Decomposable Specht modules indexed by bihooks

Liron Speyer
University of Virginia, Charlottesville, VA 22904, USA
l.speyer@virginia.edu

Louise Sutton
National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
matloui@nus.edu.sg

2010 Mathematics subject classification: 20C30, 20C08, 05E10

Abstract

We study the decomposability of Specht modules labelled by bihooks, bipartitions with a hook in each component, for the Iwahori-Hecke algebra of type B. In all characteristics, we determine a large family of decomposable Specht modules, and conjecture that these provide a complete list of decomposable Specht modules indexed by bihooks. We prove the conjecture for small n.

1 Introduction

Specht modules are of fundamental importance in the study of reflection groups and their deformations. We are particularly interested in the Iwahori-Hecke algebras of types A and B. In type B, these Hecke algebras have been studied from the point of view of their decomposition numbers [Fay06, AJ10], their Kazhdan-Lusztig theory [GIP08, Jac11], and via applications from higher representation theory [BS11]. Nowadays, the subject often takes on a more diagrammatic and categorical flavour, for example with the inception of Elias and Williamson's diagrammatic Hecke category [EW16], Webster's diagrammatic Cherednik algebra [Web17] and recent work of Elias-Losev [EL].

It is known by [DJ91, Rou08, FS16] that the Specht modules are indecomposable if the quantum characteristic e is not 2 , and under the further assumption in type B that the parameters κ_{1} and κ_{2} are distinct. Rouquier's work in fact gives us that the Hecke algebras admit faithful quasi-hereditary covers, whence indecomposability follows easily by considering the trivial endomorphism spaces of standard modules.

In type A, Murphy [Mur80] and the first author [Spe14] completely determined the decomposability of Specht modules indexed by hook partitions. The general case is very difficult, owing to the complicated structure of the endomorphism rings of Specht modules. In the case of the symmetric group, Dodge and Fayers [DF12] give the first new family of decomposable Specht modules in thirty years, which are indexed by partitions of the form $\left(a, 3,1^{b}\right)$. Parallel to this, the graded composition multiplicities for Specht modules indexed by hooks have been determined using Fock space machinery in [CMT04].

Here, we take the natural first step in extending this study of decomposable Specht modules to Iwahori-Hecke algebras of type B. We study Specht modules indexed by bihooks, that is bipartitions for which both components are hook partitions. In a certain subfamily of these, the second author has determined graded decomposition numbers [Sut18, Sut], drawing an analogue in type B with the aforementioned work of [CMT04]. As in [Spe14], we study these Specht modules from the perspective of the cyclotomic Khovanov-Lauda-Rouquier algebras that were introduced by Khovanov-Lauda [KL09] and Rouquier [Rou], an equivalent point of view by virtue of the isomorphism theorem of Brundan and Kleshchev [BK09a]. In this framework, we investigate endomorphisms of Specht modules, and obtain non-trivial generalised eigenspace decompositions for several large families of Specht modules, which
we conjecture are the only decomposable Specht modules indexed by bihooks if $e \neq 2$ and char $\mathbb{F} \neq 2$ (see Conjectures 4.2 and 5.5). In other words, our main results prove one direction of our conjectural classification in all of the cases where decomposable Specht modules may arise, and we prove our classification in full in a few cases. For small n or $e=2$, we have some extra decomposable Specht modules - see Theorems 3.8 and 5.4, respectively. We summarise the majority of our decomposable Specht modules as follows.

Theorem 4.1. Suppose that we take a Hecke algebra of type B with parameters $\kappa_{1}=\kappa_{2}$. Let $\lambda=\left(\left(k e+a, 1^{b}\right),\left(j e+a, 1^{b}\right)\right)$ or $\left(\left(b+1,1^{j e+a-1}\right),\left(b+1,1^{k e+a-1}\right)\right)$, for some $j, k \geqslant 1,0<a \leqslant e$ and $0 \leqslant b<e$ with $a+b \neq e$, or for $a=b=0$.
(i) For $j, k>1$, if $j+k$ is even and char $\mathbb{F} \neq 2$, or if $j+k$ is odd, then S_{λ} is decomposable.
(ii) If $j=1$ or $k=1$, then S_{λ} is decomposable if and only if char $\mathbb{F} \nmid j+k$.

Theorem 5.3. Let $e=2$, and suppose that μ is a hook partition of n such that S_{μ} is a decomposable Specht module over the Hecke algebra of type A (cf. Theorems 5.1 and 5.2). Then, for any partition ν of m, the Specht modules $\mathrm{S}_{(\mu, \nu)}$ and $\mathrm{S}_{(\nu, \mu)}$ over the Hecke algebra of type B are decomposable.

We now outline the layout of this paper. In Section 2, we will collect all necessary definitions and background from the literature, before studying the case of 'small bihooks' (when $n \leqslant 2 e$) in Section 3. In this case, we are able to completely determine the decomposability of Specht modules: we prove the above results in this special case, and furthermore show the converse, that all other bihooks index indecomposable Specht modules. Our method for this converse is a case-by-case analysis examining the tableaux that can appear in endomorphisms of these Specht modules. We emphasise that this method will not readily extend to large n. Next, we conduct the majority of our study of Specht modules labelled by bihooks in Section 4, finding the aforementioned families of decomposable Specht modules. Our method here is to first use the divided power functors to reduce proving Theorem 4.1 to the case of bipartitions of the form $((k e),(j e))$, and then determine certain endomorphisms for Specht modules in Theorem 4.13 indexed by these bipartitions. We compute three eigenvalues for these endomorphisms, yielding at least two distinct eigenvalues in any characteristic (with the exception of characteristic 2 when $j+k$ is even), resulting in a generalised eigenspace decomposition for the Specht modules having at least two non-trivial summands. Section 5 covers the $e=2$ situation, which makes use of previous work of the first author in [Spe14] to yield quick results and prove Theorems 5.3 and 5.4. We leave some long technical calculations for Section 6, where the keen reader may find the grittier details of our work.

Acknowledgements. The authors are grateful to the organisers of the conference Representation Theory of Symmetric Groups and Related Algebras, National University of Singapore, which allowed them to collaborate closely on parts of this research. The second author is supported by Singapore MOE Tier 2 AcRF MOE2015-T2-2-003, and thanks the Universities of Osaka and Virginia for hosting her visits, as well as the Japan Society for the Promotion of Science for financial support. The authors would also like to thank both Chris Bowman and Matthew Fayers for their helpful comments, as well as for the use of Fayers's GAP package, which was used extensively for computations. We thank the referee for their close reading of the paper, offering many helpful comments and corrections.

2 Background

In this section we give an overview of KLR algebras, Specht modules labelled by bihooks, and the associated combinatorics. Throughout, \mathbb{F} will denote an arbitrary field.

2.1 Lie theoretic notation

Let $e \in\{2,3, \ldots\} \cup\{\infty\}$, which we call the quantum characteristic. If $e<\infty$, then we set $I:=\mathbb{Z} / e \mathbb{Z}$, which we identify with the set $\{0,1, \ldots, e-1\}$, whereas if $e=\infty$, we set $I:=\mathbb{Z}$. We let Γ be the
quiver with vertex set I and an arrow $i \rightarrow i-1$ for each $i \in I$. If $e=\infty$, then Γ is the quiver of type A_{∞}, otherwise Γ is of type $A_{e-1}^{(1)}$.

Following Kac's book [Kac90], we recall standard notation for the Kac-Moody algebra associated to the generalised Cartan matrix $\left(a_{i j}\right)_{i, j \in I}$. We have simple roots $\left\{\alpha_{i} \mid i \in I\right\}$, fundamental dominant weights $\left\{\Lambda_{i} \mid i \in I\right\}$, and the invariant symmetric bilinear form (,) such that $\left(\alpha_{i}, \alpha_{j}\right)=a_{i, j}$ and $\left(\Lambda_{i}, \alpha_{j}\right)=\delta_{i j}$, for all $i, j \in I$. Let $Q_{+}:=\bigoplus_{i \in I} \mathbb{Z}_{\geqslant 0} \alpha_{i}$ be the positive cone of the root lattice. If $\alpha=\sum_{i \in I} c_{i} \alpha_{i} \in Q_{+}$, then we define the height of α to be $\operatorname{ht}(\alpha)=\sum_{i \in I} c_{i}$.

An e-bicharge is an ordered pair $\kappa=\left(\kappa_{1}, \kappa_{2}\right) \in I^{2}$. We define its associated dominant weight Λ of level two to be $\Lambda=\Lambda_{\kappa}:=\Lambda_{\kappa_{1}}+\Lambda_{\kappa_{2}}$.

2.2 The symmetric group

Let \mathfrak{S}_{n} be the symmetric group on n letters. We let s_{1}, \ldots, s_{n-1} denote the standard Coxeter generators, where s_{i} is the simple transposition $(i, i+1)$ for $1 \leqslant i<n$. We define a reduced expression for a permutation $w \in \mathfrak{S}_{n}$ to be an expression $s_{i_{1}} \ldots s_{i_{m}}$ such that m is minimal, and call m the length of w, denoted $\ell(w)$.

We define the Bruhat order \leqslant on \mathfrak{S}_{n} as follows. If $x, w \in \mathfrak{S}_{n}$, then we write $x \leqslant w$ if there is a reduced expression for x which is a subexpression of a reduced expression for w.

For $1 \leqslant i \leqslant j \leqslant n-1$, we define $\underset{i}{j \downarrow}:=s_{j} s_{j-1} \ldots s_{i}$ and $\underset{i}{j \uparrow}:=s_{i} s_{i+1} \ldots s_{j}$.

2.3 Bipartitions

A partition λ of n is a weakly decreasing sequence of non-negative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ such that $|\lambda|:=\sum \lambda_{i}=n$. We write \varnothing for the empty partition $(0,0, \ldots)$. A bipartition λ of n is a pair $\lambda=\left(\lambda^{(1)}, \lambda^{(2)}\right)$ of partitions such that $|\lambda|=\left|\lambda^{(1)}\right|+\left|\lambda^{(2)}\right|=n$. We refer to $\lambda^{(1)}$ and $\lambda^{(2)}$ as the 1 st and 2 nd component, respectively, of λ. We abuse notation and also write \varnothing for the empty bipartition $(\varnothing, \varnothing)$. We denote the set of all bipartitions of n by \mathscr{P}_{n}^{2}.

For $\lambda, \mu \in \mathscr{P}_{n}^{2}$, we say that λ dominates μ, and write $\lambda \triangleq \mu$, if for all $k \geqslant 1$,

$$
\sum_{j=1}^{k} \lambda_{j}^{(1)} \geqslant \sum_{j=1}^{k} \mu_{j}^{(1)} \text { and }\left|\lambda^{(1)}\right|+\sum_{j=1}^{k} \lambda_{j}^{(1)} \geqslant\left|\mu^{(1)}\right|+\sum_{j=1}^{k} \mu_{j}^{(1)} .
$$

The Young diagram of $\lambda=\left(\lambda^{(1)}, \lambda^{(2)}\right) \in \mathscr{P}_{n}^{2}$ is defined to be

$$
[\lambda]:=\left\{(i, j, m) \in \mathbb{N} \times \mathbb{N} \times\{1,2\} \mid 1 \leqslant j \leqslant \lambda_{i}^{(m)}\right\} .
$$

We refer to elements of $[\lambda]$ as nodes of λ. We draw the Young diagram of a bipartition as a column vector of Young diagrams $\left[\lambda^{(1)}\right],\left[\lambda^{(2)}\right]$. We say that a node $A \in[\lambda]$ is removable if $[\lambda] \backslash\{A\}$ is a Young diagram of a bipartition, while a node $A \notin[\lambda]$ is addable if $[\lambda] \cup\{A\}$ is a Young diagram of a bipartition.

If λ is a partition, the conjugate partition, denoted λ^{\prime}, is defined by

$$
\lambda_{i}^{\prime}=\left|\left\{j \geqslant 1 \mid \lambda_{j} \geqslant i\right\}\right| .
$$

If $\lambda \in \mathscr{P}_{n}^{2}$, then we define the conjugate bipartition, also denoted λ^{\prime}, to be $\lambda^{\prime}=\left(\lambda^{(2)^{\prime}}, \lambda^{(1)^{\prime}}\right)$.

2.4 Tableaux

Let $\lambda \in \mathscr{P}_{n}^{2}$. Then a λ-tableau is a bijection $\mathrm{T}:[\lambda] \rightarrow\{1, \ldots, n\}$. We depict a λ-tableau T by inserting entries $1, \ldots, n$ into the Young diagram $[\lambda]$ with no repeats; we let $\mathrm{T}(i, j, m)$ denote the entry lying in node $(i, j, m) \in[\lambda]$. We say that T is standard if its entries increase down each column and along each row, within each component, and denote the set of all standard λ-tableaux by $\operatorname{Std}(\lambda)$.

The column-initial tableau T_{λ} is the λ-tableau where the entries $1, \ldots, n$ appear in order down consecutive columns, working from left-to-right, first in component 2 , then component 1 .

The symmetric group \mathfrak{S}_{n} acts naturally on the left on the set of λ-tableaux. For T a λ-tableau, we define the permutation $w_{\mathrm{T}} \in \mathfrak{S}_{n}$ by $w_{\mathrm{T}} \mathrm{T}_{\lambda}=\mathrm{T}$.

Suppose $\lambda \in \mathscr{P}_{n}^{2}$. Let S and T be λ-tableaux with corresponding reduced expressions w_{S} and w_{T}, respectively. Then we say that T dominates S , written as $\mathrm{T} \triangleq \mathbf{S}$, if and only if $w_{\mathrm{T}} \geqslant w_{\mathrm{S}}$.

2.5 Residues and degrees

Fix an e-bicharge $\kappa=\left(\kappa_{1}, \kappa_{2}\right)$. The e-residue of a node $A=(i, j, m) \in \mathbb{N} \times \mathbb{N} \times\{1,2\}$ is defined to be

$$
\operatorname{res} A:=\kappa_{m}+j-i \quad(\bmod e) .
$$

We call a node of residue r an r-node.
Let T be a λ-tableau. If $\mathrm{T}(i, j, m)=r$, we set $\operatorname{res}_{\mathrm{T}}(r)=\operatorname{res}(i, j, m)$. The residue sequence of T is defined to be

$$
\mathbf{i}_{\mathrm{T}}=\left(\operatorname{res}_{\mathrm{T}}(1), \ldots, \operatorname{res}_{\mathrm{T}}(n)\right) .
$$

We denote the residue sequence of the column-initial tableau T_{λ} by $\mathbf{i}_{\lambda}:=\mathbf{i}_{T_{\lambda}}$.
We now define the degree of a standard tableau, which is the codegree as given in [BKW11, §3.5]. For $\lambda \in \mathscr{P}_{n}^{2}$ and an i-node A of λ, we define

$$
\begin{aligned}
d^{A}(\lambda): & =\# \text { addable } i \text {-nodes of } \lambda \text { strictly above } A\} \\
& -\#\{\text { removable } i \text {-nodes of } \lambda \text { strictly above } A\} .
\end{aligned}
$$

Let $\mathrm{T} \in \operatorname{Std}(\lambda)$ with $\mathrm{T}^{-1}(n)=A$. We define the degree of T , denoted $\operatorname{deg}(\mathrm{T})$, recursively, by setting $\operatorname{deg}(\varnothing):=0$, and

$$
\operatorname{deg}(\mathrm{T}):=d^{A}(\lambda)+\operatorname{deg}\left(\mathrm{T}_{<n}\right)
$$

where $\mathrm{T}_{<n}$ is the standard tableau obtained from T by removing the node A.

2.6 Regular bipartitions

Let $\lambda \in \mathscr{P}_{n}^{2}$. We define the i-signature of λ by reading the Young digram $[\lambda]$ from the top of the first component down to the bottom of the last component, writing a + for each addable i-node and a - for each removable i-node. We obtain the reduced i-signature of λ by successively deleting all adjacent pairs +- from the i-signature of λ, always of the form $-\cdots-+\cdots+$.

The removable i-nodes corresponding to the - signs in the reduced i-signature of λ are called the normal i-nodes of λ, while the addable i-nodes corresponding to the $+\operatorname{signs}$ in the reduced i-signature of λ are called the conormal i-nodes of λ. The lowest normal i-node of $[\lambda]$, if there is one, is called the good i-node of λ, which corresponds to the last $-\operatorname{sign}$ in the i-signature of λ. Analogously, the highest conormal i-node of $[\lambda]$, if there is one, is called the cogood i-node of λ, which corresponds to the first $+\operatorname{sign}$ in the i-signature of λ.

We say that a bipartition $\lambda \in \mathscr{P}_{n}^{2}$ is regular, or conjugate-Kleshchev, if $[\lambda]$ can be obtained by successively adding cogood nodes to \varnothing. That is, we have a sequence $\varnothing=\lambda(0), \lambda(1), \ldots, \lambda(n)=\lambda$ such that $[\lambda(i)] \cup\{A\}=[\lambda(i+1)]$, where A is a cogood node of $\lambda(i)$. Equivalently, λ is regular if and only if \varnothing can be obtained by successively removing good nodes from [$\lambda]$. Observe in level one that the set of all regular partitions coincides with the set of all e-regular partitions.

