Path morphisms in Reduced expressions graphs

Gonzalo Alonso Jiménez Alegría

Universidad de Chile

OIST

June 7, 2023

Outline

- Background
- Path morphisms
- Porking Path Conjecture
 - A counterexample and a new conjecture
- Identifying new orientations (sources and sinks)
 - Previous results
 - An algorithm

Background Path morphisms

Involved elements

Element in \rightarrow	Graph	\rightarrow	Functions	\rightarrow	Paths
a Coxeter					in a graph
Group					

Symmetric	
group	
S_n	

Defined by reduced expressions Between Bott – Samelson bimodules Defining composition of functions

We want to establish criteria to determine when a pair of paths, starting at the same point and ending at the same point, define the same morphism (naturally, without involving the entire calculus itself).

Background

Background Path morphisms

Motivation

The motivation to learn more about this problem comes from a technique used to explicitly describe an idempotent which picks out a summand inside a Bott-Samelson bimodule.

Coxeter Group

For $n \in \mathbb{N}$, let (W, S) be the Coxeter system with $W = S_n$ the symmetric group on $\{1, \ldots, n\}$, and generator $S = \{s_i \mid i = 1, 2, \ldots, n-1\}$ where each s_i is the transposition $(i \ i + 1)$.

When no confusion is possible, we simplify notation writing ijk in place of $s_is_js_k$.

Background Path morphisms

Reduced Expressions Graph

The *reduced expressions graph* of an element $w \in W$, usually abreviated *rex graph*, is the graph defined as follows. Its vertices are the reduced expressions of w, with an edge between two reduced expressions if they differ by a single braid relation.

Background Path morphisms

Reduced expressions graph - Braid relations.

These relations are

$$s_i \ s_{i+1} \ s_i = s_{i+1} \ s_i \ s_{i+1}$$

for all
$$i \in \{1, 2..., n-2\}$$
, and

$$s_i s_j = s_j s_i$$

when $|i-j| \ge 2$. We call the edges determined by the former identity *adjacent edges*, and those determined by the latter, *distant edges*.

Example

Reduced expressions graph of 21321.

21321 — 23121 — 23212 — 32312 — 32132

Example

Reduced expressions graph of 12321.

Background Path morphisms

Expanded expressions graph

Definition

Given a rex graph of $w \in W$, we can draw the distant edges with dashed lines. With this convention, we name this colored graph the *expanded expressions graph of w*.

Background Path morphisms

Zamolodchikov cycle

Example

Bott-Samelson Bimodules

Let *R* be the polynomial ring over \mathbb{R} in *n* variables x_1, \ldots, x_n , together with an action of *W* where s_i permutes the variables x_i and x_{i+1} .

Notation

For *s* in *S*, we denote by R^s the subring of *R* consisting of polynomials invariants under the action of *s*. Let B_s denote the graded *R*-bimodule $B_s := R \otimes_{R^s} R(1)$.

Bott-Samelson Bimodules

Definition

The *Bott-Samelson bimodule* related to an expression $\underline{w} = (s_1, s_2..., s_n)$, and denoted by $B_{\underline{w}}$, is the graded *R*-bimodule given by the tensor products of bimodules $B_{\underline{w}} = B_{s_1} \otimes_R B_{s_2} \otimes_R ... \otimes_R B_{s_n}$.

We may simplify the notation by writing B_i instead of B_{s_i} . For tensor products, we write B_iB_j instead of $B_{s_i} \otimes_R B_{s_j}$. We write 1^{\otimes} for $1 \otimes 1 \otimes \ldots \otimes 1$.

Morphisms f_{sr}

First case: If $|i-j| \ge 2$. The morphism $f_{ij} : B_i B_j \to B_j B_i$ is determined by the formula $f_{ij}(1^{\otimes}) = 1^{\otimes}$, because 1^{\otimes} generates $B_i B_j$ as a bimodule.

