Homomorphisms into Specht modules labelled by hooks when e = 2

Berta Hudak

Okinawa Institute of Science and Technology

7 June 2023

Hecke algebras

For a field \mathbb{F} and $q \in \mathbb{F}^{\times}$, we denote the **Iwahori–Hecke algebra** of type A over \mathbb{F} with parameter q by $\mathcal{H}_n(q)$.

For a field \mathbb{F} and $q \in \mathbb{F}^{\times}$, we denote the **Iwahori–Hecke algebra** of type A over \mathbb{F} with parameter q by $\mathcal{H}_n(q)$.

The representation theory of \mathcal{H}_n is very similar to the modular representation theory of the symmetric group \mathfrak{S}_n .

For a field \mathbb{F} and $q \in \mathbb{F}^{\times}$, we denote the **Iwahori–Hecke algebra** of type A over \mathbb{F} with parameter q by $\mathcal{H}_n(q)$.

The representation theory of \mathcal{H}_n is very similar to the modular representation theory of the symmetric group \mathfrak{S}_n .

Define the **quantum characteristic** of $\mathcal{H}_n(q)$, $e \ge 2$, to be the smallest integer such that $1 + q + q^2 + \cdots + q^{e-1} = 0$. Throughout this talk, we fix e = 2 (i.e. q = -1).

We have partitions $\lambda \vdash n$, Young diagrams $[\lambda]$ and tableaux T (in particular, standard tableaux of shape λ , denoted Std (λ)).

We have partitions $\lambda \vdash n$, Young diagrams $[\lambda]$ and tableaux T (in particular, standard tableaux of shape λ , denoted Std (λ)).

For each node $A \in [\lambda]$, we define its **residue** as

 $\operatorname{res} A = \operatorname{column} \operatorname{number} - \operatorname{row} \operatorname{number} \mod e.$

We have partitions $\lambda \vdash n$, Young diagrams $[\lambda]$ and tableaux T (in particular, standard tableaux of shape λ , denoted Std (λ)).

For each node $A \in [\lambda]$, we define its **residue** as

 $\operatorname{res} A = \operatorname{column} \operatorname{number} - \operatorname{row} \operatorname{number} \mod e.$

As e = 2, if $\lambda = (4, 3, 2, 2)$, then

$[\lambda] =$	0	1	0	1
	1	0	1	
	0	1		
	1	0		

We have partitions $\lambda \vdash n$, Young diagrams $[\lambda]$ and tableaux T (in particular, standard tableaux of shape λ , denoted Std (λ)).

For each node $A \in [\lambda]$, we define its **residue** as

 $\operatorname{res} A = \operatorname{column} \operatorname{number} - \operatorname{row} \operatorname{number} \mod e.$

As e = 2, if $\lambda = (4, 3, 2, 2)$, then

$$\begin{bmatrix} \lambda \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

For $T \in Std(\lambda)$, we define the **residue sequence** i^{T} of T to be the sequence of residues of nodes containing $1, \ldots, n$ in order.

Let $\ensuremath{\mathcal{O}}$ be a commutative ring with identity.

The cyclotomic **Khovanov–Lauda–Rouquier algebra** of type *A*, $R_n^{\Lambda_0} = R_n^{\Lambda_0}(\mathcal{O})$, is defined to be the unital \mathcal{O} -algebra generated by the elements

$$\{e(\mathbf{i}) \mid \mathbf{i} \in I^n\} \cup \{y_1, \ldots, y_n\} \cup \{\psi_1, \ldots, \psi_{n-1}\},\$$

subject to some relations.

Let $\ensuremath{\mathcal{O}}$ be a commutative ring with identity.

The cyclotomic **Khovanov–Lauda–Rouquier algebra** of type *A*, $R_n^{\Lambda_0} = R_n^{\Lambda_0}(\mathcal{O})$, is defined to be the unital \mathcal{O} -algebra generated by the elements

$$\{e(\mathbf{i}) \mid \mathbf{i} \in I^n\} \cup \{y_1, \ldots, y_n\} \cup \{\psi_1, \ldots, \psi_{n-1}\},\$$

subject to some relations.

Theorem (Brundan–Kleshchev, 2009)

The algebras $R_n^{\Lambda_0}$ and \mathcal{H}_n are isomorphic.

For each $\lambda \vdash n$, we can associate the corresponding **Specht module**, denoted S^{λ} . The module S^{λ} is a cyclic $R_n^{\Lambda^0}$ -module with homogeneous generator z^{λ} , where $\deg(z^{\lambda}) := \deg(\mathbb{T}^{\lambda})$ (the initial tableau).

For each $\lambda \vdash n$, we can associate the corresponding **Specht module**, denoted S^{λ} . The module S^{λ} is a cyclic $R_n^{\Lambda^0}$ -module with homogeneous generator z^{λ} , where $\deg(z^{\lambda}) := \deg(\mathbb{T}^{\lambda})$ (the initial tableau).