2.7 Cyclotomic Khovanov-Lauda-Rouquier algebras

Suppose $\alpha \in Q^{+}$has height n, and set

$$
I^{\alpha}=\left\{\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{n} \mid \alpha_{i_{1}}+\cdots+\alpha_{i_{n}}=\alpha\right\}
$$

Recalling that $\Lambda=\Lambda_{\kappa}$, we define $\mathscr{R}_{\alpha}^{\Lambda}$ to be the unital associative \mathbb{F}-algebra with generating set

$$
\left\{e(\mathbf{i}) \mid \mathbf{i} \in I^{\alpha}\right\} \cup\left\{y_{1}, \ldots, y_{n}\right\} \cup\left\{\psi_{1}, \ldots, \psi_{n-1}\right\}
$$

and relations

$$
\begin{array}{rlrl}
e(\mathbf{i}) e(\mathbf{j}) & =\delta_{\mathbf{i}, \mathbf{j}} e(\mathbf{i}) ; \\
\sum_{i \in I^{\alpha}} e(\mathbf{i}) & =1 ; \\
y_{r} e(\mathbf{i}) & =e(\mathbf{i}) y_{r} ; & \\
\psi_{r} e(\mathbf{i}) & =e\left(s_{r} \mathbf{i}\right) \psi_{r} ; & \\
y_{r} y_{s} & =y_{s} y_{r} ; & & \\
\psi_{r} y_{s} & =y_{s} \psi_{r} & \text { if } s \neq r, r+1 ; \\
\psi_{r} \psi_{s} & =\psi_{s} \psi_{r} & \text { if }|r-s|>1 ; \\
y_{r} \psi_{r} e(\mathbf{i}) & =\left(\psi_{r} y_{r+1}-\delta_{\left.i_{r}, i_{r+1}\right) e(\mathbf{i}) ;}\right. & \\
y_{r+1} \psi_{r} e(\mathbf{i}) & =\left(\psi_{r} y_{r}+\delta_{i_{r}, i_{r+1}}\right) e(\mathbf{i}) ; & \text { if } i_{r+1} \neq i_{r}, i_{r} \pm 1, \\
\psi_{r}^{2} e(\mathbf{i}) & = \begin{cases}0 & \text { if } i_{r}=i_{r+1}+1, \\
e(\mathbf{i}) & \text { if } i_{r}=i_{r+1}-1 ; \\
\left(y_{r+1}-y_{r}\right) e(\mathbf{i}) & \text { if } i_{r+2}=i_{r}=i_{r+1}+1, \\
\left(y_{r}-y_{r+1}\right) e(\mathbf{i}) & \text { if } i_{r+2}=i_{r}=i_{r+1}-1, \\
\psi_{r} \psi_{r+1} \psi_{r} e(\mathbf{i}) & = \begin{cases}\left(\psi_{r+1} \psi_{r} \psi_{r+1}+1\right) e(\mathbf{i}) \\
\left(\psi_{r+1} \psi_{r} \psi_{r+1}-1\right) e(\mathbf{i}) \\
\left(\psi_{r+1} \psi_{r} \psi_{r+1}\right) e(\mathbf{i}) & \text { otherwise; }\end{cases} \\
y_{1}^{\left(\Lambda, \alpha_{i_{1}}\right)} e(\mathbf{i}) & =0 ;\end{cases}
\end{array}
$$

for all admissible $r, s, \mathbf{i}, \mathbf{j}$. When $e=2$, we actually have slightly different 'quadratic' and 'braid' relations, which may be found, for example, in [KMR12, §3.1]. We omit them here, as we will not explicitly calculate with these relations when $e=2$.

Lemma 2.1. [BK09b, Corollary 1] There is a unique \mathbb{Z}-grading on $\mathscr{R}_{\alpha}^{\Lambda}$ such that, for all admissible r and \mathbf{i},

$$
\operatorname{deg}(e(\mathbf{i}))=0, \quad \operatorname{deg}\left(y_{r}\right)=2, \quad \operatorname{deg} \psi_{r}(e(\mathbf{i}))=-a_{i_{r}, r_{r+1}} .
$$

The cyclotomic Khovanov-Lauda-Rouquier (KLR) algebra or cyclotomic quiver Hecke algebra $\mathscr{R}_{n}^{\Lambda}$ is defined to be the direct sum $\bigoplus_{\alpha} \mathscr{R}_{\alpha}^{\Lambda}$, where the sum is taken over all $\alpha \in Q^{+}$of height n.

Here we sum over all $\alpha \in Q^{+}$of height n, though in fact only finitely many of the summands will be non-zero, so (even when $e=\infty$) $\mathscr{R}_{n}^{\Lambda}$ is a unital algebra.

These \mathbb{Z}-graded algebras are connected to the Hecke algebras of type B via (a special case of) Brundan and Kleshchev's Graded Isomorphism Theorem.

Theorem 2.2. [BK09a, Main Theorem] If $e=\operatorname{char}(\mathbb{F})$ or $\operatorname{char}(\mathbb{F}) \nmid e$, then $\mathscr{R}_{n}^{\Lambda}$ is isomorphic to the integral Hecke algebra $\mathscr{H}_{n}\left(q, Q_{1}, Q_{2}\right)$ of type B with parameters $q \in \mathbb{F}$ a primitive eth root of unity, $Q_{1}=q^{\kappa_{1}}$, and $Q_{2}=q^{\kappa_{2}}$. That is, $\mathscr{H}_{n}\left(q, Q_{1}, Q_{2}\right)$ has generators T_{0}, \ldots, T_{n-1} satisfying type B Coxeter relations, with the quadratic relations replaced with

$$
\left(T_{0}-q^{\kappa_{1}}\right)\left(T_{0}-q^{\kappa_{2}}\right)=0 \quad \text { and } \quad\left(T_{i}-q\right)\left(T_{i}+1\right)=0 \forall 1 \leqslant i \leqslant n-1 .
$$

2.8 Specht modules labelled by bihooks

Definition 2.3. We call a bipartition λ a bihook if it is of the form $\lambda=\left(\left(a, 1^{b}\right),\left(\left(c, 1^{d}\right)\right)\right.$ for some integers $a, c \geqslant 1$ and $b, d \geqslant 0$.

Definition 2.4. [KMR12, Definition 7.11] Let $\lambda=\left(\left(a, 1^{b}\right),\left(\left(c, 1^{d}\right)\right) \in \mathscr{P}_{n}^{2}\right.$. The (column) Specht module S_{λ} is the cyclic $\mathscr{R}_{n}^{\Lambda}$-module generated by z_{λ} of degree $\operatorname{deg}\left(z_{\lambda}\right):=\operatorname{deg}\left(\mathrm{T}_{\lambda}\right)$ subject to the relations:
$\diamond e\left(\mathbf{i}_{\lambda}\right) z_{\lambda}=z_{\lambda} ;$
$\diamond y_{r} z_{\lambda}=0$ for all $r \in\{1, \ldots, n\} ;$
$\diamond \psi_{r} z_{\lambda}=0$ for all $r \in\{1, \ldots, n-1\} \backslash\{d+1, c+d, b+c+d+1\} ;$
$\diamond \psi_{1} \psi_{2} \ldots \psi_{d+1} z_{\lambda}=0=\psi_{c+d+1} \psi_{c+d+2} \ldots \psi_{b+c+d+1} z_{\lambda}$ (these are the Garnir relations arising from nodes $(1,1,2)$ and $(1,1,1)$, respectively).

For each $w \in \mathfrak{S}_{n}$, we fix a reduced expression $w=s_{i_{1}} \ldots s_{i_{m}}$ throughout. We define the associated element of $\mathscr{R}_{n}^{\Lambda}$ to be $\psi_{w}:=\psi_{i_{1}} \ldots \psi_{i_{m}}$, which, in general, depends on the choice of reduced expression for w. For $\lambda \in \mathscr{P}_{n}^{2}$ and a λ-tableau T, we define $v_{\mathrm{T}}:=\psi_{w_{\mathrm{T}}} z_{\lambda}$.

Whilst these vectors v_{T} of S_{λ} also depend on the choice of reduced expression in general, the following result does not.

Theorem 2.5. [BKW11, Corollary 4.6] and [KMR12, Proposition 7.14 and Corollary 7.20] For $\lambda \in \mathscr{P}_{n}^{2}$, the set of vectors $\left\{v_{\mathrm{T}} \mid \mathrm{T} \in \operatorname{Std}(\lambda)\right\}$ is a homogeneous \mathbb{F}-basis of S_{λ}, with $\operatorname{deg}\left(v_{\mathrm{T}}\right)=\operatorname{deg}(\mathrm{T})$. Moreover, for any λ-tableau S , v_{S} is a linear combination of basis elements v_{T} such that $\mathrm{S} \triangleq \mathrm{T}$.

We record the following useful lemma that we will use frequently.
Lemma 2.6 [BKW11, Lemma 4.4]. Let $\lambda \in \mathscr{P}_{n}^{2}$, and $\mathrm{T} \in \operatorname{Std}(\lambda)$. Then $e(\mathbf{i}) v_{\mathrm{T}}=\delta_{\mathbf{i}, \mathbf{i}_{\mathrm{T}}} v_{\mathrm{T}}$.
Of particular importance to the present paper is the following result on the decomposability of Specht modules, which is a special case of a result for higher level cyclotomic KLR algebras.

Proposition 2.7 [FS16, Corollary 3.12]. If $e \neq 2$ and $\kappa_{1} \neq \kappa_{2}$, then the Specht modules S_{λ} are indecomposable for all $\lambda \in \mathscr{P}_{n}^{2}$.

The following useful result is obtained from [KMR12, Theorems 7.25 and 8.5].
Theorem 2.8. S_{λ} is decomposable if and only if $\mathrm{S}_{\lambda^{\prime}}$ is.
We know from [BK09b, Theorem 5.10] that Specht modules S_{λ} indexed by regular bipartitions have simple heads, yielding the following.

Proposition 2.9. If $\lambda \in \mathscr{P}_{n}^{2}$ is a regular bipartition, then the Specht module S_{λ} is indecomposable.
Lemma 2.10 [BKW11, Lemma 4.9]. Let $\lambda \in \mathscr{P}_{n}^{2}, 1 \leqslant r<n$, and $\mathrm{T} \in \operatorname{Std}(\lambda)$. If r and $r+1$ lie in the same row or in the same column of T , then

$$
\psi_{r} v_{\mathrm{T}}=\sum_{\substack{\mathrm{S} \in \operatorname{Std}(\lambda) \\ \mathbf{i s}_{\mathrm{S}} \mathbf{i}_{s_{r} \mathrm{~T}} \\ \mathrm{~S} \triangleleft \mathrm{~T}}} a_{\mathrm{S}} v_{\mathrm{S}} \quad \text { for some } a_{\mathrm{S}} \in \mathbb{F}
$$

Definition 2.11. We define

$$
\underset{y}{\psi}=\psi_{x} \psi_{x-1} \ldots \psi_{y} \quad \text { and } \quad \psi \underset{y}{x}=\psi_{y} \psi_{y+1} \ldots \psi_{x}
$$

if $x \geqslant y$ and set both equal to $1_{\mathbb{F}}$ if $x<y$. Furthermore, we use the shorthand

$$
\begin{aligned}
& \psi \underset{y}{\psi \downarrow} \underset{y+1}{\downarrow} \cdots \underset{y+c}{\downarrow+1}:=\underset{y}{\downarrow} \underset{y}{\downarrow} \underset{y+1}{\downarrow} \underset{y+c}{x+1} \cdots \underset{y+c}{\downarrow}, \\
& \underset{y}{\psi \downarrow} \underset{y-1}{\downarrow} \underset{y-c}{x-1} \stackrel{x-c}{\downarrow}:=\underset{y}{\psi \downarrow} \underset{y-1}{\psi} \underset{y}{\downarrow} \underset{y-c}{x-1} \cdots \underset{y}{\downarrow},
\end{aligned}
$$

3 Small bihooks

In light of Proposition 2.7, we suppose that $\kappa_{1}=\kappa_{2}$ throughout Sections 3 and 4. In fact, we need only assume that $\kappa=(0,0)$ since residue shifts do not change the isomorphism type of $\mathscr{R}_{n}^{\Lambda}$. Here, we begin our examination of Specht modules labelled by bihooks by completely determining which Specht modules are decomposable when $n \leqslant 2 e$. We first make the following easy observation.

Lemma 3.1. If $k<e$, then $\lambda=((k),(k))$ is a regular bipartition. In particular, S_{λ} is indecomposable.
Proof. Starting from (\varnothing, \varnothing), we may add two cogood 0 -nodes, then two cogood 1-nodes, and continue in this fashion until we have added two cogood $(k-1)$-nodes. The resulting bipartition is λ. It follows from Proposition 2.9 that S_{λ} is indecomposable.

Remark. In the above proof, we may go so far as adding two cogood (e-2)-nodes to reach the regular bipartition $((e-1),(e-1))$, but can go no further. Adding a cogood e-node yields the bipartition $((e),(e-1))$, but adding a second cogood e-node results in the bipartition $((e, 1),(e-1))$, not $((e),(e))$. One can check that $((k),(k))$ is not regular for any $k \geqslant e$.

In fact, it is not difficult to see that we may generalise the previous lemma as follows.
Lemma 3.2. Suppose $a \geqslant 1$ and $b \geqslant 0$ with $a+b<e$. Then $\lambda=\left(\left(a, 1^{b}\right),\left(a, 1^{b}\right)\right)$ is a regular bipartition, so S_{λ} is indecomposable.

Conversely, we will next show that if we instead have $a+b=e$, then the Specht modules $\mathrm{S}_{\left(\left(a, 1^{b}\right),\left(a, 1^{b}\right)\right)}$ are all decomposable.

Lemma 3.3. Suppose $a \geqslant 1$ and $b \geqslant 0$ with $a+b \leqslant e$, and let $\lambda=\left(\left(a, 1^{b}\right),\left(a, 1^{b}\right)\right)$. Then there is a unique standard λ-tableau $\mathrm{T} \neq \mathrm{T}_{\lambda}$ with res $\mathrm{T}=\mathbf{i}_{\lambda}$.

Proof. This is an easy consequence of the fact that $\mathbf{i}_{\lambda}=(0, e-1, \ldots, e-b, 1,2, \ldots, a-1,0, e-$ $1, \ldots, e-b, 1,2, \ldots, a-1)$. If we write $\mathrm{T}_{\lambda}=\left(\mathrm{T}^{(1)}, \mathrm{T}^{(2)}\right)$, then $\mathrm{T}=\left(\mathrm{T}^{(2)}, \mathrm{T}^{(1)}\right)$.

Lemma 3.4. Suppose $a \geqslant 1$ and $b \geqslant 0$ with $a+b=e$, and let $\lambda=\left(\left(a, 1^{b}\right),\left(a, 1^{b}\right)\right)$. There is an endomorphism φ of S_{λ} determined by $\varphi\left(z_{\lambda}\right)=v_{\mathrm{T}}$, where T is the tableau in Lemma 3.3.

Proof. The proof proceeds by checking that the annihilator of z_{λ} also annihilates v_{T}.
We already know by Lemmas 2.6 and 3.3 that $e(\mathbf{i}) v_{\mathrm{T}}=\delta_{\mathbf{i}, \mathbf{i}_{\lambda}} v_{\mathrm{T}}$. It is easy to see that $\operatorname{deg} \mathrm{T}=1=$ $\operatorname{deg} \mathrm{T}_{\lambda}$, and therefore that $\operatorname{deg}\left(y_{r} v_{\mathrm{T}}\right)=3$. However, $y_{r} v_{\mathrm{T}} \in e\left(\mathbf{i}_{\lambda}\right) \mathrm{S}_{\lambda}=\left\langle v_{\mathrm{T}_{\lambda}}, v_{\mathrm{T}}\right\rangle_{\mathbb{F}}, \operatorname{so} \operatorname{deg}\left(y_{r} v_{\mathrm{T}}\right)=1$. This contradiction gives us that $y_{r} v_{\mathrm{T}}=0$ for all $r \in\{1, \ldots, n\}$.

Finally, we check the relations involving ψ generators. We know by Lemma 2.10 that $\psi_{w} v_{\mathrm{T}}=0$ if there exists no standard λ-tableau with residue sequence $w \mathbf{i}_{\lambda}$, for any $w \in \mathfrak{S}_{n}$.

Observe that for $1 \leqslant r \leqslant b$,

$$
s_{r} \mathbf{i}_{\lambda}=\left(0, e-1, e-2, \ldots, e-r+2, e-r, e-r+1, i_{r+2}, \ldots, i_{n}\right) .
$$

It is clear that there is no standard λ-tableau with residue sequence $s_{r} \mathbf{i}_{\lambda}$, and hence $\psi_{r} v_{\mathrm{T}}=0$ for all $1 \leqslant r \leqslant b$. Similarly, $\psi_{r} v_{\mathrm{T}}=0$ for all $r \in\{b+2, \ldots, e-1\} \cup\{e+1, \ldots, e+b\} \cup\{e+b+2, \ldots, 2 e-1\}$.

