{O}_{X_{\Psi_{+}}}(\lambda)$ on $X_{\Psi_{+}}$.

Theorem (Geometric realization of Catalan polynomials)
For a Dyck path ψ of size n and a partition λ, we have a line bundle $\mathcal{O}_{X_{\psi}}(\lambda)$ obtained as the restriction of $\mathcal{O}_{X_{\Psi_{+}}}(\lambda)$ such that:

1. We have a surjective restriction map

$$
H^{0}\left(X_{\Psi_{+}}, \mathcal{O}_{X_{\Psi_{+}}}(\lambda)\right) \longrightarrow H^{0}\left(X_{\Psi}, \mathcal{O}_{X_{\psi}}(\lambda)\right)
$$

2. $\operatorname{char}_{q} H^{0}\left(X_{\Psi}, \mathcal{O}_{X_{\psi}}(\lambda)\right)=H L_{\lambda}^{\Psi}$;
3. $H^{>0}\left(X_{\Psi}, \mathcal{O}_{X_{\psi}}(\lambda)\right)=0$.

The Chen-Haiman conjecture

Recall that $H^{>0}\left(X_{\Psi}, \mathcal{O}_{X_{\psi}}(\lambda)\right)=0$ when λ is a partition.
Corollary (Chen-Haiman's vanishing conjecture)

$$
H^{>0}\left(T_{\Psi}^{*} X, \widetilde{L}_{\lambda}\right)=0 \quad \text { when } \lambda \text { is a partition. }
$$

We have

$$
H^{>0}\left(T_{\psi}^{*} X, \widetilde{L}_{\lambda}\right)=\underset{m}{\lim } H^{>0}\left(X_{\Psi}, \mathcal{O}_{X_{\psi}}\left(\lambda+m \varpi_{0}\right)\right) \otimes \mathbb{C}_{m \operatorname{det}} .
$$

Here we have

$$
\left.j_{*} \mathcal{O}_{T_{\psi}^{*} X}=\bigcup_{m} \mathcal{O}_{X_{\psi}}\left(\lambda+m \varpi_{0}\right)\right) \boxtimes \mathbb{C}_{m \operatorname{det}} \quad \text { and } \quad \mathbb{R}^{>0} j_{*} \mathcal{O}_{T_{\psi}^{*} X}=0
$$

for $j: T_{\Psi}^{*} X \subset X_{\Psi}$ since j is an affine embedding.
NB The Chen-Haiman vanishing conjecture is previously shown to hold when $T_{\psi}^{*} X=X(B W B), T^{*} X$ (Broer), sufficiently dominant weights (Panyshev), and other special cases.

A consequence

The map

$$
\mu: T^{*} X \rightarrow \mathcal{N}
$$

sends $T_{\psi}^{*} X$ to a G-invariant closed subset of \mathcal{N}, i.e. the nilpotent orbit closure. This yields a surjection
$\{$ Dyck paths of size $n\} \rightarrow\{$ partitions of $n\}$,
and we find that

$$
H L_{(m, m, \ldots, m)}^{\psi}=H L_{(m, m, \ldots, m)}^{\Psi^{\prime}} \quad m \geq 0
$$

whenever Ψ and Ψ^{\prime} have a common image. For us, this is a consequence of

$$
\Gamma\left(T_{\psi}^{*} X, \mathcal{O}_{T_{\psi}^{*} X}\right)=\mathbb{C}\left[\mu\left(T_{\psi}^{*} X\right)\right] \equiv \mathbb{C}\left[\mu\left(T_{\psi^{\prime}}^{*} X\right)\right]=\Gamma\left(T_{\psi^{\prime}}^{*} X, \mathcal{O}_{T_{\psi^{\prime}}^{*} X}\right)
$$

This is the discussion in the paper of Shimozono-Weyman, that they have casted out their conjectures little modestly.