We write $\mathbf{i}^{\lambda} := \mathbf{i}^{\mathrm{T}^{\lambda}}$.

For each $\lambda \vdash n$, we can associate the corresponding **Specht module**, denoted S^{λ} . The module S^{λ} is a cyclic $R_n^{\Lambda^0}$ -module with homogeneous generator z^{λ} , where $\deg(z^{\lambda}) := \deg(\mathbb{T}^{\lambda})$ (the initial tableau).

We write $\mathbf{i}^{\lambda} := \mathbf{i}^{\mathrm{T}^{\lambda}}$.

Relations for z^{λ}

1.
$$e(\mathbf{i})z^{\lambda} = \delta_{\mathbf{i},\mathbf{i}^{\lambda}}z^{\lambda};$$

2.
$$y_r z^\lambda = 0$$
 for all $1 \le r \le n$;

- 3. $\psi_k z^{\lambda} = 0$ whenever k and k + 1 are in the same row of T^{λ} ;
- 4. Garnir relations: involves some ψ generators (very complicated!).

For each $\lambda \vdash n$, we can associate the corresponding **Specht module**, denoted S^{λ} . The module S^{λ} is a cyclic $R_n^{\Lambda^0}$ -module with homogeneous generator z^{λ} , where $\deg(z^{\lambda}) := \deg(\mathbb{T}^{\lambda})$ (the initial tableau).

We write $\mathbf{i}^{\lambda} := \mathbf{i}^{\mathrm{T}^{\lambda}}$.

Relations for z^{λ}

1.
$$e(\mathbf{i})z^{\lambda} = \delta_{\mathbf{i},\mathbf{i}^{\lambda}}z^{\lambda};$$

2.
$$y_r z^\lambda = 0$$
 for all $1 \le r \le n$;

- 3. $\psi_k z^{\lambda} = 0$ whenever k and k + 1 are in the same row of T^{λ} ;
- 4. Garnir relations: involves some ψ generators (very complicated!).

Theorem (Brundan–Kleshchev–Wang, 2011)

Let $\lambda \in \mathscr{P}_n$. Then the universal Specht module $S^{\lambda}(\mathcal{O})$ for $R_n^{\Lambda^0}(\mathcal{O})$ has homogeneous \mathcal{O} -basis

 $\{v_{\mathtt{T}} \mid \mathtt{T} \in \mathsf{Std}(\lambda)\}.$

For the rest of this talk, we fix $\lambda = (a, 1^b)$ of size n.

For the rest of this talk, we fix $\lambda = (a, 1^b)$ of size *n*.

Loubert described all possible shapes of μ such that dim Hom_{R^{A0}_n} $(S^{\mu}, S^{\lambda}) \geq 1$ when $e \geq 3$.

For the rest of this talk, we fix $\lambda = (a, 1^b)$ of size n.

Loubert described all possible shapes of μ such that dim Hom_{R^A₀} $(S^{\mu}, S^{\lambda}) \geq 1$ when $e \geq 3$.

In this talk, we are considering the same problem for e = 2.

For the rest of this talk, we fix $\lambda = (a, 1^b)$ of size *n*.

Loubert described all possible shapes of μ such that dim Hom_{R^A₀} $(S^{\mu}, S^{\lambda}) \geq 1$ when $e \geq 3$.

In this talk, we are considering the same problem for e = 2.

Suppose μ is an arbitrary partition of size n and that we would like to find a homomorphism $f \in \operatorname{Hom}_{R^{\Lambda_0}}(S^{\mu}, S^{\lambda})$.

For the rest of this talk, we fix $\lambda = (a, 1^b)$ of size n.

Loubert described all possible shapes of μ such that dim Hom_{R^A₀} $(S^{\mu}, S^{\lambda}) \geq 1$ when $e \geq 3$.

In this talk, we are considering the same problem for e = 2.

Suppose μ is an arbitrary partition of size n and that we would like to find a homomorphism $f \in \operatorname{Hom}_{\mathbb{R}^{\Lambda_0}}(S^{\mu}, S^{\lambda})$.

By the defining relations of S^{μ} , we know that $f(z^{\mu})$ must satisfy the same relations as z^{μ} .

For the rest of this talk, we fix $\lambda = (a, 1^b)$ of size *n*.

Loubert described all possible shapes of μ such that dim Hom_{R^A₀} $(S^{\mu}, S^{\lambda}) \geq 1$ when $e \geq 3$.

In this talk, we are considering the same problem for e = 2.

Suppose μ is an arbitrary partition of size n and that we would like to find a homomorphism $f \in \operatorname{Hom}_{\mathbb{R}^{\Lambda_0}}(S^{\mu}, S^{\lambda})$.