If $a>1$, we must also check the longer Garnir relations arising from the Garnir nodes $(1,1,1)$ and $(1,1,2)$. Applying $s_{1} s_{2} \ldots s_{b+1}$ to \mathbf{i}_{λ}, we find that the residue sequence $s_{1} s_{2} \ldots s_{b+1} \mathbf{i}_{\lambda}$ begins with 1 , and thus $\psi_{1} \psi_{2} \ldots \psi_{b+1} z_{\lambda}=0$. Similarly, if we apply $s_{e+1} s_{e+2} \ldots s_{e+b+1}$ to \mathbf{i}_{λ}, we find that the residue sequence $s_{e+1} s_{e+2} \ldots s_{e+b+1} \mathbf{i}_{\lambda}$ contains 1 in its e th and $(e+1)$ th positions, and the 0 residues occur in the 1 st and $(e+2)$ nd positions. Clearly there is no standard λ-tableau with this residue sequence, and thus $\psi_{e+1} \psi_{e+2} \ldots \psi_{e+b+1} z_{\lambda}=0$. This completes the proof.
Proposition 3.5. If $\varphi\left(z_{\lambda}\right)=v_{\mathrm{T}}$ as above, then $\varphi\left(v_{\mathrm{T}}\right)= \begin{cases}(-1)^{b+1} 2 v_{\mathrm{T}} & \text { if } a>1 ; \\ (-1)^{e-1} 2 v_{\mathrm{T}} & \text { if } \lambda=\left(\left(1^{e}\right),\left(1^{e}\right)\right) \text {. }\end{cases}$
We prove Proposition 3.5 by a rather lengthy calculation, which we relegate to Section 6 .

Theorem 3.6. Suppose $a \geqslant 1$ and $b \geqslant 0$ with $a+b=e$, and let $\lambda=\left(\left(a, 1^{b}\right),\left(a, 1^{b}\right)\right)$. Then S_{λ} is decomposable if and only if char $\mathbb{F} \neq 2$.

Proof. If char $\mathbb{F} \neq 2$, then there is an endomorphism φ^{\prime} of S_{λ} determined by $\varphi^{\prime}=(-1)^{(b+1)} \frac{1}{2} \varphi$, which is an idempotent. If char $\mathbb{F}=2$, then it is easy to see from Lemma 3.3 and Proposition 3.5 that S_{λ} has no non-trivial idempotent endomorphisms, and the result follows.

Next, we will generalise Lemma 3.2 and show that all Specht modules indexed by 'small' bihooks not appearing in Theorem 3.6 are indecomposable. More precisely:
Theorem 3.7. Suppose $e \neq 2$, and let $\lambda=\left(\left(a, 1^{b}\right),\left(c, 1^{d}\right)\right) \in \mathscr{P}_{n}^{2}$ such that either $a+b+c+d<2 e$ or $a+b+c+d=2 e$ with $a \neq c$ or $b \neq d$. Then S_{λ} is indecomposable.
Proof. We determine all of the possible standard λ-tableaux with residue sequence

$$
\mathbf{i}_{\lambda}=(0,-1, \ldots,-d, 1,2, \ldots, c-1,0,-1, \ldots,-b, 1,2, \ldots, a-1) .
$$

If no standard λ-tableau other than T_{λ} has residue sequence \mathbf{i}_{λ}, then there exists no non-trivial endomorphism of S_{λ} and thus S_{λ} is indecomposable. For any other standard λ-tableau T distinct from T_{λ} such that $\mathbf{i}_{\mathrm{T}}=\mathbf{i}_{\lambda}$, we show that there exists no non-trivial endomorphisms of S_{λ} in each of these cases.

We fill $[\lambda]$ with $1, \ldots, n$ to find all standard λ-tableaux with residue sequence \mathbf{i}_{λ}.
(i) Suppose $b<d<e$. Since $n \leqslant 2 e$, we must have that $b \leqslant e-2$. First, we shall assume that $b<e-2$. Since $b \neq e-1, e-2$, it follows that $-b-1 \not \equiv 0$ or $1(\bmod e)$, so we cannot put $1, \ldots, b+1$ down the first column of the first component, as $b+2$ would have nowhere to go. Thus we must have $1, \ldots, b+2$ down the first column of the second component, and in fact the only way to fill in the remaining entries yields T_{λ}, so there are no non-trivial endomorphisms of S_{λ}.
If instead we assume that $b=e-2$, then our conditions give $\lambda=\left(\left(a, 1^{e-2}\right),\left(c, 1^{e-1}\right)\right)$, for which there are only 3 possible bihooks: $\left(\left(1^{e-1}\right),\left(1^{e}\right)\right),\left(\left(1^{e-1}\right),\left(2,1^{e-1}\right)\right)$, and $\left(\left(2,1^{e-2}\right),\left(1^{e}\right)\right)$. It is easy to check that the first has no standard tableaux of residue \mathbf{i}_{λ} besides T_{λ}, the second also has the standard tableau $\mathrm{T}=s_{e} \mathrm{~T}_{\lambda}$, and the third has the standard tableau $\mathrm{S}=\underset{1}{e} \underset{1}{e} \stackrel{e+1}{\downarrow} \ldots \stackrel{2 e-1}{\downarrow} \underset{e}{\downarrow} \mathrm{~T}_{\lambda}$. Since $\psi_{e-1} v_{\mathrm{T}}=v_{s_{e-1} \mathrm{~T}}$, and $\psi_{e-1} v_{\mathrm{S}}=v_{s_{e-1} \mathrm{~S}}$ (plus possibly some lower order terms), while ${ }^{e} \psi_{e-1} z_{\lambda}=0$, these cases yield no non-trivial homomorphisms.
(ii) Suppose $b<d$ and $d \geqslant e$. If $b=e-2$, then we must have $\lambda=\left(\left(1^{e-1}\right),\left(1^{e+1}\right)\right)$, for which we may easily see that only T_{λ} and $s_{e+1} \mathrm{~T}_{\lambda}$ have the correct residue sequence, and that $\psi_{e} v_{s_{e+1} \mathrm{~T}_{\lambda}}=$ $v_{s_{e} s_{e+1} \mathrm{~T}_{\lambda}}$, and therefore there are no non-trivial homomorphisms. So we may assume that $b<e-2$. As in part (i), we must place $1, \ldots, b+2$ down the first column of the second component, and in fact must place $1, \ldots, e-1$ in there. If we place the entry e in node $(e, 1,2)$, we can either place $e+1$ in node $(e+1,1,2)$ or node $(1,1,1)$. One can check that in the former case, we may only obtain T_{λ}. In the latter, we must then place $e+2, \ldots, d+1$ down the first column of the first component, which is only possible if $b \geqslant d-e$. If so, we may continue, placing $d+2, \ldots, d+c$ in the first row of the second component, then $d+c+1, \ldots, 2 d+c-e+1$ down the remaining nodes in the second component, and $2 d+c-e+2, \ldots, n$ as in T_{λ}. Call this standard tableau R.
If $a \geqslant c \geqslant 2$ we could have also placed $d+2, \ldots, d+c$ in the first row of the first component, whence we are forced to place $d+c+1, \ldots, 2 d+c-e+1$ down the first column of the second component, then $2 d+c-e+2, \ldots, b+c+d+1$ down the first column of the first component, then $b+c+d+2, \ldots, b+2 c+d$ in the first row of the second component, then $b+2 c+d+1, \ldots, n$ as in T_{λ}. Call this standard tableau S .
Finally, suppose that $c \geqslant 2$, and we instead placed the entry e in the node $(1,2,2)$. Then we must put the entries $e+1, \ldots, d+1$ down the first column of the first component, which is only possible if $b \geqslant d-e$. We must then place $d+2$ in node ($e, 1,2$) and place $d+3, \ldots, d+c$ along
the first row of the second component, then $d+c+1, \ldots, 2 d+c-e+1$ down the first column of the second component, then $2 d+c-e+2, \ldots, n$ are filled as in T_{λ}. Call this standard tableau T.

Then $\psi_{e} z_{\lambda}=0$, while $\psi_{e} v_{\mathrm{R}}=v_{s_{e} \mathrm{R}}, \psi_{e} v_{\mathrm{S}}=v_{s_{e} \mathrm{~S}}$, and $\psi_{e} v_{\mathrm{T}}=v_{s_{e} \mathrm{~T}}$ (plus possibly some lower order terms in this final case). It follows that there is no non-trivial endomorphism of S_{λ} in any of these cases.
(iii) Suppose $b \geqslant d$. If $c<a$, the result follows from parts (i) and (ii) by applying Theorem 2.8. So we may assume that $c \geqslant a$. The only bihook for fitting these conditions with $d \geqslant e-1$ is $\left(\left(1^{e}\right),\left(1^{e}\right)\right)$, so we may further assume that $d \leqslant e-2$. If we place $1, \ldots, d+1$ down the first column of the second component, then $d+2, \ldots, d+c$ must also be in the second component, if $c \leqslant e$. If $b \neq e-1$, then the only option at this point is to fill in $d+c+1, \ldots, n$ as in T_{λ}. If $b=e-1$ and $a \geqslant 2$, we may also obtain the standard tableau $\mathrm{R}=s_{b+c+d+1} \mathrm{~T}_{\lambda}$. If $c>e$ (in which case we also have $b<e-1$ and $c>a$), then we must fill $d+2, \ldots, d+e$ in the second component, but can place $d+e+1, \ldots, d+c$ along the first row of the first component, if $c \leqslant a+e$. In this case, we may obtain a standard tableau U by filling in $d+c+1$ in node ($1, e+1,2$), then $d+c+2, \ldots, d+c+b+1$ down the first column of the first component, then $d+c+b+2, \ldots, d+2 c+b-e$ along the first row of the second component, with $d+2 c+b-e+1, \ldots, n$ being in the first component, as in T_{λ}. Since $\psi_{d+e} v_{\mathrm{U}}=v_{s_{d+e} \mathrm{U}}$ (plus possibly lower order terms), there is no homomorphism mapping z_{λ} to v_{U}.
If instead, we place $1, \ldots, d+1$ down the first column of the first component, then $d+2, \ldots, d+a$ must be placed in the first row of the first component. If $c>a$, then we have nowhere left to put $d+a+1$, so there is no such standard tableau. If $c=a$, then we may place $d+a+1, \ldots, 2 d+a+1$ down the first column of the second component, then $2 d+a+2, \ldots d+a+b+1$ down the first column of the first component, and the remaining entries along the first row of the second component, obtaining a standard tableau we shall call S. If we further have that $b=e-1$, we also have the standard tableau $\mathrm{T}=s_{d+a+b+1} \mathrm{~S}$. There are no other standard tableaux of the correct residue sequence.
We now show that there exists no homomorphism φ such that $\varphi\left(z_{\lambda}\right)=\alpha v_{\mathrm{R}}+\beta v_{\mathrm{S}}+\gamma v_{\mathrm{T}}$ for some $\alpha, \beta, \gamma \in \mathbb{F}$. We observe that $\psi_{c+2 d+1} v_{\mathrm{R}}=\psi_{c+2 d+1} \psi_{c+d+e} z_{\lambda}=\psi_{c+d+e} \psi_{c+2 d+1} z_{\lambda}=0$, since $d+1 \leqslant e-1$, and we cannot have that $d=e-2, b=e-1, c \geqslant a \geqslant 2$, while $\psi_{c+2 d+1} v_{\mathrm{S}}=v_{s_{c+2 d+1} \mathrm{~S}}$ (plus lower order terms), and $\psi_{c+2 d+1} v_{\mathrm{T}}=v_{s_{c+2 d+1} \mathrm{~T}}$ (plus lower order terms). Thus $\psi_{c+2 d+1}\left(v_{\mathrm{R}}+v_{\mathrm{S}}+v_{\mathrm{T}}\right)=v_{s_{c+2 d+1} \mathrm{~S}}+v_{s_{c+2 d+1} \mathrm{~T}}$ (plus lower order terms), so that there exists no homomorphism mapping z_{λ} to a linear combination of v_{S} and v_{T}. Furthermore, $\psi_{c+d+e-1} v_{\mathrm{R}}=v_{s_{c+d+e-1} \mathrm{R}}$, whilst $\psi_{c+d+e-1} z_{\lambda}=\psi_{c+2 d+1} z_{\lambda}=0$. Hence there is no non-trivial endomorphism of S_{λ}.
We summarise the results of this section in the following theorem.
Theorem 3.8. Let $n \leqslant 2 e$ and $\lambda \in \mathscr{P}_{n}^{2}$ be a bihook. If $e \neq 2$, then S_{λ} is decomposable if and only if char $\mathbb{F} \neq 2, n=2 e$ and $\lambda=\left(\left(a, 1^{b}\right),\left(a, 1^{b}\right)\right)$ for some $a \geqslant 1, b \geqslant 0$. If $e=2$, then S_{λ} is decomposable if and only if char $\mathbb{F} \neq 2$ and $\lambda=((2),(2)),\left(\left(1^{2}\right),\left(1^{2}\right)\right),\left((2),\left(1^{2}\right)\right)$ or $\left(\left(1^{2}\right),(2)\right)$.
Remark. If $e=2$, the four decomposable Specht modules are pairwise isomorphic. It is easy to check that no other small bihooks label decomposable Specht modules.

4 General bihooks

This section comprises our main body of work, where we determine several large families of decomposable Specht modules in any characteristic when e is finite. Throughout this section, we will assume that $\kappa=(0,0)$. We begin by applying induction and restriction functors to reduce our proof to the case of Specht modules $S_{((k e),(j e))}$. We then show that these are decomposable by exploiting certain endomorphisms, for which we determine at least two distinct eigenvalues, so that the generalised eigenspace decompositions contain at least two summands. The amalgamation of these results can be stated in our main theorem of this section as follows.

Theorem 4.1. Let $\lambda=\left(\left(k e+a, 1^{b}\right),\left(j e+a, 1^{b}\right)\right)$ or $\left(\left(b+1,1^{j e+a-1}\right),\left(b+1,1^{k e+a-1}\right)\right)$, for some $j, k \geqslant 1,0<a \leqslant e$ and $0 \leqslant b<e$ with $a+b \neq e$, or for $a=b=0$.
(i) For $j, k>1$, if $j+k$ is even and char $\mathbb{F} \neq 2$, or if $j+k$ is odd, then S_{λ} is decomposable.
(ii) If $j=1$ or $k=1$, then S_{λ} is decomposable if and only if char $\mathbb{F} \nmid j+k$.

Conjecture 4.2. When $e \neq 2$ and char $\mathbb{F} \neq 2$, Theorems 3.8 and 4.1 provides a complete list of decomposable Specht modules indexed by bihooks.

Remark. We have checked Conjecture 4.2 in GAP for all $e \in\{3,4,5\}$, char $\mathbb{F} \in\{0,3,5\}$, and $n \leqslant 22$. In characteristic 2, we have found an extra handful of decomposable Specht modules which our theorem and our methods do not detect - namely those indexed by $((4 e),(2 e)),((2 e),(4 e)),((8 e),(2 e))$, $((2 e),(8 e)),((5 e),(3 e)),((3 e),(5 e))$, their conjugates, and those bihooks obtained from these by our induction functor arguments. It is tempting to speculate that the extra decomposable Specht modules in characteristic 2 correspond to λ as in Theorem 4.1 with $j \neq k$ and $j-k \equiv 2 \bmod 4$.

We begin with a reduction result, greatly simplifying the work we must do to prove Theorem 4.1.
Proposition 4.3. Let $k, j \geqslant 1$, and $0 \leqslant a<e$. The Specht module $\mathrm{S}_{((k e),(j e))}$ is decomposable if and only if $\mathrm{S}_{((k e+a),(j e+a))}$ is.
Proof. Our argument is similar to that in [Spe14, Theorem 3.2], using the graded 'cyclotomic divided power functors' of [BK09b, §4.6], which we denote here by $e_{i}^{(r)}$ and $f_{i}^{(r)}$. Let $\lambda=((k e),(j e))$ and $\mu=((k e+a),(j e+a))$. Then $e_{0}^{(2)} e_{1}^{(2)} \ldots e_{a-1}^{(2)} \mathrm{S}_{\mu}=\mathrm{S}_{\lambda}$ and $f_{a-1}^{(2)} f_{a-2}^{(2)} \ldots f_{0}^{(2)} \mathrm{S}_{\lambda}=\mathrm{S}_{\mu}$. It follows that S_{λ} and S_{μ} have the same composition length, and that $e_{0}^{(2)} e_{1}^{(2)} \ldots e_{a-1}^{(2)} D \neq 0$ for any composition factor D of S_{μ}. Hence, by exactness, $e_{0}^{(2)} e_{1}^{(2)} \ldots e_{a-1}^{(2)} M \neq 0$ for any submodule $M \subseteq \mathrm{~S}_{\mu}$. It follows that if S_{μ} is decomposable, then so is S_{λ}. Repeating the argument the other way round completes the proof.

