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Hecke algebras

For a field F and q ∈ F×, we denote the Iwahori–Hecke algebra of type
A over F with parameter q by Hn(q).

The representation theory of Hn is very similar to the modular
representation theory of the symmetric group Sn.

Define the quantum characteristic of Hn(q), e ≥ 2, to be the smallest
integer such that 1 + q + q2 + · · ·+ qe−1 = 0.
Throughout this talk, we fix e = 2 (i.e. q = −1).
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Combinatorics

We have partitions λ ⊢ n, Young diagrams [λ] and tableaux T (in
particular, standard tableaux of shape λ, denoted Std(λ)).

For each node A ∈ [λ], we define its residue as

resA = column number− row number mod e.

As e = 2, if λ = (4, 3, 2, 2), then

[λ] = 0 1 0 1
1 0 1
0 1
1 0

.

For T ∈ Std(λ), we define the residue sequence i T of T to be the
sequence of residues of nodes containing 1, . . . , n in order.
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Cyclotomic KLR algebras

Let O be a commutative ring with identity.
The cyclotomic Khovanov–Lauda–Rouquier algebra of type A,
RΛ0
n = RΛ0

n (O), is defined to be the unital O-algebra generated by the
elements

{e(i ) | i ∈ I n} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1},

subject to some relations.

Theorem (Brundan–Kleshchev, 2009)

The algebras RΛ0
n and Hn are isomorphic.
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Specht modules

For each λ ⊢ n, we can associate the corresponding Specht module,
denoted Sλ. The module Sλ is a cyclic RΛ0

n -module with homogeneous
generator zλ, where deg(zλ) := deg(Tλ) (the initial tableau).

We write iλ := i T
λ

.

Relations for zλ

1. e(i )zλ = δi ,iλz
λ;

2. yrz
λ = 0 for all 1 ≤ r ≤ n;

3. ψkz
λ = 0 whenever k and k + 1 are in the same row of Tλ;

4. Garnir relations: involves some ψ generators (very complicated!).

Theorem (Brundan–Kleshchev–Wang, 2011)

Let λ ∈ Pn. Then the universal Specht module Sλ(O) for RΛ0

n (O) has
homogeneous O-basis

{vT | T ∈ Std(λ)}.
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Homomorphisms

For the rest of this talk, we fix λ = (a, 1b) of size n.

Loubert described all possible shapes of µ such that
dimHom

R
Λ0
n
(Sµ,Sλ) ≥ 1 when e ≥ 3.

In this talk, we are considering the same problem for e = 2.

Suppose µ is an arbitrary partition of size n and that we would like to find
a homomorphism f ∈ Hom

R
Λ0
n
(Sµ,Sλ).

By the defining relations of Sµ, we know that f (zµ) must satisfy the same
relations as zµ.

We start with the first relation e(i )f (zµ) = δiµ,i f (z
µ). This tells us that

v := f (zµ) =
∑

T∈Std(λ)
i T=iµ

cTvT ∈ Sλ.

That is, all T appearing in v have the same residue sequence as Tµ.
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Difficulties with e = 2

1. Our residue patterns only contain 0’s and 1’s. This is not very helpful!

0 1 2 0 1 2
2
1
0
2

1
2

0 1 0 1 0 1
1
0
1
0

1
1

e = 3 e = 2



Difficulties with e = 2

2. The action of the ψ generators on the basis elements is extremely
complicated.

This is due to the fact that the defining relations of RΛ0
n

are different for e = 2.
3. Finding the appropriate coefficients in v =

∑
cTvT is very hard.

In fact, for e ≥ 3, dimHom
R
Λ0
n
(Sµ,Sλ) ≤ 1 and the homomorphism is

generated by one single vector. For us, this is different.
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Main result

There is a very intricate combinatorial description for shapes without
‘complicated’ Garnir relations.

Theorem (H., 2023)

Let µ = (c , 2k , 1d) and λ = (a, 1b) with c even. Then
dimHom

R
Λ0
n
(Sµ,Sλ) ≥ 1 if and only if:

◦ a ≥ k + 2;

◦ if n is odd, n + a ≡ k + 1 mod 2, or

◦ if n even, k +2 ≤ a ≤ c + k or a = c + k +1+2i for 0 ≤ i ≤ d/2− 2.
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