By the defining relations of S^{μ} , we know that $f(z^{\mu})$ must satisfy the same relations as z^{μ} .

We start with the first relation $e(i)f(z^{\mu}) = \delta_{i^{\mu},i}f(z^{\mu})$.

For the rest of this talk, we fix $\lambda = (a, 1^b)$ of size n.

Loubert described all possible shapes of μ such that dim Hom_{R^A₀} $(S^{\mu}, S^{\lambda}) \geq 1$ when $e \geq 3$.

In this talk, we are considering the same problem for e = 2.

Suppose μ is an arbitrary partition of size *n* and that we would like to find a homomorphism $f \in \operatorname{Hom}_{\mathbb{R}^{\Lambda_0}}(S^{\mu}, S^{\lambda})$.

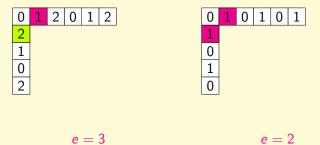
By the defining relations of S^{μ} , we know that $f(z^{\mu})$ must satisfy the same relations as z^{μ} .

We start with the first relation $e(i)f(z^{\mu}) = \delta_{i^{\mu},i}f(z^{\mu})$. This tells us that

$$m{v}:=f(z^{\mu})=\sum_{\substack{\mathrm{T}\in\mathrm{Std}(\lambda)\ m{i}^{\mathrm{T}}=m{i}^{\mu}}}c_{\mathrm{T}}m{v}_{\mathrm{T}}\in S^{\lambda}.$$

That is, all T appearing in v have the same residue sequence as T^{μ} .

1. Our residue patterns only contain 0's and 1's. This is not very helpful!



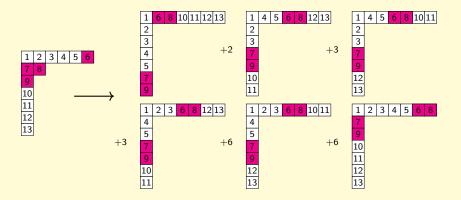
2. The action of the ψ generators on the basis elements is extremely complicated.

2. The action of the ψ generators on the basis elements is extremely complicated. This is due to the fact that the defining relations of $R_n^{\Lambda_0}$ are different for e = 2.

- 2. The action of the ψ generators on the basis elements is extremely complicated. This is due to the fact that the defining relations of $R_n^{\Lambda_0}$ are different for e = 2.
- **3.** Finding the appropriate coefficients in $v = \sum c_T v_T$ is very hard.

- 2. The action of the ψ generators on the basis elements is extremely complicated. This is due to the fact that the defining relations of $R_n^{\Lambda_0}$ are different for e = 2.
- **3.** Finding the appropriate coefficients in $v = \sum c_{\mathrm{T}}v_{\mathrm{T}}$ is very hard. In fact, for $e \geq 3$, dim $\operatorname{Hom}_{\mathsf{R}^{\Lambda_0}_n}(S^\mu, S^\lambda) \leq 1$ and the homomorphism is generated by one single vector. For us, this is different.

- 2. The action of the ψ generators on the basis elements is extremely complicated. This is due to the fact that the defining relations of $R_n^{\Lambda_0}$ are different for e = 2.
- **3.** Finding the appropriate coefficients in $v = \sum c_{\mathrm{T}} v_{\mathrm{T}}$ is very hard. In fact, for $e \geq 3$, dim $\operatorname{Hom}_{\mathsf{R}^{\Lambda_0}_n}(S^\mu, S^\lambda) \leq 1$ and the homomorphism is generated by one single vector. For us, this is different.

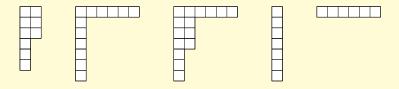


Main result

There is a very intricate combinatorial description for shapes without 'complicated' Garnir relations.

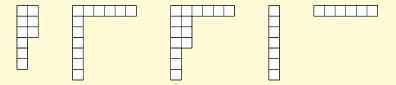
Main result

There is a very intricate combinatorial description for shapes without 'complicated' Garnir relations.



Main result

There is a very intricate combinatorial description for shapes without 'complicated' Garnir relations.



Theorem (H., 2023)

Let $\mu = (c, 2^k, 1^d)$ and $\lambda = (a, 1^b)$ with c even. Then dim $\operatorname{Hom}_{R_n^{\Lambda_0}}(S^{\mu}, S^{\lambda}) \ge 1$ if and only if: $\circ a \ge k + 2;$ $\circ if n is odd, n + a \equiv k + 1 \mod 2, \text{ or}$ $\circ if n even, k + 2 \le a \le c + k \text{ or } a = c + k + 1 + 2i \text{ for } 0 \le i \le d/2 - 2.$