In fact, we may extend the above proposition as follows.
Proposition 4.4. Let $k, j \geqslant 1,0<a \leqslant e$, and $0 \leqslant b<e$ with $a+b \neq e$. The Specht module $\mathrm{S}_{((k e),(j e))}$ is decomposable if and only if $\mathrm{S}_{\left(\left(k e+a, 1^{b}\right),\left(j e+a, 1^{b}\right)\right)}$ is.
Proof. The argument is similar to the proof of Proposition 4.3. By Proposition 4.3, we know that $\mathrm{S}_{((k e),(j e))}$ is decomposable if and only if $\mathrm{S}_{((k e+1),(j e+1))}$ is.

Let $\lambda=((k e+1),(j e+1))$ and $\mu=\left(\left(k e+a, 1^{b}\right),\left(j e+a, 1^{b}\right)\right)$. If $a+b<e$, we find that $e_{1}^{(2)} e_{2}^{(2)} \ldots e_{a-1}^{(2)} \cdot e_{e-1}^{(2)} e_{e-2}^{(2)} \ldots e_{e-b}^{(2)} \mathrm{S}_{\mu}=\mathrm{S}_{\lambda}$ and $f_{e-b}^{(2)} f_{e-b+1}^{(2)} \ldots f_{e-1}^{(2)} \cdot f_{a-1}^{(2)} f_{a-2}^{(2)} \ldots f_{1}^{(2)} \mathrm{S}_{\lambda}=\mathrm{S}_{\mu}$.

If $a+b>e$, we find that

$$
e_{1}^{(2)} e_{2}^{(2)} \ldots e_{a-2}^{(2)} \cdot e_{e-1}^{(2)} e_{e-2}^{(2)} \ldots e_{a}^{(2)} \cdot e_{a-1}^{(4)} \cdot e_{a-2}^{(2)} e_{a-3}^{(2)} \ldots e_{e-b}^{(2)} \mathrm{S}_{\mu}=\mathrm{S}_{\lambda}
$$

and

$$
f_{e-b}^{(2)} \ldots f_{a-3}^{(2)} f_{a-2}^{(2)} \cdot f_{a-1}^{(4)} \cdot f_{a}^{(2)} f_{a+1}^{(2)} \ldots f_{e-1}^{(2)} \cdot f_{a-2}^{(2)} f_{a-3}^{(2)} \ldots f_{1}^{(2)} \mathrm{S}_{\lambda}=\mathrm{S}_{\mu}
$$

where we adopt the convention that $f_{a}^{(2)} f_{a+1}^{(2)} \ldots f_{e-1}^{(2)}=\mathrm{id}=e_{e-1}^{(2)} e_{e-2}^{(2)} \ldots e_{a}^{(2)}$ if $a=e$.
We may now complete the proof identically to Proposition 4.3.
The following result handles some indecomposable Specht modules when n is reasonably small, essentially extending Theorem 3.7.

Proposition 4.5. Let $1 \leqslant a \leqslant e$, and $0 \leqslant b<e$ with $a+b \neq e$, and let $\lambda=\left(\left(a, 1^{b}\right),\left(a, 1^{b}\right)\right)$. Then S_{λ} is indecomposable.

Proof. It is easy to see that λ is regular, from which the result also follows: starting with \varnothing, we may add two cogood 0-nodes, followed by two cogood 1-nodes, and so on up to adding two cogood $(a-1)$-nodes, then two cogood (-1)-nodes, and so on up to adding two cogood ($-b$)-nodes. If $n>2 e$, then after adding the first $2 e-2$ cogood nodes in the above, we must add four cogood nodes of the next residue before reverting to adding two at a time.

In view of the above results, we may assume that $\lambda=((k e),(j e))$ as we prove our main result. We fix this choice of λ for the remainder of the section, and compute an endomorphism of S_{λ} which we will use to prove our result.

We now introduce notation for the basis vectors v_{T} of S_{λ}, analogous to [Sut18, §5.2]. Observe that a standard λ-tableau T is determined by the entries $a_{r}:=\mathrm{T}(1, r, 2)$ lying in its second component, for all $r \in\{1, \ldots, j e\}$. We can thus write $\mathrm{T}=w_{\mathrm{T}} \mathrm{T}_{\lambda}$, where

$$
w_{\mathrm{T}}=\stackrel{a_{1}-1}{\downarrow} \stackrel{a_{2}-1}{\downarrow} \stackrel{a_{2}}{\downarrow} \underset{2}{\downarrow} \ldots \underset{j e}{a_{j e}-1} \underset{j}{\downarrow} \in \mathfrak{S}_{n} .
$$

It follows that $v_{\mathrm{T}}=\psi_{\mathrm{T}} z_{\lambda}$ where

$$
\psi_{\mathrm{T}}=\psi_{\underset{1}{a_{1}-1} \downarrow}^{\downarrow} \psi_{2}^{a_{2}-1} \downarrow \underset{{ }_{2}}{\downarrow} \ldots \psi_{j e}^{a_{j e}-1} \in \mathscr{R}_{n}^{\Lambda} .
$$

In order to distinguish our standard tableaux compactly, we will often write $v\left(a_{1}, a_{2}, \ldots, a_{j e}\right)$ for the standard λ-tableau with entries $a_{1}, a_{2}, \ldots, a_{j e}$ in the second component.

Definition 4.6. Let $\mathrm{T} \in \operatorname{Std}(\lambda)$. An e-brick is a sequence of e adjacent nodes containing entries $j e+1, j e+2, \ldots,(j+1) e$ for $j \geqslant 0$. We say that T is an e-brick tableau if all entries of T lie in e-bricks. We denote the set of all standard e-brick λ-tableaux by \mathcal{T}_{e}.

Example. If $e=3$ and $\lambda=((6),(6))$ then \mathcal{T}_{e} consists of the following six tableaux, obtained by permuting the four e-bricks.

These tableaux correspond to $v_{\mathrm{T}_{1}}=v(1,2,3,4,5,6), v_{\mathrm{T}_{2}}=v(1,2,3,7,8,9), v_{\mathrm{T}_{3}}=v(1,2,3,10,11,12)$, $v_{\mathrm{T}_{4}}=v(4,5,6,7,8,9), v_{\mathrm{T}_{5}}=v(4,5,6,10,11,12)$ and $v_{\mathrm{T}_{6}}=v(7,8,9,10,11,12)$ in $\mathrm{S}_{((6),(6))}$.

The following easy lemma is our motivation for introducing this definition.
Lemma 4.7. For any $\mathrm{T} \in \operatorname{Std}(\lambda), v_{\mathrm{T}} \in e\left(\mathbf{i}_{\lambda}\right) \mathrm{S}_{\lambda}$ if and only if $\mathrm{T} \in \mathcal{T}_{e}$.
In particular, this lemma tells us that for any endomorphism φ of S_{λ},

$$
\varphi\left(z_{\lambda}\right)=\sum_{\mathrm{T} \in \mathcal{T}_{e}} a_{\mathrm{T}} v_{\mathrm{T}} \quad \text { for some } a_{\mathrm{T}} \in \mathbb{F} .
$$

Lemma 4.8. For all $\mathrm{T} \in \mathcal{T}_{e}, \operatorname{deg} \mathrm{~T}=j$.
Proof. Any nodes in the first component of T cannot contribute to the degree, since there can't be any nodes above them. In the second component, each e-brick contributes +1 to the degree. If the first component is empty when adding such a brick, this comes from only having an addable 0 -node higher up in the diagram. Otherwise, there is an addable 0 -node, as well as one addable (e-1)-node and one removable ($e-1$)-node.

Lemma 4.9. For all $\mathrm{T} \in \mathcal{T}_{e}$ and $1 \leqslant r \leqslant n, y_{r} v_{\mathrm{T}}=0$.
Proof. Since v_{T} has degree j, $\operatorname{deg}\left(y_{r} v_{\mathrm{T}}\right)=j+2$. But $y_{r} v_{\mathrm{T}} \in e\left(\mathbf{i}_{\lambda}\right) \mathrm{S}_{\lambda}$, so $\operatorname{deg}\left(y_{r} v_{\mathrm{T}}\right)=j$. This contradiction yields the result.

Similarly, the following result computes the actions of many ψ_{r} generators on $v_{\mathrm{T}} \in e\left(\mathbf{i}_{\lambda}\right) \mathrm{S}_{\lambda}$.
Lemma 4.10. For all $\mathrm{T} \in \mathcal{T}_{e}$ and $1 \leqslant r<n$ with $r \not \equiv 0(\bmod e), \psi_{r} v_{\mathrm{T}}=0$.
Proof. We know that

$$
\psi_{r} v_{\mathrm{T}}=\sum_{\substack{\mathrm{T} \in \operatorname{Std}(\lambda) \\ i_{\mathrm{S}}=\mathbf{i}_{s r} \mathrm{~T}}} a_{\mathrm{S}} v_{\mathrm{S}} \quad \text { for some } a_{\mathrm{S}} \in \mathbb{F}
$$

and the result follows since no standard λ-tableau can have residue sequence $\mathbf{i}_{s_{r} \mathrm{~T}}$.
In order to calculate an endomorphism of S_{λ}, it remains to understand the action of the generators $\psi_{r e}$ on basis vectors v_{T}. In general, $\psi_{r e}$ does not annihilate v_{T}. We will find an endomorphism of S_{λ} which maps z_{λ} to a linear combination of elements v_{T} which we will show is annihilated by $\psi_{r e}$ if $r \neq j$. First, we will introduce some necessary notation for working with tableaux in \mathcal{T}_{e}.

For any $\mathrm{T} \in \mathcal{T}_{e}$, we number the e-bricks in the order of their entries, i.e. T comprises of bricks $1,2, \ldots, j+k$. Then we have brick transpositions and their corresponding ψ expressions, which we will denote by Ψ_{r}. In particular, the brick transposition which transposes the r th and $(r+1)$ th bricks corresponds to

$$
\Psi_{r}=\psi \underset{(r-1) e+1}{\stackrel{r e}{\downarrow}} \stackrel{r e+1}{\downarrow}{ }_{(r-1) e+2}^{\downarrow} \ldots \stackrel{(r+1) e-1}{\downarrow}{ }_{r e}^{\downarrow} .
$$

As with our ψ generators, we introduce the shorthand $\underset{y}{\Psi}{ }_{y}^{x}=\Psi_{x} \Psi_{x-1} \ldots \Psi_{y}$ and $\Psi^{x} \uparrow=\Psi_{y} \Psi_{y+1} \ldots \Psi_{x}$.
Note that for any $\mathrm{T} \in \mathcal{T}_{e}, w_{\mathrm{T}}$ is fully commutative since the reading word is 321-avoiding. We can write v_{T} in terms of the e-bricks lying in the second component of T , i.e. we may write $v_{\mathrm{T}}=$ $v\left(B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{j}}\right)$, for $1 \leqslant i_{1}<i_{2}<\cdots<i_{j} \leqslant j+k$. Then

$$
v_{\mathrm{T}}=\Psi \underset{1}{\downarrow} \underset{i_{1}-1}{i_{1}} \underset{2}{i_{2}-1} \ldots \stackrel{i_{j}-1}{\downarrow} \ldots z_{\lambda} .
$$

Analogously, we write $\underline{v}\left(B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{k}}\right)$ for the standard basis vector of S_{λ} indexed by the standard λ-tableau that has the e-bricks $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{k}}$ lying in its first component.

Example. As in the previous example, let $e=3$ and $\lambda=((6),(6))$. Then, for example,

$$
\Psi_{1}=\underset{1}{\psi \downarrow} \underset{\downarrow_{2}}{\psi} \stackrel{4}{\psi} \underset{3}{\downarrow}=\psi_{3} \psi_{2} \psi_{1} \psi_{4} \psi_{3} \psi_{2} \psi_{5} \psi_{4} \psi_{3}
$$

The six tableaux in \mathcal{T}_{e}, given in the previous example, are determined by which two bricks (from the available bricks $1,2,3,4$) are in the second component, and correspond to the basis elements

$$
\begin{aligned}
& z_{\lambda}, \quad \Psi_{2} z_{\lambda}, \quad \underset{2}{3} z_{\lambda}=\Psi_{3} \Psi_{2} z_{\lambda}, \\
& \Psi_{1} \Psi_{2} z_{\lambda}, \quad \Psi_{1} \Psi \underset{2}{\downarrow} z_{\lambda}=\Psi_{1} \Psi_{3} \Psi_{2} z_{\lambda}, \quad \Psi \stackrel{2}{\downarrow} \underset{1}{\Psi} \underset{2}{\downarrow} z_{\lambda}=\Psi_{2} \Psi_{1} \Psi_{3} \Psi_{2} z_{\lambda} .
\end{aligned}
$$

The following lemma is easy to see from the relations in the KLR algebras and their Specht modules, and we will use it frequently without reference.

Lemma 4.11. (i) If $|r-s|>1$, then $\Psi_{r} \Psi_{s}=\Psi_{s} \Psi_{r}$.
(ii) If $\lambda=((k e),(j e))$, for some $j, k \geqslant 1$ and $r \neq j$, then $\Psi_{r} z_{\lambda}=0$.

The following proposition will be crucial in our computations, particularly when $e>2$. For $e=2$, it follows from the proof of [Spe14, Lemma 5.5], where the first author proves the result for hook partitions in level one, assuming that the residue sequence \mathbf{i}_{λ} alternates between 0 and 1 . Its proof for $e>3$ is long and technical, requiring many preliminary lemmas, and we relegate this to Section 6 .

Proposition 4.12. Suppose that $e \in\{2,3, \ldots\}$, and let $\lambda=((k e),(j e))$, for some $j, k \geqslant 1$. If $v \in e\left(\mathbf{i}_{\lambda}\right) \mathrm{S}_{\lambda}$ and $1 \leqslant r \leqslant j+k-1$, then
(i) $\psi_{r e} \Psi_{r} v=-2 \psi_{r e} v$;
(ii) for $r<j+k-1, \psi_{r e} \Psi_{r+1} \Psi_{r} v=\psi_{r e} v$;
(iii) for $r>1, \psi_{r e} \Psi_{r-1} \Psi_{r} v=\psi_{r e} v$.

Theorem 4.13. Suppose that $k \geqslant j \geqslant 1$.
(i) Let $\lambda=((k e),(j e))$. Then there is an endomorphism of S_{λ} defined by

$$
\varphi\left(z_{\lambda}\right)=\sum_{\substack{0 \leqslant l \leqslant k-1 \\ 0 \leqslant l \leqslant j-1}}(j-l)(k-i) \Psi \underset{j-l}{j-1} \Psi \underset{j}{j+i}{\underset{j}{j}}_{j}^{j} .
$$

(ii) Let $\lambda=((j e),(k e))$. Then there is an endomorphism of S_{λ} defined by

Proof. (i) By Lemmas 4.7, 4.9 and 4.10, we just need to show that $\psi_{r e} \varphi\left(z_{\lambda}\right)=0$, for all $r \in$ $\{1, \ldots, j-1\} \cup\{j+1, \ldots, k+j-1\}$. So we shall fix r and look at the action of $\psi_{r e}$ on each summand of $\varphi\left(z_{\lambda}\right)$. We will use Proposition 4.12 many times in this proof, without further reference.
We first suppose that $r \in\{1, \ldots, j-1\}$. If $j-l<r-1$, we observe that

$$
\psi_{r e} \Psi \underset{j-l}{\ddagger-1} \Psi \underset{j}{j+i} z_{\lambda}=\psi_{r e} \Psi_{j-l} \Psi_{j-l+1} \ldots \Psi_{r-2} \Psi_{r-1} \Psi_{r} \Psi_{r+1} \Psi_{r+2} \ldots \Psi_{j-1} \Psi \underset{j}{j+i} z_{\lambda}=0 .
$$

Similarly, if $j-l>r+1$, we have

$$
\psi_{r e} \Psi_{j-l}^{j-1} \Psi_{j}^{j+i} \Psi_{j}^{j+i} z_{\lambda}=\Psi_{j-l}^{j-1} \Psi_{j}^{j+i} \psi_{r e} z_{\lambda}=0 .
$$

If $j-l=r-1$, we obtain the reduced expression

$$
\psi_{r e} \Psi_{r-1} \Psi_{r} \Psi_{r+1} \Psi_{r+2} \ldots \Psi_{j-1} \Psi \stackrel{j+i}{\downarrow} z_{\lambda}=\psi_{r e} \Psi_{r+1} \Psi_{r+2} \ldots \Psi_{j-1} \Psi \underset{j}{j+i} z_{\lambda} .
$$

If $j-l=r$, we obtain the reduced expression

$$
\psi_{r e} \Psi_{r} \Psi_{r+1} \Psi_{r+2} \ldots \Psi_{j-1} \Psi \underset{j}{j+i} z_{\lambda}=-2 \psi_{r e} \Psi_{r+1} \Psi_{r+2} \ldots \Psi_{j-1} \Psi \underset{j}{j+i} z_{\lambda} .
$$

If $j-l=r+1$, we immediately obtain the reduced expression

$$
\psi_{r e} \Psi_{r+1} \Psi_{r+2} \ldots \Psi_{j-1} \Psi \stackrel{j+i}{j} z_{\lambda} .
$$

Thus the only summands of $\varphi\left(z_{\lambda}\right)$ which are not killed by $\psi_{r e}$ are those corresponding to $j-l \in\{r-1, r, r+1\}$, and for a fixed i all three yield the same basis vector, so we must check the coefficients to show that they cancel. If $r>1$, then the corresponding coefficients are $(r-1)(k-i),-2 r(k-i)$, and $(r+1)(k-i)$, respectively, so they cancel. If $r=1$, we do not have a term corresponding to $j-l=r-1$, so we only have the latter two terms, which clearly cancel.

