Path morphisms in Reduced expressions graphs

Gonzalo Alonso Jiménez Alegría
Universidad de Chile

OIST

June 7, 2023

Outline

(1) Introduction

- Background
- Path morphisms

2 Forking Path Conjecture

- A counterexample and a new conjecture
(3) Identifying new orientations (sources and sinks)
- Previous results
- An algorithm

Involved elements

Element in \rightarrow Graph \rightarrow Functions \rightarrow| Paths |
| :---: |
| a Coxeter |
| Group |

Symmetric group
S_{n}

Defined by reduced
expressions

Defining composition of functions

Our goal

We want to establish criteria to determine when a pair of paths, starting at the same point and ending at the same point, define the same morphism (naturally, without involving the entire calculus itself).

Motivation

The motivation to learn more about this problem comes from a technique used to explicitly describe an idempotent which picks out a summand inside a Bott-Samelson bimodule.

Coxeter Group

For $n \in \mathbb{N}$, let (W, S) be the Coxeter system with $W=S_{n}$ the symmetric group on $\{1, \ldots, n\}$, and generator $S=\left\{s_{i} \mid i=1,2, \ldots, n-1\right\}$ where each s_{i} is the transposition $(i i+1)$.
When no confusion is possible, we simplify notation writing $i j k$ in place of $s_{i} s_{j} s_{k}$.

Reduced Expressions Graph

The reduced expressions graph of an element $w \in W$, usually abreviated rex graph, is the graph defined as follows. Its vertices are the reduced expressions of w, with an edge between two reduced expressions if they differ by a single braid relation.

Reduced expressions graph - Braid relations.

These relations are

$$
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
$$

for all $i \in\{1,2 \ldots, n-2\}$, and

$$
s_{i} s_{j}=s_{j} s_{i}
$$

when $|i-j| \geq 2$. We call the edges determined by the former identity adjacent edges, and those determined by the latter, distant edges.

Example

Reduced expressions graph of 21321.

$$
21321-23121-23212-32312-32132
$$

Example

Reduced expressions graph of 12321.

Expanded expressions graph

Definition

Given a rex graph of $w \in W$, we can draw the distant edges with dashed lines. With this convention, we name this colored graph the expanded expressions graph of w.

Example

The expanded expressions graph of 12321.

Zamolodchikov cycle

Example

The expanded expressions graph of $w_{0,4}$.

Bott-Samelson Bimodules

Let R be the polynomial ring over \mathbb{R} in n variables x_{1}, \ldots, x_{n}, together with an action of W where s_{i} permutes the variables x_{i} and x_{i+1}.

Notation

For s in S, we denote by R^{s} the subring of R consisting of polynomials invariants under the action of s. Let B_{s} denote the graded R-bimodule $B_{s}:=R \otimes_{R^{s}} R(1)$.

Bott-Samelson Bimodules

Definition

The Bott-Samelson bimodule related to an expression $\underline{w}=\left(s_{1}, s_{2} \ldots, s_{n}\right)$, and denoted by $B_{\underline{w}}$, is the graded R-bimodule given by the tensor products of bimodules $B_{\underline{w}}=B_{S_{1}} \otimes_{R} B_{s_{2}} \otimes_{R} \ldots \otimes_{R} B_{S_{n}}$.

We may simplify the notation by writing B_{i} instead of $B_{s_{i}}$. For tensor products, we write $B_{i} B_{j}$ instead of $B_{s_{i}} \otimes_{R} B_{s_{j}}$.
We write 1^{\otimes} for $1 \otimes 1 \otimes \ldots \otimes 1$.

Morphisms $f_{s r}$

First case: If $|i-j| \geq 2$. The morphism $f_{i j}: B_{i} B_{j} \rightarrow B_{j} B_{i}$ is determined by the formula $f_{i j}\left(1^{\otimes}\right)=1^{\otimes}$, because 1^{\otimes} generates $B_{i} B_{j}$ as a bimodule.
Second case: The morphism $f_{i(i+1)}: B_{i} B_{i+1} B_{i} \rightarrow B_{i+1} B_{i} B_{i+1}$ is determined by the formulae $f_{i(i+1)}\left(1^{\otimes}\right)=1^{\otimes}$ and

$$
f_{i(i+1)}\left(1 \otimes x_{i} \otimes 1 \otimes 1\right)=\left(x_{i}+x_{i+1}\right) \otimes 1 \otimes 1 \otimes 1-1 \otimes 1 \otimes 1 \otimes x_{i+2}
$$