Second case: The morphism $f_{i(i+1)}: B_i B_{i+1} B_i \rightarrow B_{i+1} B_i B_{i+1}$ is determined by the formulae $f_{i(i+1)}(1^{\otimes}) = 1^{\otimes}$ and

$$f_{i(i+1)}(1 \otimes x_i \otimes 1 \otimes 1) = (x_i + x_{i+1}) \otimes 1 \otimes 1 \otimes 1 - 1 \otimes 1 \otimes 1 \otimes x_{i+2}.$$

Third case: The morphism $f_{i(i-1)}: B_i B_{i-1} B_i \to B_{i-1} B_i B_{i-1}$ is determined by the formulae $f_{i(i-1)}(1^{\otimes}) = 1^{\otimes}$ and

$$f_{i(i-1)}(1 \otimes x_{i+1} \otimes 1 \otimes 1) = 1 \otimes 1 \otimes 1 \otimes (x_i + x_{i+1}) - x_{i-1} \otimes 1 \otimes 1 \otimes 1.$$

Example

In S_4 , the expressions 212321, and 213231 are reduced expressions of the same element, and they differ by the braid relation 232 = 323. The aforementioned morphism from 212321 to 213231 has the following form.

 $Id^2 \otimes f_{23} \otimes Id: B_2 \otimes B_1 \otimes (B_2 \otimes B_3 \otimes B_2) \otimes B_1 \to B_2 \otimes B_1 \otimes (B_3 \otimes B_2 \otimes B_3) \otimes B_1.$

Path morphisms

For each path p in the rex graph Rex(w) it is possible to associate a morphism f(p) between the Bott-Samelson bimodules B_{p_i} and B_{p_f} (through the corresponding compositions).

We call f(p) a path morphism.

A counterexample and a new conjecture

Forking Path Conjecture

Conjecture

Let $x \in S_n$, let p, q be two complete paths with the same starting points and the same ending points in the reduced expressions graph of x. The morphisms induced by these paths are equal.

Counterexample

Figure: Reduced expressions graph of 12321

Let us consider the element $x := 1 \otimes_{s_1} 1 \otimes_{s_2} 1 \otimes_{s_2} x_3 \otimes_{s_3} 1 \otimes_{s_1} 1$ in the Bott-Samelson bimodule $B_1B_3B_2B_3B_1$.

A counterexample and a new conjecture

Counterexample

Gonzalo Alonso

Path Morphisms

Previous results An algorithm

Conflated expressions graph

Definition

The *conflated expressions graph* is the quotient of the reduced expressions graph by all its distant edges; that is, we identify any two vertices connected by a distant edge, and remove the distant edge.

Previous results An algorithm

Zamolodchikov cycle

Example

Previous results An algorithm

Zamolodchikov cycle

Example

The conflated expressions graph of $w_{0,4}$.

Figure: Manin-Schechtman oriented Zamolodchikov cycle.

Previous results An algorithm

Orientations in conflated expressions graphs

Figure: A=1213214321, \overline{A} =4342341234; B=2341213214, \overline{B} =1434234123; C=3412132143, \overline{C} =2143423412; D=3423121434, \overline{D} =4121321432.

- We did a review of path morphisms in Rex graphs.
- We saw a counterexample for a conjecture.
- We know how to find new "interesting" orientations in Rex graphs

Thank you.

• B. Elias. *Thicker Soergel calculus in type A.* Proceedings of the London Mathematical Society 112 (5): 924–978, 2016.

• B. Elias and M. Khovanov. *Diagrammatics for Soergel Categories*. International Journal of Mathematics and Mathematical Sciences, Art. ID 978635, 58, 2010.

• N. Libedinsky. *Gentle introduction to Soergel bimodules I: the basics*. Sao Paulo J. Math. Sci. (13) 499-538, 2019.

• N. Libedinsky. *New bases of some Hecke algebras via Soergel bimodules*. Advances in Mathematics 228 (2): 1043–1067, 2011.

• Y. Manin and V. Schechtman. *Arrangements of hyperplanes, higher braid groups and higher Bruhat orders.* Algebraic number theory, volume 17 of Adv. Stud. Pure Math. 289-308, 1989.

• H. Matsumoto. *Générateurs et relations des groupes de Weyl généralisés*. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, 258 (13): 3419-, 1964.

• W. Soergel. Kazhdan-Lusztig polynomials and indecomposable bimodules over polynomial rings. J. Inst. Math. Jussieu, 6 (3): 501-525, 2007.