We now suppose that $r \in\{j+1, \ldots, j+k-1\}$. If $j+i<r-1$, we have

$$
\psi_{r e} \Psi_{j-l}^{j-1} \Psi_{j+i} \Psi_{j+i-1} \ldots \Psi_{j} z_{\lambda}=\Psi^{j-1} \uparrow_{j-l}^{j-1} \Psi_{j+i} \Psi_{j+i-1} \ldots \Psi_{j} \psi_{r e} z_{\lambda}=0 .
$$

Similarly, if $j+i>r+1$, we have

If $j+i=r-1$, we see that the following expression is reduced

$$
\psi_{r e} \Psi^{j} \uparrow_{j-l}^{j-1} \Psi_{r-1} \Psi_{r-2} \ldots \Psi_{j} z_{\lambda} .
$$

If $j+i=r$, we obtain the reduced expression

$$
\psi_{r e} \Psi \Psi_{j-l}^{j-1} \Psi_{r} \Psi_{r-1} \ldots \Psi_{j} z_{\lambda}=-2 \psi_{r e} \Psi^{j-1}{ }_{j-l}^{j-1} \Psi_{r-1} \ldots \Psi_{j} z_{\lambda} .
$$

If $j+i=r+1$, we obtain the reduced expression

$$
\psi_{r e} \Psi_{j-l}^{j-1} \Psi_{r+1} \Psi_{r} \Psi_{r-1} \Psi_{r-2} \ldots \Psi_{j} z_{\lambda}=\psi_{r e} \Psi_{j-l}^{j-1} \Psi_{r-1} \Psi_{r-2} \ldots \Psi_{j} z_{\lambda} .
$$

As in the previous case, it is an easy check to verify that the coefficients $(j-l)(k-r+j+1)$, $-2(j-l)(k-r+j)$ and $(j-l)(k-r+j-1)$ cancel. We note that here $r=j+k-1$ is the exceptional case, for which there is no term corresponding to $j+i=r+1$, but the $j+i=r-1$ and $j+i=r$ terms contribute $2(j-l)$ and $-2(j-l)$, respectively, so that the terms still cancel.
(ii) Similar to the first part.

Example. Let $e=3, \kappa=(0,0)$ and $\lambda=((9),(9))$. Then we have the following endomorphism of S_{λ}

$$
\begin{aligned}
\varphi\left(z_{\lambda}\right)= & 9 \Psi_{3} z_{\lambda}+6 \Psi_{4} \Psi_{3} z_{\lambda}+3 \Psi_{5} \Psi_{4} \Psi_{3} z_{\lambda}+6 \Psi_{2} \Psi_{3} z_{\lambda}+4 \Psi_{2} \Psi_{4} \Psi_{3} z_{\lambda} \\
& +2 \Psi_{2} \Psi_{5} \Psi_{4} \Psi_{3} z_{\lambda}+3 \Psi_{1} \Psi_{2} \Psi_{3} z_{\lambda}+2 \Psi_{1} \Psi_{2} \Psi_{4} \Psi_{3} z_{\lambda}+\Psi_{1} \Psi_{2} \Psi_{5} \Psi_{4} \Psi_{3} z_{\lambda},
\end{aligned}
$$

where the summands correspond to the tableaux

9

1	2	3	4	5	6	10	11	12

6

1	2	3	7	8	9	10	11

3

4	5	6	7	8	9	10	11	12

1	2	3	4	5	6	13	14	15

| 1 | 2 | 3 | 7 | 8 | 9 | $13\|14\| 15$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4	5	6	7	8	9	$13\|14\| 15$

| 7 | 8 | 9 | $10\|11\| 12\|13\| 14 \mid 15$ |
| :--- | :--- | :--- | :--- | :--- | | 1 | 2 | 3 | 4 | 5 | 6 | $16\|17\| 18$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 \begin{tabular}{|l|l|l|l|l|l|l|}
\hline 1 \& 2 \& 3 \& 7 \& 8 \& 9 \& 16

\hline

\hline 1 \& 2 \& 3 \& $10|11| 12|13| 14 \mid 15$

\hline

\hline 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& $16|17| 18$

\hline
\end{tabular}

Proposition 4.14. Suppose that $\lambda=((e),(k e))$ or $\lambda=((k e),(e))$ with $k>1$. Then S_{λ} is decomposable if and only if char $\mathbb{F} \nmid k+1$.

Proof. We first let $\lambda=((e),(k e))$. For any non-trivial endomorphism φ of S_{λ}, we have

$$
\varphi\left(z_{\lambda}\right)=\sum_{j=1}^{k} a_{j} \Psi \stackrel{k}{j} z_{\lambda} \text { for some } a_{j} \in \mathbb{F}
$$

Since $\psi_{r e} \varphi\left(z_{\lambda}\right)=0$ for all $r \in\{1,2, \ldots, k-1\}$, and by Proposition 4.12 we have

$$
\psi_{r e} \underset{j}{\uparrow} \underset{j}{k} z_{\lambda}= \begin{cases}\psi_{r e} \Psi \uparrow \underset{j}{k} z_{\lambda} & \text { if } j=r-1 \text { or } r+1 \\ -2 \underset{r e}{\psi_{j}^{k}} \underset{j}{\uparrow} z_{\lambda} & \text { if } j=r \\ 0 & \text { otherwise }\end{cases}
$$

it follows that $a_{1}=\frac{1}{2} a_{2}$ and $2 a_{j}=a_{j-1}+a_{j+1}$ for $j \in\{2,3, \ldots, k-1\}$. One can check that, up to scalar multiplication, the only non-trivial endomorphism of S_{λ} is thus the one given in Theorem 4.13, which simplifies to

$$
\varphi\left(z_{\lambda}\right)=\sum_{j=1}^{k} \underset{j}{j \Psi} \underset{j}{k} z_{\lambda}
$$

Using Proposition 4.12, we find that

$$
\begin{aligned}
\varphi^{2}\left(z_{\lambda}\right) & =\left(\sum_{j=1}^{k} j \Psi \underset{j}{k}\right)\left(\sum_{j=1}^{k} j \underset{j}{k}\right) z_{\lambda} \\
& =\left(\sum_{j=1}^{k} j \underset{j}{k}\right)\left((k-1) \Psi \underset{k-1}{\uparrow}+k \Psi_{k}\right) z_{\lambda} \\
& =(k-1) \varphi\left(z_{\lambda}\right)-(2 k) \varphi\left(z_{\lambda}\right),
\end{aligned}
$$

and so $-\frac{1}{k+1} \varphi$ is an idempotent when char $\mathbb{F} \nmid k+1$, or equivalently, when $(k+1, \operatorname{char} \mathbb{F})=1$. Moreover, it is clear that $\varphi^{2}=0$ when $\operatorname{char} \mathbb{F} \mid k+1$, so that there are no non-trivial idempotent endomorphisms.

We now let $\lambda=((k e),(e))$. We similarly find that there exists only a single non-trivial endomorphism of S_{λ}, up to scalar multiplication, which is defined by

$$
\varphi\left(z_{\lambda}\right)=\sum_{j=1}^{k}(k+1-j) \Psi \underset{1}{\downarrow} z_{\lambda}
$$

Analogously, $-\frac{1}{k+1} \varphi$ is an idempotent when char $\mathbb{F} \nmid k+1$ and $\varphi^{2}=0$ when $\operatorname{char} \mathbb{F} \mid k+1$.
Corollary 4.15. Let $1 \leqslant a<e$ and $0 \leqslant b<e$ such that $a+b<e$. Then $\mathrm{S}_{\left(\left(e+a, 1^{b}\right),\left(k e+a, 1^{b}\right)\right)}$ and $\mathrm{S}_{\left(\left(k e+a, 1^{b}\right),\left(e+a, 1^{b}\right)\right)}$ are decomposable if and only if $(k+1, \operatorname{char} \mathbb{F})=1$ with $k>1$.
Proof. The result follows from Proposition 4.14 by applying Proposition 4.4.
Theorem 4.16. Suppose that $k \geqslant j>1$. Let $\lambda=((k e),(j e))$, and let φ be the endomorphism of S_{λ} from Theorem 4.13(i). Then
(i) φ has an eigenvalue $-j(k+1)$ with corresponding eigenvector

$$
v\left(B_{k+1}, B_{k+2}, B_{k+3}, \ldots, B_{k+j}\right)
$$

(ii) φ has an eigenvalue $-(j-1)(k+2)$ with corresponding eigenvector

$$
\diamond v\left(B_{2}, B_{3}, B_{k+2}, B_{k+3}, \ldots, B_{2 k-1}\right)-v\left(B_{1}, B_{k+2}, B_{k+3}, \ldots, B_{2 k}\right) \text { if } k=j
$$

$$
\diamond \sum_{i=1}^{k-j+2} i v\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-2}, B_{k+j-i+1}\right) \text { if } k>j
$$

(iii) if $k>j>2$, then φ has an eigenvalue $-(j-2)(k+3)$ with corresponding eigenvector

$$
\begin{aligned}
& \sum_{i=1}^{k-j+3} \frac{1}{2} i(i+1) v\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-4}, B_{k+j-i}, B_{k+j-i+1}\right) \\
& +\sum_{i=1}^{k-j+2} i(i+1) v\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-4}, B_{k+j-i-1}, B_{k+j-i+1}\right) \\
& +\sum_{i=1}^{k-j+1} \sum_{l=1}^{i} l(i+2) v\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-4}, B_{k+j-i-2}, B_{k+j-l+1}\right) ;
\end{aligned}
$$

(iv) if $k>j=2$, then φ has an eigenvalue 0 with corresponding eigenvector

$$
\sum_{i=0}^{k} \frac{1}{2}(i+1)(i+2) v\left(B_{k-i+1}, B_{k-i+2}\right)+\sum_{l=0}^{k-1} \sum_{i=1}^{k-l-1}(i+1)(k-l+1) v\left(B_{l+1}, B_{k-i+2}\right)
$$

Analogously, we also have the following theorem.
Theorem 4.17. Suppose that $k \geqslant j>1$. Let $\lambda=((j e),(k e))$, and let φ be the endomorphism of S_{λ} from Theorem 4.13(ii). Then
(i) φ has an eigenvalue $-j(k+1)$ with corresponding eigenvector

$$
\underline{v}\left(B_{k+1}, B_{k+2}, B_{k+3}, \ldots, B_{k+j}\right) ;
$$

(ii) φ has an eigenvalue $-(j-1)(k+2)$ with corresponding eigenvector

$$
\begin{aligned}
& \diamond \underline{v}\left(B_{2}, B_{3}, B_{k+2}, B_{k+3}, \ldots, B_{2 k-1}\right)-\underline{v}\left(B_{1}, B_{k+2}, B_{k+3}, \ldots, B_{2 k}\right) \text { if } k=j, \\
& \diamond \sum_{i=1}^{k-j+2} i \underline{v}\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-2}, B_{k+j-i+1}\right) \text { if } k>j
\end{aligned}
$$

(iii) if $k>j>2$, then φ has an eigenvalue $-(j-2)(k+3)$ with corresponding eigenvector

$$
\begin{aligned}
& \sum_{i=1}^{k-j+3} \frac{1}{2} i(i+1) \underline{v}\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-4}, B_{k+j-i}, B_{k+j-i+1}\right) \\
& +\sum_{i=1}^{k-j+2} i(i+1) \underline{v}\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-4}, B_{k+j-i-1}, B_{k+j-i+1}\right) \\
& +\sum_{i=1}^{k-j+1} \sum_{l=1}^{i} l(i+2) \underline{v}\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-4}, B_{k+j-i-2}, B_{k+j-l+1}\right)
\end{aligned}
$$

(iv) if $k>j=2$, then φ has an eigenvalue 0 with corresponding eigenvector

$$
\sum_{i=0}^{k} \frac{1}{2}(i+1)(i+2) \underline{v}\left(B_{k-i+1}, B_{k-i+2}\right)+\sum_{l=0}^{k-1} \sum_{i=1}^{k-l-1}(i+1)(k-l+1) \underline{v}\left(B_{l+1}, B_{k-i+2}\right)
$$

Below, we will prove Theorem 4.16(iii). This is the most difficult part of Theorem 4.16 to prove, and the others are proved analogously. Likewise, similar calculations prove Theorem 4.17.

Proof of Theorem 4.16(iii). Let $\eta=\Psi_{1} \Psi \underset{2}{\downarrow} \underset{3}{\Psi} \underset{5}{5} \ldots \underset{j-3}{\downarrow} \underset{j-2}{\downarrow} \underset{j}{\downarrow} \underset{j}{2 j-5}$, and

$$
\begin{aligned}
& \psi_{w_{(1, s)}}:=\eta \cdot \Psi \underset{j-1}{\downarrow+j-s-1} \Psi \underset{j}{\downarrow+j-s} \quad(1 \leqslant s \leqslant k-j+3), \\
& \psi_{w_{(2, s)}}:=\eta \cdot \Psi \underset{j-1}{\downarrow+j-s-2} \Psi \stackrel{k+j-s}{\downarrow} \quad(1 \leqslant s \leqslant k-j+2), \\
& \psi_{w_{(r, s)}}:=\eta \cdot \Psi \underset{j-1}{\downarrow+j-s-3} \Psi \underset{j}{\downarrow} \Psi \stackrel{k+j-r+2}{\downarrow} \quad(1 \leqslant s \leqslant k-j+1,3 \leqslant r \leqslant s+2),
\end{aligned}
$$

and define $v_{r_{s}}=\psi_{w_{(r, s)}} z_{\lambda}$ in all cases above. We can now write

$$
\begin{aligned}
& \sum_{s=1}^{k-j+3} \frac{1}{2} s(s+1) v\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-4}, B_{k+j-s}, B_{k+j-s+1}\right) \\
& +\sum_{s=1}^{k-j+2} s(s+1) v\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-4}, B_{k+j-s-1}, B_{k+j-s+1}\right) \\
& +\sum_{s=1}^{k-j+1} \sum_{r=3}^{s+2}(r-2)(s+2) v\left(B_{2}, B_{4}, B_{6}, \ldots, B_{2 j-4}, B_{k+j-s-2}, B_{k+j-r+3}\right) \\
& =\sum_{s=1}^{k-j+3} \frac{1}{2} s(s+1) v_{1_{s}}+\sum_{s=1}^{k-j+2} s(s+1) v_{2_{s}}+\sum_{s=1}^{k-j+1} \sum_{r=3}^{s+2}(r-2)(s+2) v_{r_{s}} .
\end{aligned}
$$

We want to show that

$$
\begin{aligned}
& \left(\sum_{s=1}^{k-j+3} \frac{1}{2} s(s+1) \psi_{w_{(1, s)}}+\sum_{s=1}^{k-j+2} s(s+1) \psi_{w_{(2, s)}}+\sum_{s=1}^{k-j+1} \sum_{r=3}^{s+2}(r-2)(s+2) \psi_{w_{(r, s)}}\right) \cdot \varphi\left(z_{\lambda}\right) \\
& =-(j-2)(k+3)\left(\sum_{s=1}^{k-j+3} \frac{1}{2} s(s+1) v_{1_{s}}+\sum_{s=1}^{k-j+2} s(s+1) v_{2_{s}}+\sum_{s=1}^{k-j+1} \sum_{r=3}^{s+2}(r-2)(s+2) v_{r_{s}}\right)
\end{aligned}
$$

First suppose we are in one of the following cases, where l is the index in the summation form for $\varphi\left(z_{\lambda}\right)$ from Theorem 4.13:
$\diamond s \leqslant k-j$ for all r and $l ;$
$\diamond s=k-j+1$ and $r=1$ or $r=2$ or $(r \geqslant 3$ and $l \leqslant j-2)$;
$\diamond s=k-j+2$ and $l \leqslant j-2 ;$
$\diamond s=k-j+3$ and $l \leqslant j-3$.
In these cases, we will show that

$$
\psi_{w_{(r, s)}} \cdot \stackrel{j-1}{\Psi} \underset{j-l}{\Psi} \underset{j}{\stackrel{j+i}{\downarrow}} z_{\lambda}= \begin{cases}-2 v_{r_{s}} & \text { if } l=i \\ v_{r_{s}} & \text { if } l=i \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that $l=0$. If $i=0$ or 1 , we have

$$
\psi_{w_{(r, s)}} \cdot \Psi_{j} z_{\lambda}=-2 v_{r_{s}} \quad \text { or } \quad \psi_{w_{(r, s)}} \cdot \Psi_{j+1} \Psi_{j} z_{\lambda}=v_{r_{s}}, \quad \text { respectively. }
$$

