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Involved elements

Element in → Graph → Functions → Paths
a Coxeter in a graph

Group

Symmetric Defined by Between Defining
group reduced Bott−Samelson composition

Sn expressions bimodules of functions
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Our goal

We want to establish criteria to determine when a pair
of paths, starting at the same point and ending at the
same point, define the same morphism (naturally,
without involving the entire calculus itself).
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Motivation

The motivation to learn more about this problem
comes from a technique used to explicitly describe an
idempotent which picks out a summand inside a
Bott-Samelson bimodule.
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Coxeter Group

For n ∈ N, let (W,S) be the Coxeter system with
W = Sn the symmetric group on {1, . . . ,n}, and
generator S = {si | i = 1,2, . . . ,n−1} where each si
is the transposition (i i+1).
When no confusion is possible, we simplify notation
writing ijk in place of sisjsk.

Gonzalo Alonso Path Morphisms



Introduction
Forking Path Conjecture

Identifying new orientations (sources and sinks)

Background
Path morphisms

Reduced Expressions Graph

The reduced expressions graph of an element
w ∈W, usually abreviated rex graph, is the graph
defined as follows. Its vertices are the reduced
expressions of w, with an edge between two reduced
expressions if they differ by a single braid relation.
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Reduced expressions graph - Braid relations.

These relations are

si si+1 si = si+1 si si+1

for all i ∈ {1,2 . . . ,n−2}, and

si sj = sj si

when |i− j| ≥ 2. We call the edges determined by the
former identity adjacent edges, and those determined
by the latter, distant edges.

Gonzalo Alonso Path Morphisms



Introduction
Forking Path Conjecture

Identifying new orientations (sources and sinks)

Background
Path morphisms

Example

Reduced expressions graph of 21321.

21321 23121 3231223212 32132

Example

Reduced expressions graph of 12321.

12321

13213

3121313231 32123

31231
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Expanded expressions graph

Definition

Given a rex graph of w ∈W, we can draw the distant edges with
dashed lines. With this convention, we name this colored graph the
expanded expressions graph of w.

Example

The expanded expressions graph of 12321.

12321

13213

3121313231 32123

31231
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Zamolodchikov cycle

Example

The expanded expressions graph of w0,4.
121321 123121

212321

213231

231213

231231213213

232123

323123

123212

132312

132132 312312

312132

321232

321323
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Bott-Samelson Bimodules

Let R be the polynomial ring over R in n variables
x1, . . . ,xn, together with an action of W where si
permutes the variables xi and xi+1.

Notation
For s in S, we denote by Rs the subring of R consisting
of polynomials invariants under the action of s. Let Bs
denote the graded R-bimodule Bs := R⊗Rs R(1).
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Bott-Samelson Bimodules

Definition
The Bott-Samelson bimodule related to an
expression w = (s1,s2 . . . ,sn), and denoted by Bw, is
the graded R-bimodule given by the tensor products
of bimodules Bw = Bs1⊗R Bs2⊗R . . .⊗R Bsn.

We may simplify the notation by writing Bi instead of
Bsi. For tensor products, we write BiBj instead of
Bsi⊗R Bsj.
We write 1⊗ for 1⊗1⊗ . . .⊗1.
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Morphisms fsr

First case: If |i− j| ≥ 2. The morphism fij : BiBj→ BjBi is determined
by the formula fij(1⊗) = 1⊗, because 1⊗ generates BiBj as a
bimodule.
Second case: The morphism fi(i+1) : BiBi+1Bi→ Bi+1BiBi+1 is
determined by the formulae fi(i+1)(1⊗) = 1⊗ and

fi(i+1)(1⊗xi⊗1⊗1) = (xi + xi+1)⊗1⊗1⊗1−1⊗1⊗1⊗xi+2.

Third case: The morphism fi(i−1) : BiBi−1Bi→ Bi−1BiBi−1 is
determined by the formulae fi(i−1)(1⊗) = 1⊗ and

fi(i−1)(1⊗xi+1⊗1⊗1) = 1⊗1⊗1⊗(xi + xi+1)− xi−1⊗1⊗1⊗1.
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Example

In S4, the expressions 212321, and 213231 are reduced expressions
of the same element, and they differ by the braid relation 232 = 323.
The aforementioned morphism from 212321 to 213231 has the
following form.

Id2⊗ f23⊗Id : B2⊗B1⊗(B2⊗B3⊗B2)⊗B1→B2⊗B1⊗(B3⊗B2⊗B3)⊗B1.
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Path morphisms

For each path p in the rex graph Rex(w) it is possible
to associate a morphism f (p) between the
Bott-Samelson bimodules Bpi and Bpf (through the
corresponding compositions).

We call f (p) a path morphism.
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Forking Path Conjecture

Conjecture
Let x ∈ Sn, let p,q be two complete paths with the
same starting points and the same ending points in
the reduced expressions graph of x. The morphisms
induced by these paths are equal.
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Counterexample

12321

13213

3121313231 32123

31231

Figure: Reduced expressions graph of 12321

Let us consider the element x := 1⊗s1 1⊗s3 1⊗s2 x3⊗s3 1⊗s1 1 in the
Bott-Samelson bimodule B1B3B2B3B1.
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Counterexample

x2

x3

x3

x3

x3

x2

x3

x2

x2

x3
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Conflated expressions graph

Definition

The conflated expressions graph is the quotient of the
reduced expressions graph by all its distant edges;
that is, we identify any two vertices connected by a
distant edge, and remove the distant edge.
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Zamolodchikov cycle

Example

The expanded expressions graph of w0,4.
121321 123121

212321

213231

231213

231231213213

232123

323123

123212

132312

132132 312312

312132

321232

321323
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Zamolodchikov cycle

Example

The conflated expressions graph of w0,4.

121321

123212212321

213231 132312

232123 321232

323123

•

•

•

•

•

•
•

•

Figure: Manin-Schechtman oriented Zamolodchikov cycle.
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Orientations in conflated expressions graphs
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A

B

C

D

A
B

C

D

Figure: A=1213214321, A=4342341234; B=2341213214, B=1434234123;
C=3412132143, C=2143423412; D=3423121434, D=4121321432.
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Summary

We did a review of path morphisms in Rex graphs.

We saw a counterexample for a conjecture.

We know how to find new “interesting” orientations in Rex graphs
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Thank you.
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