Finite dimensional Hecke algebras and beyond

Aim: Results, problems from representation theory of finitedimensional algebras, specialized to Hecke algebras, focussing on type A.

[Ariki] (Intro of paper dedicated to R. Dipper's retirement, J. Austr. Math. Soc.)

The modular representation theory of Hecke algebras itself is still far from well-understood ...

 $\mathcal{H} = H_q(d)$ type A Hecke algebra, over K alg closed field, usually $\operatorname{char}(K) = p$. Fix $0 \neq q \in K$ primitive ℓ -th root of 1 (or q = 1). Plan (I) \mathcal{H} viewed as a f-dim algebra. (II) \mathcal{H} via Schur algebras (I) Representation type for \mathcal{H} Uno, Geck, E-Nakano, Ariki, Mathas, etal.

finite \longrightarrow Brauer tree algebras, tree a line Qu same for any Hecke algebra?

tame \longrightarrow Brauer graph algebras Qu same for any Hecke algebra?

wild (otherwise) $\rightarrow ???$

Other finiteness conditions?

Call a module M Schurian if $\operatorname{End}_A(M) \cong K$. The algebra A is Schurian finite: # Schurian modules (up to iso) is finite. [Demonet-Jasso-Iyama] $\Leftrightarrow \tau$ -tilting finite. THM [Ariki-Lyle-Speyer] A = block of \mathcal{H} . If $\ell \geq 3$ then all blocks of weight $w \geq 2$ are Schurian infinite (any characteristic).

Graded decomposition numbers give part of ext quiver, 'zigzag modules'

[E-Nakano, Doty-EN-Martin] Representation type for $S_q(n,d)$. [Qi Wang] Schurian finitenes for Schur algebras.

Wild case: Stable Auslander Reiten quiver Γ_s

A = wild block, selfinjective, M indecomposable not projective. Let $\Theta =$ component of Γ_s containing M.

Qu graph structure of Θ ?

Tool: Periodic modules.

THM [Happel, Preiser, Ringel, Webb, Okuyama] If there is a periodic module W and $\underline{Hom}(W, M) \neq 0$ then (a) $\Theta \cong \mathbb{Z}T$ with T Euclidean or $A_{\infty}, A_{\infty}^{\infty}$ or D_{∞} . (b) A = wild block of KG then only A_{∞} occurs. (Applications: exclude some Cartan matrices).

AR quiver: directed graph. Vertices [M] (iso classes of indecomposables). Arrows $[M] \rightarrow [N]$ from irreducible maps. Qu A wild block of \mathcal{H} , do we always have such periodic W? Only A_{∞} ?

(a) Analog to group case: Elementary abelian p-groups $\longrightarrow \ell$ -parabolic $\mathcal{H}_{\rho} \subset \mathcal{H}$ (tensor product of $\mathcal{H}(\ell)$'s)

 \Rightarrow Works OK if M restricted to \mathcal{H}_{ρ} is not not projective.

Problem When is *M* restricted to \mathcal{H}_{ρ} projective?

(b) Evidence: THM [S. Schmider] $\ell \geq 3$ and char(K) does not divide $\ell - 1$, then all components for a block of wild type are $\mathbb{Z}A_{\infty}$. For KG, support varieties via $H^*(G)$. For \mathcal{H} , no Hopf structure but could try $H^*(\mathcal{H}) := \operatorname{Ext}^*_{\mathcal{H}}(K, K)$.

Known when char(K) = 0 [Benson-E-Mikaelian] With this, (Nakano-Xiang) introduce 'relative support'.

What if $char(K) \neq 0$?

If \mathcal{H} satisfies (Fg) support varieties via $HH^*(\mathcal{H}) = Ext^*_{\mathcal{H}^e}(\mathcal{H},\mathcal{H}).$

[Linckelmann] For char(K) = 0, (Fg) holds for \mathcal{H} . (\Rightarrow any M has finite complexity (= dim V(M))).

What if $char(K) \neq 0$? Eg $\mathcal{H}_q(6)$ with char(K) = 2 or 3, do modules have finite complexity? (II) A quasi-hereditary, w.r. to (Λ, \leq) .

 $L(\lambda)$ simple, with projective cover $P(\lambda)$, $\Delta(\lambda)$, $\nabla(\lambda)$ standard and costandard modules $\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$ modules with Δ , ∇ filtration.

 $T(\lambda)$ (unique) indecomposable in $\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla)$ with 'highest weight' λ .

 $T := \bigoplus_{\lambda} T(\lambda)$ 'characteristic tilting module'.

 $R_A := \operatorname{End}_A(T)^{op}$ Ringel dual of A, is QH w.r.to (Λ, \leq^{op}) .

Example: $A = S_q(n,d)$ Schur algebra. View as $End_{\mathcal{H}}(V^{\otimes d})$. $V^{\otimes d} \in add(T)$ and $T(\lambda)$ occurs iff λ is ℓ -regular.