If $i>1$, we have

$$
\psi_{w_{(r, s)}} \cdot \stackrel{j+i}{\Psi} \stackrel{j}{\downarrow} z_{\lambda}=\eta \cdot \Psi \stackrel{i_{j-1}-1}{\downarrow} \stackrel{i_{j-1}-1}{\Psi} \underset{j}{\downarrow} \Psi \underset{j+2}{j+i} \Psi \Psi_{j+1} \Psi \Psi_{j} z_{\lambda}=0 .
$$

Now suppose $l=1$. If $i=0$, we have

$$
\psi_{w_{(r, s)}} \cdot \Psi_{j-1} \Psi_{j} z_{\lambda}=v_{r_{s}} .
$$

If $i=1$, we have

$$
\psi_{w_{(r, s)}} \cdot \Psi_{j-1} \Psi_{j+1} \Psi_{j} z_{\lambda}=\eta \cdot \Psi \underset{j-1}{i_{j-1}-1} \stackrel{\downarrow}{\downarrow} \underset{j+1}{i_{j-1}} \Psi_{j} \Psi_{j+1} \Psi_{j-1} \Psi_{j} z_{\lambda}=-2 \eta \cdot \Psi \stackrel{\Psi_{j-1}^{i_{j-1}-1}}{\downarrow} \underset{j}{i_{j}} \underset{j}{\downarrow} z_{\lambda}=-2 v_{r_{s}} .
$$

If $i=2$, we have

$$
\begin{aligned}
\psi_{w_{(r, s)}} \cdot \Psi_{j-1} \Psi_{j+2} \Psi_{j+1} \Psi_{j} z_{\lambda} & =\eta \cdot \Psi \underset{\substack{i_{j-1}-1}}{\downarrow} \underset{j-1}{i_{j-1}} \Psi \underset{j+2}{i_{j-1}} \underset{j+1}{ } \Psi_{j+1} \Psi_{j+2} \Psi_{j} \Psi_{j-1} \Psi_{j+1} \Psi_{j} z_{\lambda} \\
& =\eta \cdot \Psi \underset{i_{j-1}}{\downarrow} \Psi_{j} \Psi_{j-1} \Psi \underset{j}{i_{j-1}} z_{\lambda} \\
& =v_{r_{s}} .
\end{aligned}
$$

If $i>2$, we have

$$
\begin{aligned}
& =\eta \cdot \Psi \underset{j}{\stackrel{i_{j-1}-1}{\downarrow}} \Psi \underset{j+1}{\downarrow+i-2} \Psi_{j-1} \Psi_{j} \Psi_{j-1} \Psi \underset{j}{\downarrow} \Psi_{\lambda} z_{j} \\
& =\eta \cdot \Psi \underset{j-1}{i_{j-1}-1} \underset{j}{\downarrow} \underset{j+2}{j+i-2} \underset{j+3}{\downarrow} \Psi \underset{j+1}{i_{j}-1} \Psi_{j+2} \Psi_{j+1} \Psi_{j} z_{\lambda} \\
& =0 \text {. }
\end{aligned}
$$

Now assuming that $l>1$, we have

$$
\begin{aligned}
& \psi_{w(r, s)} \cdot \Psi_{j-l}^{j-1} \stackrel{j+i}{\Psi} \stackrel{{ }_{j}}{\downarrow} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \ldots \Psi \underset{j-3}{\downarrow} \Psi \underset{j-2}{\downarrow-5} \Psi \underset{j-1}{\downarrow} \Psi \underset{j}{i_{j-1}-1} z^{i{ }_{j}-1} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \ldots \Psi \underset{j-3}{\downarrow} \Psi \underset{j-2}{\downarrow j-5} \Psi \underset{j-1}{\downarrow} \Psi \underset{j}{\downarrow} \Psi z_{\lambda}
\end{aligned}
$$

If $l=i$, observe

$$
\Psi \underset{j+i}{i_{j}-1} \stackrel{j+i}{\Psi} \stackrel{j}{\downarrow} z_{\lambda}=-2 \Psi \stackrel{i_{j}-1}{\downarrow}{ }_{j}^{\downarrow} z_{\lambda} .
$$

If $l=i-1$, observe

$$
\Psi \underset{j+i-1}{\downarrow} \frac{i_{j+i}-1}{\Psi_{j+i} \Psi_{j+i-1} \Psi} \stackrel{j+i-2}{\downarrow} z_{\lambda}=\Psi \stackrel{i_{j}-1}{\downarrow} z_{j} .
$$

If $l=i+1$, observe

$$
\Psi \underset{j+i+1}{\downarrow} \Psi \underset{j}{i_{j}-1} \stackrel{j+i}{\downarrow} z_{\lambda}=\Psi \stackrel{i_{j}-1}{\downarrow} z_{\lambda} .
$$

If $l>i+1$, observe

$$
\Psi \underset{j+l}{\stackrel{i_{j}-1}{\downarrow}} \stackrel{{ }_{j}^{j+i}}{\downarrow} z_{\lambda}=\Psi \underset{j+l+1}{\downarrow} \Psi \stackrel{i_{j}-1}{\downarrow} \stackrel{j+i}{\downarrow} \Psi_{j+l} z_{\lambda}=0 .
$$

If $l<i-1$, observe

We now suppose that we are not in the listed cases and that we lie in the exceptional cases.
First let $r=1, s=k-j+3$ and $l=j-2$. Similarly to above, we obtain

$$
\begin{aligned}
& =\Psi_{1} \Psi \underset{2}{\downarrow} \underset{4}{\Psi} \underset{4}{5} \ldots \Psi \underset{j-3}{2 j-7} \Psi_{2 j-5} \Psi_{2 j-4} \Psi_{2 j-6} \underline{\Psi}_{2 j-5} \Psi \Psi_{2 j-6} \Psi \underset{j-2}{\downarrow j-7} \Psi \underset{j-1}{\downarrow} \underset{j}{\downarrow-3} \Psi \stackrel{j+i}{\downarrow} z_{\lambda}
\end{aligned}
$$

If $i \geqslant j-3$, then this expression is clearly reduced. If $i<j-3$, we have

$$
\begin{aligned}
& \vdots
\end{aligned}
$$

$$
\begin{aligned}
& =0 \text {. }
\end{aligned}
$$

If instead $l=j-1$, we similarly obtain

$$
\psi_{w_{(r, s)}} \cdot \stackrel{\Psi_{j-l}^{j-1}}{\uparrow} \underset{j}{\underset{j}{\downarrow+i}} z_{\lambda}=\eta \cdot \Psi \stackrel{2 j-3}{\downarrow} \stackrel{j+i}{{ }_{j-1}^{j+i}} \underset{j}{\downarrow} z_{\lambda}
$$

which is clearly reduced if $i \geqslant j-2$. If $i<j-2$, then the expression becomes zero.
Let $r=1, s=k-j+2$, and $l=j-1$. Then the above expression becomes

$$
\eta \cdot \Psi \underset{j-1}{\downarrow} \underset{j}{\downarrow j-3} \stackrel{j+i}{\downarrow} z_{\lambda},
$$

which is clearly reduced if $i \geqslant j-2$. If $i<j-2$, then the expression becomes zero, as before.
Now let $r=2, s=k-j+2$, and $l=j-1$. Then the above expression becomes

$$
\eta \cdot \Psi \underset{j-1}{\downarrow} \Psi_{j}^{2 j-2}{\underset{j}{j}}_{j+i} z_{\lambda}
$$

which is clearly reduced if $i \geqslant j-1$. If $i<j-2$, then the expression becomes zero, while for $i=j-2$ we get

$$
\eta \cdot \Psi \stackrel{2 j-4}{\downarrow-1} \Psi \stackrel{2 j-2}{\downarrow}{ }_{j}^{\downarrow} z_{\lambda} .
$$

Finally, let $r>2, s=k-j+1$, and $l=j-1$. Then the above expression becomes

$$
\eta \cdot \Psi \stackrel{k+j-r+2}{\downarrow} \stackrel{j+i}{j-1} \underset{j}{\downarrow} z_{\lambda},
$$

which is clearly reduced if $i \geqslant k-r+3$. If $j-2 \leqslant i \leqslant k-r+2$, then
which is reduced. If $i<j-2$, then the expression becomes zero.
We summarise the exceptional cases. First suppose $r=1, s=k-j+3$, and $l=j-2$. Then

$$
\psi_{w_{(1, s)}} \cdot \underset{2}{\Psi} \underset{\uparrow_{j}^{j-1}}{\Psi} \underset{j}{j+i} z_{\lambda}= \begin{cases}0 & \text { if } i \leqslant j-4 \\ v_{1_{s}} & \text { if } i=j-3 \\ v_{2_{s-1}} & \text { if } i=j-2 \\ v_{(k-i+2)_{s-2}} & \text { if } i \geqslant j-1\end{cases}
$$

If $s=k-j+2$ or $s=k-j+3$ and $l=j-1$, then

$$
\psi_{w_{(1, s)}} \cdot \underset{1}{\Psi \uparrow} \underset{j}{\ddagger-1} \underset{j}{j+i} z_{\lambda}= \begin{cases}0 & \text { if } i \leqslant j-3 \\ v_{1_{k-j+2}} & \text { if } i=j-2, \\ v_{2_{k-j+1}} & \text { if } i=j-1, \\ v_{(k-i+2)_{k-j}} & \text { if } i \geqslant j\end{cases}
$$

Now suppose that $r=2$. If $s=k-j+2$ and $l=j-1$, then

$$
\psi_{w_{(2, s)}} \cdot \underset{1}{\Psi-1} \underset{{ }_{j}}{\Psi} \stackrel{j+i}{\downarrow} z_{\lambda}= \begin{cases}0 & \text { if } i \leqslant j-3 \\ v_{2_{s}} & \text { if } i=j-2, \\ v_{1_{s-1}} & \text { if } i=j-1, \\ v_{2_{s-2}} & \text { if } i=j, \\ v_{(k-i+2)_{s-3}} & \text { if } i \geqslant j+1\end{cases}
$$

Finally, suppose that $s=k-j+1$. If $r \in\{3, \ldots, k-j+3\}$ and $l=j-1$, then

$$
\psi_{w_{(r, s)}} \cdot \underset{1}{\Psi} \underset{j}{\Psi^{j-1}} \stackrel{j+i}{\downarrow} z_{\lambda}= \begin{cases}0 & \text { if } i \leqslant j-3 \\ v_{r_{k-i-1}} & \text { if } j-2 \leqslant i \leqslant k-r+1, \\ v_{2_{r-2}} & \text { if } i=k-r+2, \\ v_{1_{r-3}} & \text { if } i=k-r+3, \\ v_{2_{r-4}} & \text { if } i=k-r+4, \\ v_{(k-i+2)_{r-5}} & \text { if } i \geqslant k-r+5\end{cases}
$$

In the non-exceptional cases, we determine the coefficient $\alpha \in \mathbb{Z}$ in

$$
\psi_{w_{(r, s)}} \cdot \varphi\left(z_{\lambda}\right)=\alpha v_{r_{s}} .
$$

If $s \leqslant k-j$, we obtain

$$
\begin{aligned}
\psi_{w_{(r, s)}} \cdot \varphi\left(z_{\lambda}\right) & =\psi_{w_{(r, s)}} \cdot \sum_{\substack{0 \leqslant i \leqslant k-1 \\
0 \leqslant l \leqslant j-1}}(j-l)(k-i) \underset{j-l}{\Psi} \underset{j}{j-i} \stackrel{j+i}{\downarrow} z_{\lambda} \\
& =\sum_{l=0}^{j-1}-2(j-l)(k-l) v_{r_{s}}+\sum_{l=0}^{j-1}(j-l)(k-l-1) v_{r_{s}}+\sum_{l=1}^{j-1}(j-l)(k-l+1) v_{r_{s}} \\
& =-j(k+1) v_{r_{s}}
\end{aligned}
$$

Similarly, we also obtain $\alpha=-j(k+1)$ in the other non-exceptional cases.
By combining this with the exceptional cases, we now determine $\alpha_{r_{s}}$ where

$$
\begin{aligned}
& \left(\sum_{s=1}^{k-j+3} \frac{1}{2} s(s+1) \psi_{w_{(1, s)}}+\sum_{s=1}^{k-j+2} s(s+1) \psi_{w_{(2, s)}}+\sum_{s=1}^{k-j+1} \sum_{r=3}^{s+2}(r-2)(s+2) \psi_{w_{(r, s)}}\right) \cdot \varphi\left(z_{\lambda}\right) \\
& =\sum_{s=1}^{k-j+3} \alpha_{1_{s}} v_{1_{s}}+\sum_{s=1}^{k-j+2} \alpha_{2_{s}} v_{2_{s}}+\sum_{s=1}^{k-j+1} \sum_{r=3}^{s+2} \alpha_{r_{s}} v_{r_{s}}
\end{aligned}
$$

We first let $r=1$. If $s=k-j+3$, we know from above that

$$
\begin{aligned}
\alpha_{1_{s}} v_{1_{s}} & =\frac{1}{2} s(s+1) \psi_{w_{(1, s)}} \cdot\left(\sum_{\substack{0 \leqslant i \leqslant k-1 \\
0 \leqslant l \leqslant j-3}}(j-l)(k-i) \Psi \Psi_{j-l}^{j-1} \underset{j}{j+i} z_{\lambda}^{j+i}+2 s \Psi_{i}^{j-1}{\underset{1}{1}}_{\Psi}^{\Psi}{\left.\underset{j}{2 j-3} z_{\lambda}\right)}=\frac{1}{2} s(s+1)\left(-j(k+1) v_{1_{s}}+2 s v_{1_{s}}\right)\right. \\
& =-(j-2)(k+3) \cdot \frac{1}{2} s(s+1) v_{1_{s}}
\end{aligned}
$$

hence $\alpha_{1_{s}}=-(j-2)(k+3) \cdot \frac{1}{2} s(s+1)$, as required.
If $s=k-j+2$, then we have

$$
\begin{aligned}
& \alpha_{1_{s}} v_{1_{s}}=\frac{1}{2} s(s+1) \psi_{w_{(1, s)}} \cdot\left(\sum_{\substack{0 \leqslant i \leqslant k-1 \\
0 \leqslant l \leqslant j-2}}(j-l)(k-i) \Psi \underset{j-l}{j-1} \underset{j}{\Psi+i} \underset{j}{\downarrow} z_{\lambda}+s \Psi \underset{1}{j-1} \underset{\uparrow^{j}}{\Psi} \underset{j}{\downarrow j-2} z_{\lambda}\right) \\
& +\frac{1}{2}(s+1)(s+2) \psi_{w_{(1, s+1)}} \cdot s \Psi \stackrel{j-1}{\uparrow} \Psi \stackrel{2 j-2}{\downarrow} z_{\lambda} \\
& =\frac{1}{2} s(s+1)(-j(k+1)+s) v_{1_{s}}+\frac{1}{2} s(s+1)(s+2) v_{1_{s}} \\
& =-(j-2)(k+3) \cdot \frac{1}{2}(s+1)(s+2) v_{1_{s}} \text {. }
\end{aligned}
$$

If $s=k-j+1$, then we have

$$
\begin{aligned}
\alpha_{1_{s}} v_{1_{s}} & =\frac{1}{2} s(s+1) \psi_{w_{(1, s)}} \cdot \varphi\left(z_{\lambda}\right)+(s+1)(s+2) \psi_{w_{(2, s+1)}} \cdot s \Psi \Psi_{1}^{j-1} \underset{\sim}{\Psi} \underset{j}{2 j-1} z_{\lambda} \\
& =-(j-2)(k+3) \cdot \frac{1}{2} s(s+1) v_{1_{s}} .
\end{aligned}
$$

For $1 \leqslant s \leqslant k-j$, we have

$$
\begin{aligned}
\alpha_{1_{s}} v_{1_{s}} & =\frac{1}{2} s(s+1) \psi_{w_{(1, s)}} \cdot \varphi\left(z_{\lambda}\right)+(s+1)(k-j+3) \psi_{w_{(s+3, k-j+1)}} \cdot s \Psi \stackrel{j-1}{\uparrow} \Psi_{1}^{j+k-s}{\underset{j}{\downarrow}}^{\downarrow} z_{\lambda} \\
& =-(j-2)(k+3) \cdot \frac{1}{2} s(s+1) v_{1_{s}} .
\end{aligned}
$$