Third case: The morphism $f_{i(i-1)}: B_{i} B_{i-1} B_{i} \rightarrow B_{i-1} B_{i} B_{i-1}$ is determined by the formulae $f_{i(i-1)}\left(1^{\otimes}\right)=1^{\otimes}$ and

$$
f_{i(i-1)}\left(1 \otimes x_{i+1} \otimes 1 \otimes 1\right)=1 \otimes 1 \otimes 1 \otimes\left(x_{i}+x_{i+1}\right)-x_{i-1} \otimes 1 \otimes 1 \otimes 1 .
$$

Example

In S_{4}, the expressions 212321, and 213231 are reduced expressions of the same element, and they differ by the braid relation $232=323$. The aforementioned morphism from 212321 to 213231 has the following form.
$I d^{2} \otimes f_{23} \otimes I d: B_{2} \otimes B_{1} \otimes\left(B_{2} \otimes B_{3} \otimes B_{2}\right) \otimes B_{1} \rightarrow B_{2} \otimes B_{1} \otimes\left(B_{3} \otimes B_{2} \otimes B_{3}\right) \otimes B_{1}$.

Path morphisms

For each path p in the rex graph $\operatorname{Rex}(w)$ it is possible to associate a morphism $f(p)$ between the Bott-Samelson bimodules $B_{p_{i}}$ and $B_{p_{f}}$ (through the corresponding compositions).

We call $f(p)$ a path morphism.

Forking Path Conjecture

Conjecture

Let $x \in S_{n}$, let p, q be two complete paths with the same starting points and the same ending points in the reduced expressions graph of x. The morphisms induced by these paths are equal.

Counterexample

Figure: Reduced expressions graph of 12321

Let us consider the element $x:=1 \otimes_{s_{1}} 1 \otimes_{s_{3}} 1 \otimes_{s_{2}} x_{3} \otimes_{s_{3}} 1 \otimes_{s_{1}} 1$ in the Bott-Samelson bimodule $B_{1} B_{3} B_{2} B_{3} B_{1}$.

Counterexample

Conflated expressions graph

Definition

The conflated expressions graph is the quotient of the reduced expressions graph by all its distant edges; that is, we identify any two vertices connected by a distant edge, and remove the distant edge.

Zamolodchikov cycle

Example

The expanded expressions graph of $w_{0,4}$.

Zamolodchikov cycle

Example

The conflated expressions graph of $w_{0,4}$.

Figure: Manin-Schechtman oriented Zamolodchikov cycle.

Orientations in conflated expressions graphs

Introduction

Figure: $A=1213214321, \bar{A}=4342341234 ; B=2341213214, \bar{B}=1434234123$; $C=3412132143, \bar{C}=2143423412 ; D=3423121434, \bar{D}=4121321432$.

Summary

- We did a review of path morphisms in Rex graphs.
- We saw a counterexample for a conjecture.
- We know how to find new "interesting" orientations in Rex graphs

Thank you.

- B. Elias. Thicker Soergel calculus in type A. Proceedings of the London Mathematical Society 112 (5): 924-978, 2016.
- B. Elias and M. Khovanov. Diagrammatics for Soergel Categories. International Journal of Mathematics and Mathematical Sciences, Art. ID 978635, 58, 2010.
- N. Libedinsky. Gentle introduction to Soergel bimodules I: the basics. Sao Paulo J. Math. Sci. (13) 499-538, 2019.
- N. Libedinsky. New bases of some Hecke algebras via Soergel bimodules. Advances in Mathematics 228 (2): 1043-1067, 2011.
- Y. Manin and V. Schechtman. Arrangements of hyperplanes, higher braid groups and higher Bruhat orders. Algebraic number theory, volume 17 of Adv. Stud. Pure Math. 289-308, 1989.
- H. Matsumoto. Générateurs et relations des groupes de Weyl généralisés. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, 258 (13): 3419-, 1964.
- W. Soergel. Kazhdan-Lusztig polynomials and indecomposable bimodules over polynomial rings. J. Inst. Math. Jussieu, 6 (3): 501-525, 2007.