 $R_A \sim_{\mathsf{Morita}} A$ if $n \ge d$ [Donkin]. Sometimes when n = 2 [E-Henke, Law]

What if $3 \le n < d$?

QH algebras have finite global dimension.

Known for $A = S_q(n, d)$ and $n \ge d$ (Totaro, Donkin), for n = 2, 3 (A. Parker)

What if 3 < d < n? [A. Parker in most cases known.]

A = QH (quasihereditary), T and R_A as above.

Take $_{A}P$ projective, $B := \text{End}_{A}(P)^{op}$ and $F = \text{Hom}(P, -) : A - \text{mod} \rightarrow B - \text{mod}$ Schur functor.

[Rouquier] (A, P) is a QH cover of B if $F_{A-\text{proj}}$ is full and faithful (\Leftrightarrow F induces iso $A \rightarrow \text{End}_B(FA)$).

EX If $n \ge d$, then $A = S_q(n, d)$ is a qh cover of $B := \mathcal{H}$. Take $P = V^{\otimes d} \cong Ae$. Then $F \cong e(-)$ takes $\nabla(\lambda) \to S^{\lambda}$, $\Delta(\lambda) \to (S^{\lambda'})^{\#}$, $P(\lambda) \to Y^{\lambda}$, $T(\lambda) \to (Y^{\lambda'})^{\#}$.

Qu Does $\mathcal{F}(Sp)$ have properties similar to $\mathcal{F}(\Delta)$

THM [Hemmer-Nakano] For $\ell \ge 4$, filtration multiplicity for modules in $\mathcal{F}(Sp)$ is well-defined.

(A, P) qh cover, would like F to induce iso's

$$\mathsf{Ext}^j_A(X,Y) \to \mathsf{Ext}^j_B(FX,FY)$$

(for $X, Y \in \mathcal{F}(\Delta)$). If so for $0 \le j \le i$ then call (A, P) an $i - \mathcal{F}(\Delta)$ cover of B.

DEF [Fang-Koenig] The Hemmer-Nakano dimension of $\mathcal{F}(\Delta)$ is the largest such *i*. Then call (A, P) an $i - \mathcal{F}(\Delta)$ cover of *B*.

DEF M = some A-module, domdim $(M) \ge n$ if M has injective resolution

$$0 \to M \to I_0 \to \ldots \to I_n \to \ldots$$

with I_0, I_1, \ldots, I_n projective.

THM [Fang-Koenig] A qh with simple preserving duality $(-)^0$ and domdim $(A) \ge 2$. Then HN-dim $\mathcal{F}(\Delta) = \text{domdim}(T) - 2$ and domdimA = 2domdimT.

 $A = S_q(n,d)$ and $n \ge d$ (assume not ss). Then

[FK/ FMiyachi] domdim(A) = $2(p-1)(2(\ell-1))$.

 \Rightarrow HN-dim $F(\Delta) = p - 3 (\ell - 3).$

RK: If HN-dim $\mathcal{F}(\Delta) \geq 1$ then filtration multiplicity in $\mathcal{F}(F\Delta)$ is well-defined.

 $\Rightarrow \mathcal{F}(Sp^*) \text{ if } \ell \geq 4.$

Qh cover via R_A

Let $Q \in \operatorname{add}(T)$ and $B := \operatorname{End}_A(Q)^{op}$.

DEF Q- domdim $M := \sup n \mid$ there are $Q_i \in \text{add}(Q)$ and an exact sequence

$$0 \to M \to Q_1 \to \ldots \to Q_n$$

which remains exact under Hom(-,Q).

 $Q - \operatorname{codomdim}(M) = DQ - \operatorname{domdim}_{A^{op}} DM.$

THM [Cruz] Let $P = \text{Hom}_A(T, Q)$. If Q-codomdim_A $(T) \ge n \ge 2$ then (R_A, P) is an $(n-2)-\mathcal{F}(\Delta_{R_A})$ qh cover of B. Application: $A = S_q(n, d)$ any n, d and $Q = V^{\otimes d}$. Then $B \cong \mathcal{H}/I_n$ and (R_A, P) is qh cover of B.

? what is HNdim?

THM [Cruz, E] A with simple preserving duality. Then $Q - \text{domdim}A = 2 \cdot Q - \text{domdim}T = 2 \cdot Q - \text{codomdim}T$

THM [Cruz-E]
$$A = S_q(2,d)$$
 and $Q = V^{\otimes d}$. Then
 $Q - \text{domdim}(T) = \begin{cases} d/2 - 2 & \text{d even, } p = 2 \text{ (or } \ell = 2) \\ \infty & \text{ow} \end{cases}$

COR $TL_{K,d}(\delta)$ is qh unless d is even and p = 2 or $\ell = 2$.

RK Let p = 2 or $\ell = 2$. If HN dim ≥ 1 , still filtration multiplicity in $\mathcal{F}(F\Delta)$ well defined.

 $(d/2 - 2 \ge 1$ for $d \ge 6$. Leaves only d = 2, 4 (then R_A has finite type, very small)