We now suppose that $r=2$. If $s=k-j+2$, then

$$
\alpha_{2_{s}} v_{2_{s}}=s(s+1) \psi_{w_{(2, s)}} \cdot \sum_{\substack{0 \leqslant i \leqslant k-1 \\ 0 \leqslant l \leqslant j-2}}(j-l)(k-i) \Psi_{j-l}^{j-1} \Psi_{j}^{j+i}{\underset{j}{j}}^{j} z_{\lambda}
$$

$$
\begin{aligned}
& +\frac{1}{2}(s+1)(s+2) \psi_{w_{(1, s+1)}} \cdot 2 s \Psi \underset{2}{j-1} \underset{\uparrow_{j}^{2 j-2}}{\downarrow} z_{\lambda}+s(s+1) \psi_{w_{(2, s)}} \cdot s \Psi{ }_{1}^{j-1} \Psi^{2 j-2} \underset{j}{\downarrow} z_{\lambda} \\
& =-s(s+1) j(k+1) v_{2_{s}}+s(s+1)(s+2) v_{2_{s}}+s^{2}(s+1) v_{2_{s}} \\
& =-(j-2)(k+3) \cdot s(s+1) v_{2_{s}} \text {. }
\end{aligned}
$$

If $s=k-j+1$, then

$$
\begin{aligned}
& \alpha_{2_{s}} v_{2 s}=s(s+1) \psi_{w_{(2, k-j+1)}} \cdot \varphi\left(z_{\lambda}\right)+\frac{1}{2}(s+1)(s+2) \psi_{w_{(1, s+1)}} \cdot s \Psi \underset{1}{j-1} \Psi \underset{j}{2 j-1} z_{\lambda} \\
& +\frac{1}{2}(s+2)(s+3) \psi_{w_{(1, s+2)}} \cdot s \Psi_{1}^{j-1} \Psi_{1}^{2 j-1}{ }_{j}^{2 / 1} z_{\lambda}+s(s+2) \psi_{w_{(s+2, s)}} \cdot s \Psi_{1}^{j-1} \Psi_{1}^{2 j-1} \underset{j}{\downarrow} z_{\lambda} \\
& =-j(k+1) s(s+1) v_{2 s}+s(s+2)\left(\frac{1}{2}(s+1)+\frac{1}{2}(s+3)+s\right) v_{2_{s}} \\
& =-(j-2)(k+3) \cdot s(s+1) v_{2_{s}} .
\end{aligned}
$$

If $s=k-j$, then

$$
\begin{aligned}
& \alpha_{2_{s}} v_{2_{s}}=s(s+1) \psi_{w_{(2, s)}} \cdot \varphi_{z_{\lambda}}+(s+2)(s+3) \psi_{w_{(2, s+2)}} \cdot s \Psi_{1}^{j-1} \underset{1}{\underset{j}{2 j}} \underset{j}{\Psi \downarrow} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =-j(k+1) s(s+1) v_{2_{s}}+s(s+3)(2 s+2) v_{2_{s}} \\
& =-(j-2)(k+3) \cdot s(s+1) v_{2 s} \text {. }
\end{aligned}
$$

If $s \in\{1, \ldots, k-j-1\}$, then

$$
\begin{aligned}
\alpha_{2_{s}} v_{2_{s}}= & s(s+1) \psi_{w_{(2, s)}} \cdot \varphi\left(z_{\lambda}\right)+s(k-j+3) \varphi_{w_{(s+2, k-j+1)}} \cdot s \Psi_{1}^{j-1} \Psi^{j+k-s} \underset{j}{\downarrow} z_{\lambda} \\
& +(s+2)(k-j+3) \psi_{w_{(s+4, k-j+1)}} \cdot s \Psi_{1}^{j-1} \Psi_{1}^{j+k-s} \underset{j}{\downarrow} z_{\lambda} \\
= & -j(k+1) s(s+1) v_{2_{s}}+s(k-j+3)(2 s+2) v_{2_{s}} \\
= & -(j-2)(k+3) \cdot s(s+1) v_{2_{s}} .
\end{aligned}
$$

Finally, suppose that $r \in\{3, \ldots, k-j+3\}$. If $s=k-j+1$, then

$$
\begin{aligned}
\alpha_{r_{s}} v_{r_{s}}= & (r-2)(s+2) \psi_{w_{(r, s)}} \cdot \sum_{\substack{0 \leqslant i \leqslant k-1 \\
0 \leqslant l \leqslant j-2}}(j-l)(k-i) \Psi^{j \uparrow-1} \Psi_{j-l}^{j+i} \Psi_{j}^{j+i} z_{\lambda} \\
& +\frac{1}{2}(s+2)(s+3) \psi_{w_{(1, s+2)}} \cdot 2(r-2) \Psi \underset{2}{j-1} \Psi^{j+k-r+2} \underset{j}{\downarrow} z_{\lambda} \\
& +(r-2)(s+2) \psi_{w_{(r, s)}} \cdot(s+1) \Psi \underset{j}{j-1} \Psi^{2 j \downarrow 2} \underset{j}{\downarrow} z_{\lambda} \\
= & -(j-2)(k+3) \cdot(r-2)(s+2) v_{r_{k-j+1}} .
\end{aligned}
$$

If $s=k-j$, then

$$
\begin{aligned}
\alpha_{r_{s}} v_{r_{s}}= & (r-2)(s+2) \psi_{w_{(r, s)}} \cdot \varphi\left(z_{\lambda}\right) \\
& +\frac{1}{2}(s+2)(s+3) \psi_{w_{(1, s+2)}} \cdot(r-2) \Psi \uparrow_{1}^{j-1} \Psi \stackrel{j}{j+k-r+2}{ }_{j}^{\downarrow} z_{\lambda} \\
& +\frac{1}{2}(s+3)(s+4) \psi_{w_{(1, s+3)}} \cdot(r-2) \Psi \Psi_{1}^{j-1} \Psi^{j+k-r+2} \downarrow{ }_{j}^{\downarrow} z_{\lambda} \\
& +(r-2)(s+3) \psi_{w_{(r, s+1)}} \cdot(s+1) \Psi \uparrow \Psi_{1}^{j-1} \Psi \underset{j}{\downarrow j-1} z_{\lambda} \\
= & (r-2)(s+2)(-j(k+1)+2(s+3)) v_{r_{s}}
\end{aligned}
$$

$$
=-(j-2)(k+3) \cdot(r-2)(s+2) v_{r_{s}} .
$$

If $s=k-j-1$, then

$$
\begin{aligned}
\alpha_{r_{s}} v_{r_{s}}= & (r-2)(s+2) \psi_{w_{(r, s)}} \cdot \varphi\left(z_{\lambda}\right)+(s+3)(s+4) \psi_{w_{(2, s+3)}} \cdot(r-2) \Psi \Psi_{1}^{j-1} \Psi^{j+k-r+2}{ }_{j}^{\downarrow} z_{\lambda} \\
& +(r-2)(s+4) \psi_{w_{(r, s+2)}} \cdot(k-j) \Psi \Psi_{1}^{j-1} \Psi \Psi_{j}^{2 j-1} z_{\lambda} \\
= & -(j-2)(k+3) \cdot(r-2)(s+2) v_{r_{s}}
\end{aligned}
$$

If $s \in\{1, \ldots, k-j-2\}$, then

$$
\begin{aligned}
\alpha_{r_{s}} v_{r_{s}}= & (r-2)(s+2) \psi_{w_{(r, s)}} \cdot \varphi_{z_{\lambda}} \\
& +(r-2)(k-j+3) \psi_{w_{(r, k-j+1)}} \cdot(s+1) \Psi \stackrel{1}{\uparrow} \Psi^{j-1} \stackrel{\downarrow}{j+k-s-1}{ }_{j}^{\downarrow} z_{\lambda} \\
& +(s+3)(k-j+3) \psi_{w_{(s+5, k-j+1)}} \cdot(r-2) \Psi \underset{1}{j-1} \Psi^{j+k-r+2} \downarrow \underset{j}{\downarrow} z_{\lambda} \\
= & (r-2)(-j(k+1)(s+2)+(k-j+3)(2 s+4)) v_{r_{s}} \\
= & -(j-2)(k+3) \cdot(r-2)(s+2) v_{r_{s}} .
\end{aligned}
$$

Hence

$$
\alpha_{r_{s}}=-(j-2)(k+3) \cdot \begin{cases}\frac{1}{2} s(s+1) & \text { if } r=1 \\ s(s+1) & \text { if } r=2 \\ (r-2)(s+2) & \text { if } r \geqslant 3\end{cases}
$$

for all s, as required.
Corollary 4.18. Let $\lambda=((k e),(j e))$ or $\left(\left(1^{k e}\right),\left(1^{j e}\right)\right)$ with $k, j>1$.
(i) If $j+k$ is odd, then S_{λ} is decomposable.
(ii) If $j+k$ is even and char $\mathbb{F} \neq 2$, then S_{λ} is decomposable.

Proof. By Theorems 4.16 and 4.17 parts (i) and (ii), there is an endomorphism φ of S_{λ} with two eigenvalues differing by $j-k-2$. If $j=k$, then $j+k$ is even and these eigenvalues differ by 2 , and are hence these are distinct if char $\mathbb{F} \neq 2$.

If $k>j>2$, then by part (iii), we have a third eigenvalue differing from the second by $j-k-4$. If char $\mathbb{F} \mid(j-k-2)$, then the first two eigenvalues are equal, but the third is distinct if char $\mathbb{F} \neq 2$. If char $\mathbb{F}=2$, then char $\mathbb{F} \nmid(j-k-2)$ when $j+k$ is odd.

If $k>j=2$, then by part (iv), we have 0 as our third eigenvalue. If k is odd, we have at least two distinct eigenvalues in any characteristic. Likewise, if k is even and char $\mathbb{F} \neq 2$, we have at least two distinct eigenvalues.

Thus, in each case, the generalised eigenspace decomposition of S_{λ} has at least two direct summands, which are easily seen to be $\mathscr{R}_{n}^{\Lambda}$-modules.

By applying Theorem 2.8 and the method in the proof of Propositions 4.3 and 4.4 , and combining with Theorem 3.8, Proposition 4.14 and Corollary 4.15, we obtain Theorem 4.1.

5 Quantum characteristic two

We now focus our attention on the case where $e=2$.
Thankfully most of the difficult work here is already done, and we are able to use results from [Spe14, Mur80, FS16] on Specht modules over the level one cyclotomic quiver Hecke algebra to obtain a lot of decomposable Specht modules with little effort. We collect the results we will need.

Theorem 5.1 [Mur80, Theorem 4.5]. If $e=\operatorname{char} \mathbb{F}=2, a \geqslant b$, and either λ or λ^{\prime} is $\left(a, 1^{b}\right)$, then S_{λ} is decomposable if and only if $a+b$ is odd and $a-1 \not \equiv b\left(\bmod 2^{L}\right)$, where $2^{L-1} \leqslant b<2^{L}$.
Theorem 5.2 [Spe14, Theorem 6.8]. If $e=2$, char $\mathbb{F} \neq 2, a>b$, and either λ or λ^{\prime} is ($a, 1^{b}$), then S_{λ} is decomposable if and only if $a+b$ is odd and either
(i) $a>b \geqslant 4$; or
(ii) $a>b=2$ or 3 , and char $\mathbb{F} \nmid\left\lceil\frac{a}{2}\right\rceil$.

When looking for decomposable Specht modules, the cases $\kappa=(0,1)$ and $\kappa=(0,0)$ must be treated separately. However, our first result is independent of this.

Theorem 5.3. Let κ be arbitrary, with corresponding $\Lambda=\Lambda_{\kappa}$. Let μ be a hook partition of n such that S_{μ} is a decomposable $\mathscr{R}_{n}^{\Lambda_{0}}$-module (cf. Theorems 5.1 and 5.2). Then for any partition ν of m, the Specht modules $\mathrm{S}_{(\mu, \nu)}$ and $\mathrm{S}_{(\nu, \mu)}$ are decomposable $\mathscr{R}_{m+n}^{\Lambda}$-modules.
Proof. Since S_{μ} is decomposable, it has a non-trivial idempotent endomorphism φ determined by

$$
\varphi\left(z_{\mu}\right)=\sum_{\mathrm{T} \in \operatorname{Std}(\mu)} a_{\mathrm{T}} v_{\mathrm{T}} \quad \text { for some } a_{\mathrm{T}} \in \mathbb{F} .
$$

Via the embedding $\mathscr{R}_{m} \hookrightarrow \mathscr{R}_{m+n}$, it is easy to see that φ also defines an idempotent endomorphism of $\mathrm{S}_{(\nu, \mu)}$. For the other Specht module,

$$
\hat{\varphi}\left(z_{(\mu, \nu)}\right)=\sum_{\mathrm{T} \in \operatorname{Std}(\mu)} a_{\mathrm{T}} \operatorname{shift}_{m}\left(\psi_{\mathrm{T}}\right) z_{(\mu, \nu)}
$$

is a non-trivial idempotent endomorphism of $\mathrm{S}_{(\mu, \nu)}$, where shift ${ }_{m}: \mathscr{R}_{m} \hookrightarrow \mathscr{R}_{m+n}$ is the shift map (cf. [FS16, §2.6.1]).

Remark. Theorem 5.3 readily extends to higher levels, i.e. we can use Theorems 5.1 and 5.2 to construct many decomposable Specht modules in higher levels, regardless of the chosen κ. Similarly, for any finite e, we may embed the bihooks of Theorem 4.1 into higher levels whenever we have a repeat in the e-multicharge.

The following result is the $e=2$ extension of Theorem 4.1.
Theorem 5.4. Let $\kappa=(0,0)$, and let $\lambda=\left(\left(2 k+a, 1^{b}\right),\left(2 j+a, 1^{b}\right)\right),\left(\left(b+1,1^{2 j+a-1}\right),\left(b+1,1^{2 k+a-1}\right)\right)$, $\left(\left(2 k+a, 1^{b}\right),\left(a, 1^{2 j+b}\right)\right)$, or $\left(\left(a, 1^{2 k+b}\right),\left(2 j+a, 1^{b}\right)\right)$ for some $j, k \geqslant 1,0<a \leqslant 2$ and $0 \leqslant b<2$ with $a+b \neq 2$, or for $a=b=0$.
(i) For $j, k>1$, if $j+k$ is even and char $\mathbb{F} \neq 2$, or if $j+k$ is odd, then S_{λ} is decomposable.
(ii) If $j=1$ or $k=1$, then S_{λ} is decomposable if and only if char $\mathbb{F} \nmid j+k$.

Proof. We extend Theorem 4.1 and use the fact that $\mathrm{S}_{((2 k),(2 j))} \cong \mathrm{S}_{\left((2 k),\left(1^{2 j}\right)\right)}$ when $e=2, \kappa_{1}=\kappa_{2}$. (In general, their Specht presentations only differ in the idempotent relation, and if $e=2$ then the residues in the second components coincide.)

Conjecture 5.5. Let $e=2$. If $\kappa_{1} \neq \kappa_{2}$, then Theorem 5.3 provides a complete list of decomposable Specht modules indexed by bihooks. If $\kappa_{1}=\kappa_{2}$, and char $\mathbb{F}=0$, then Theorems 3.8, 5.3 and 5.4 provide a complete list of decomposable Specht modules indexed by bihooks.
Remark. For char $\mathbb{F} \in\{0,2,3,5\}$, we have checked in GAP that Conjecture 5.5 holds for all i) $n \leqslant 14$ if $\kappa_{1} \neq \kappa_{2}$; ii) $n \leqslant 13$ if $\kappa_{1}=\kappa_{2}$. If $\kappa_{1}=\kappa_{2}$ and char $\mathbb{F}=2$, we note that the decomposables appearing in the remark after Conjecture 4.2 are also decomposable here. However, we have also found further examples of decomposable Specht modules not accounted for. Namely the bihooks $\left(\left(3,1^{2}\right),(3)\right)$, $\left(\left(7,1^{2}\right),(3)\right),\left(\left(5,1^{4}\right),(3)\right),\left((7),\left(3,1^{2}\right)\right)$, and $\left(\left(5,1^{4}\right),(5)\right)$ if $\operatorname{char} \mathbb{F}=2,\left(\left(5,1^{2}\right),(3)\right),\left(\left(5,1^{2}\right),(5)\right)$, and $\left(\left(5,1^{2}\right),(7)\right)$ if char $\mathbb{F}=3$, and $\left(\left(9,1^{2}\right),(3)\right)$ if char $\mathbb{F}=5$, along with all bihooks obtained from these by conjugating, transposing, and our induction arguments, index decomposable Specht modules if $\kappa_{1}=\kappa_{2}$. This list is exhaustive for char $\mathbb{F} \in\{0,2,3,5\}$ and $n \leqslant 13$.

6 Proof of Propositions 3.5 and 4.12

In this section, we complete the long calculations necessary in proving Propositions 3.5 and 4.12. We begin by setting out some notation which will hopefully help the reader follow the calculations.

For any reduced expression $w=s_{r_{1}} \ldots s_{r_{m}} \in \mathfrak{S}_{n}$, observe that

$$
\begin{aligned}
\psi_{r} \psi_{r \pm 1} \psi_{r} \psi_{w} z_{\lambda} & =\psi_{r} \psi_{r \pm 1} \psi_{r} \psi_{w} e\left(\mathbf{i}_{\lambda}\right) z_{\lambda} \\
& =\psi_{r} \psi_{r \pm 1} \psi_{r} e\left(s_{r_{1}} \ldots s_{r_{m}} \cdot \mathbf{i}_{\lambda}\right) \psi_{w} z_{\lambda} \\
& =\psi_{r} \psi_{r \pm 1} \psi_{r} e\left(i_{1}, \ldots, i_{r}, i_{r+1}, i_{r+2}, \ldots, i_{n}\right) \psi_{w} z_{\lambda}
\end{aligned}
$$

Since the KLR 'braid relations' only depend on the residues i_{r}, i_{r+1} and i_{r+2} of the idempotent $e\left(s_{r_{1}} \ldots s_{r_{m}} \cdot \mathbf{i}_{\lambda}\right)$, we will instead write the above expression as

$$
\left(\psi_{r} \psi_{r \pm 1} \psi_{r}\left(i_{r}, i_{r+1}, i_{r+2}\right)\right) \psi_{w} z_{\lambda} .
$$

Similarly, since $y_{r+1} \psi_{r} e(\mathbf{i}) \psi_{w} z_{\lambda}$ only depends on the residues i_{r} and i_{r+1}, we will write this expression as $\left(y_{r+1} \psi_{r}\left(i_{r}, i_{r+1}\right)\right) \psi_{w} z_{\lambda}$.

In fact, whenever we apply the KLR relations in our computations, we will analogously abbreviate idempotents to the two or three necessary, consecutive residues, to help the reader identify which relations are being applied, and which case of the relation is applicable.

For both propositions, we will break the calculation apart with several preliminary lemmas. First, we will focus on Proposition 3.5.

6.1 Proof of Proposition 3.5

Lemma 6.1. Suppose that $e>3$.
(i) Let $1 \leqslant r \leqslant a-2$ and $1 \leqslant s \leqslant e-r-1$. Then

$$
\psi_{2 e-2 r-s} \psi \underset{e-r}{\stackrel{2 e-2 r-s-1}{\downarrow}} \underset{e-r+1}{\downarrow} \cdots \stackrel{2 e-2 r-s}{\downarrow} \cdots \stackrel{2 e-r-s-1}{\downarrow} z_{\lambda}=0 .
$$

(ii) Let $1 \leqslant r \leqslant a-1$. Then
(iii) Let $1 \leqslant r \leqslant a-1$. Then

Proof. (i) We argue by reverse induction on s. For the base case, we let $s=e-r-1$. Then

$$
\begin{aligned}
& \psi_{2 e-2 r-s} \psi \stackrel{2 e-2 r-s-1}{\downarrow} \stackrel{e_{e-r}}{\stackrel{2 e-2 r-s}{\downarrow}} \stackrel{{ }_{e-r+1}}{\downarrow} \stackrel{2 e-r-s-1}{\downarrow}{ }_{e}^{\downarrow} z_{\lambda} \\
= & \left(\psi_{e-r+1} \psi_{e-r} \psi_{e-r+1}(a-r-1, a-r, 0)\right) \psi_{e-r+2} \psi_{e-r+3} \ldots \psi_{e} z_{\lambda} \\
= & \psi_{e-r} \psi_{e-r+1} \ldots \psi_{e} \psi_{e-r} z_{\lambda} \\
= & 0 .
\end{aligned}
$$

Now suppose that $s<e-r-1$. Then

$$
\begin{aligned}
& \psi_{2 e-2 r-s} \psi^{2 e-2 r-s-1} \underset{e-r}{\downarrow} \underset{e-r+1}{\downarrow} \cdots \stackrel{2 e-2 r-s}{\downarrow} \stackrel{2 e-r-s-1}{\downarrow} z_{\lambda} \\
= & \left(\psi_{2 e-2 r-s} \psi_{2 e-2 r-s-1} \psi_{2 e-2 r-s}(a-r-1, a-r, a-r-s-1)\right) \psi \underset{e-r}{\stackrel{2 e-2 r-s-2}{\downarrow}} \underset{e-r-2 r-s-1}{\downarrow} .
\end{aligned}
$$

$$
\begin{aligned}
& \psi \underset{e-r+2}{\downarrow} \quad \underset{e-r+3}{2 e-2 r-s+1} \quad 2 e-2 r-s+2 \quad{ }^{\downarrow} \quad \cdots \quad \underset{e}{\downarrow} \quad{ }^{2 e-r-s-1} z_{\lambda}
\end{aligned}
$$

$=0$ by the induction hypothesis.
(ii) We argue by induction on r. For the base case, when $r=1$, both sides of the inequality are equal to z_{λ} by definition. Thus, we may assume that $r>1$. Then

$$
\begin{aligned}
& =\psi \underset{e-r+2}{\downarrow} \underset{e-r+3}{\downarrow e-2 r} \downarrow^{2 e-2 r+1} \ldots{ }_{e}^{\downarrow} z_{\lambda} \text { by the induction hypothesis. }
\end{aligned}
$$

(iii) We argue by reverse induction on r. For the base case, when $r=a-1$, both sides of the inequality are equal by definition, so there is nothing to prove. So we assume that $r<a-1$. Then

$$
\begin{aligned}
& \left.=\psi \underset{b+2}{\downarrow} \underset{b+3}{\downarrow} \cdots \underset{e-r-1}{\downarrow} \underset{2 e-2 r+1}{\downarrow} \psi_{2}^{\downarrow+b+2} \psi_{2 e-2 r}^{2 e-r-2} \psi_{2 e-2 r-1}^{2 e-r-1} \psi_{2 e-2 r}(a-r-1, a-r, a-r-1)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{b+2}{\downarrow} \underset{b+3}{\downarrow} \cdots \underset{e}{\downarrow} \cdots z_{\lambda} \text { by the induction hypothesis. }
\end{aligned}
$$

Lemma 6.2. Suppose that $e>3$.
(i) Let $1 \leqslant r \leqslant b, 0 \leqslant s \leqslant a-3$, and $0 \leqslant k \leqslant b$. Then
(ii) Let $1 \leqslant r \leqslant b$ and $0 \leqslant s \leqslant a-3$. Then
(iii) Let $1 \leqslant r \leqslant b$. Then
(iv) The equation in part (i) also holds if $r=b+1, s=0$ and $0 \leqslant k \leqslant b-1$. That is,
(v) We have

Proof. (i) We have

$$
\begin{aligned}
& =\psi \underset{2 b-r+s+3-k}{\downarrow} \psi_{2 b-r+s+4-k}^{\downarrow} \stackrel{e+b-r}{\downarrow}\left(\psi_{2 b-r+s+3-k} \psi_{2 b-r+s+2-k} \psi_{2 b-r+s+3-k} e(\mathbf{j})\right) .
\end{aligned}
$$

where positions $2 b-r+s+2-k, 2 b-r+s+3-k$, and $2 b-r+s+4-k$ of \mathbf{j} are positions $b-r+2$, $b+s+2$ and $e+b+1-k$ of \mathbf{i}_{λ}, respectively; i.e. the corresponding residues are $e-b+r-1$, $s+1$, and $e-b+k$, respectively. Since $1 \leqslant s+1 \leqslant a-2$ and $a \leqslant e-b+r-1 \leqslant e-1$, it is clear that the corresponding braid relation never produces an error term, and the result follows:
(ii) Apply part (i) for $k=0$, then $k=1$, and so on up to and including the case $k=b$.
(iii) Apply part (ii) for $s=0$, then $s=1$, and so on up to and including the case $s=a-3$.
(iv) The proof is identical to part (i), except now we notice that the third residue of the relevant triple is $e-b \leqslant e-b+k \leqslant e-1$, while the second is 1 .
(v) Apply part (iii) for $r=1$, then $r=2$, and so on up to and including the case $r=b$, to yield

Then, applying part (iv) for $k=0$, then $k=1$, and so on up to and including the case $k=b-1$ gives

Lemma 6.3. Suppose that $e>3$.
(i) For $3 \leqslant x \leqslant a-1$, we have
(ii) We have

Proof. (i) We have

$$
\begin{aligned}
& \begin{array}{cccccccccccc}
e-1 & b+1 & b+2 & b+x-1 & b+x & b+x+1 & e+b & a-1 & a & e-2 \\
\psi \downarrow & \psi \downarrow & \downarrow & \cdots & \downarrow & \psi \downarrow & \downarrow & \cdots & \downarrow & \psi \downarrow & \downarrow & \cdots \\
b+x & 2 & 3 & & x & & \downarrow & x+1 & e & 2 & 3 & b+1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{b+x+1}{\downarrow} \psi_{2}^{\ell-1} \underset{3}{\downarrow}{\underset{y}{l}}_{\downarrow+1}^{b+2} \cdots \underset{x-1}{\downarrow} \psi_{b+x-1}^{b+x-2} \psi_{b+x}\left(\psi_{b+x-1} \psi_{b+x-2} \psi_{b+x-1}(0, x-1,-b+1)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \vdots
\end{aligned}
$$

(ii) By applying part (i) repeatedly, we have

Lemma 6.4. Suppose that $e>3$. For $0 \leqslant x \leqslant b-1$ and $1 \leqslant y \leqslant b-x+1$, we have

Proof. We fix x, and prove the statement by reverse induction on y. If $y=b-x+1$, the expression is

$$
\psi_{e+x+1} \psi \underset{2}{\downarrow-1} \underset{3}{\downarrow} \underset{b+1}{\downarrow} \quad \stackrel{e-2}{\downarrow} z_{\lambda}=0
$$

If $y<b-x+1$, then

$$
\begin{aligned}
& =0 \text { by the induction hypothesis, }
\end{aligned}
$$

where $\alpha=-y-x-1$ if $y \leqslant b-x-1$ and $\alpha=a-1$ if $y=b-x$.
Lemma 6.5. Suppose that $e>3$. For $0 \leqslant x \leqslant b-1<e-2$ or $0 \leqslant x \leqslant b-2=e-3$, we have
(i)
(ii)

Proof. (i) Firstly, it is obvious that the statement holds when $x=0$, since the term $\underset{\psi}{\stackrel{a-1}{\uparrow} \psi \stackrel{a-1}{\psi} \downarrow \text { is }}$ trivial. Now assuming that $x>0$, we have

$$
\begin{aligned}
& \psi \stackrel{a+2 x-1}{\uparrow} \psi \underset{a+x}{\downarrow+2 x-1} \underset{a+x}{\downarrow} \underset{a+x+1}{\downarrow+x+1} \underset{a+x+2}{\downarrow} \cdots \underset{e}{\downarrow+x+2} \underset{2}{\downarrow} \underset{2}{\downarrow} \underset{3}{\downarrow} \underset{b+1}{\downarrow-1} \underset{b+1}{\downarrow} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
& =\left(\psi_{a+x}^{2}(-x-1,0)\right) \psi \underset{a+x+1}{\downarrow+x+1} \underset{a+x+2}{\downarrow} \cdots \underset{e}{\downarrow+x+2} \underset{2}{\downarrow+b} \underset{3}{\downarrow} \underset{\substack{a-1 \\
\downarrow \\
\downarrow \\
\downarrow \\
b+1}}{e-2} z_{\lambda}
\end{aligned}
$$

(ii) Applying Lemma 6.4, we have
by part (i).
Lemma 6.6. Suppose that $e>3$. For $2 \leqslant x \leqslant b+1$, we have

$$
\psi \stackrel{a+x-3}{\uparrow} \psi \stackrel{a+x-3}{\downarrow} \underset{x}{\downarrow} \underset{x+1}{\downarrow+x-2} \cdots \underset{b+1}{\downarrow} z_{\lambda}=\psi \underset{x+1}{\downarrow} \underset{x+2}{\downarrow} z_{x}^{a+x-2} \underset{b+1}{\downarrow+x-1} z_{\lambda} .
$$

Proof. Firstly, if $a<3$, then the left-hand side and the right-hand side are both equal to the generator z_{λ}. If $a \geqslant 3$, we have

$$
\begin{aligned}
& =\psi \stackrel{a+x-5}{\uparrow}\left(\psi_{a+x-4}^{2}(-x+1, a-3)\right) \psi \underset{x}{\downarrow+x-5} \underset{x}{\downarrow} \underset{x+1}{\downarrow} \underset{x+2}{\downarrow} \cdots \underset{b+1}{\downarrow} z_{\lambda} \\
& \text { : } \\
& =\left(\psi_{x}^{2}(-x+1,1)\right) \psi \underset{x+1}{\downarrow+x-2} \underset{x+2}{\downarrow} \cdots \underset{b+1}{\downarrow+x-1} z_{\lambda} \\
& =\psi \underset{x+1}{\downarrow} \underset{x+2}{\downarrow} \cdots \underset{b+1}{\downarrow} z_{\lambda} .
\end{aligned}
$$

Repeated application of Lemma 6.6 yields the following corollary.
Corollary 6.7. Suppose that $e>3$. We have

We are now ready to prove Proposition 3.5, using the above lemmas.
Proof of Proposition 3.5. In order to prove that $\varphi\left(v_{\mathrm{T}}\right)=(-1)^{b+1} 2 v_{\mathrm{T}}$, it suffices to prove that

We first suppose that $e=3$ and $\lambda=((2,1),(2,1))$ or $\left(\left(1^{3}\right),\left(1^{3}\right)\right)$. Then we have

The first term becomes

$$
\begin{aligned}
& \underset{4}{\psi \downarrow}\left(y_{3} \psi_{2}(0,2)\right) \psi \underset{1}{\psi} \underset{2}{\downarrow} \underset{\psi_{3}}{\downarrow} z_{\lambda}=\underset{4}{\downarrow} \psi_{2}^{5}\left(y_{2} \psi_{1}(0,0)\right) \psi \underset{2}{\downarrow} \underset{3}{\psi} \underset{\downarrow^{5}}{z_{\lambda}} \\
& =\underset{4}{\stackrel{5}{\downarrow} \psi_{2}\left(\psi_{1} y_{1}+1\right) \psi \downarrow_{2}^{\downarrow} \psi \underset{3}{\downarrow}{ }_{3}^{5} z_{\lambda} .} \\
& =\underset{4}{\psi}{ }_{5}^{5} \psi_{4}\left(\psi_{2} \psi_{3} \psi_{2}(2,0,2)\right) \psi \stackrel{5}{\downarrow_{3}} z_{\lambda} \\
& =\psi \underset{4}{\downarrow^{5}} \psi_{4}\left(\psi_{3} \psi_{2} \psi_{3}-1\right) \psi \downarrow_{3}^{5} z_{\lambda} \\
& =\underset{4}{\psi \downarrow} \underset{2}{\stackrel{5}{\downarrow}} \stackrel{4}{\downarrow} \psi_{5}\left(\psi_{3} \psi_{4} \psi_{3}(1,0,2)\right) z_{\lambda}-\psi_{5}\left(\psi_{4}^{2}(2,1)\right) \psi \stackrel{5}{\downarrow} z_{\lambda} \\
& =\underset{4}{\psi \downarrow} \stackrel{5}{\psi} \underset{2}{\downarrow} \psi_{5}\left(\psi_{4} \psi_{3} \psi_{4}\right) z_{\lambda}-\psi_{5}\left(y_{5}-y_{4}\right) \underset{3}{\psi \downarrow_{3}} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =0-\psi_{5}\left(y_{5} \psi_{5}(1,1)\right) \psi_{3}^{\downarrow} z_{\lambda}+\psi_{5}^{2}\left(y_{4} \psi_{4}(1,2)\right) \psi_{3} z_{\lambda} \\
& =-\psi_{5}\left(\psi_{5} y_{6}-1\right) \underset{3}{\downarrow} \downarrow_{3}^{4} z_{\lambda}+\psi_{5}^{2} \psi \downarrow_{3}^{4} y_{5} z_{\lambda} \\
& =0+\psi_{3}^{5} z_{\lambda}+0 .
\end{aligned}
$$

The second term becomes

$$
\begin{aligned}
& -\psi \stackrel{5}{\downarrow} \underset{4}{\psi \downarrow} \underset{1}{2}\left(y_{4} \psi_{4}(2,1)\right) \psi \stackrel{3}{\downarrow} \underset{2}{\psi} \underset{3}{\downarrow} z_{\lambda}=-\psi \underset{4}{\downarrow} \underset{1}{\psi} \underset{2}{\downarrow} \underset{2}{\psi} \downarrow_{2}^{4}\left(y_{5} \psi_{5}(1,1)\right) \psi{ }_{3}^{4} z_{\lambda} \\
& =-\psi \underset{4}{\downarrow} \underset{1}{\psi} \underset{\sim}{\downarrow} \underset{2}{\downarrow} \underset{2}{\downarrow} \underset{4}{\downarrow}\left(\psi_{5} y_{6}-1\right) \underset{3}{\downarrow} z_{\lambda} \\
& =-0+\underset{4}{\psi} \underset{1}{\psi} \underset{\sim}{\downarrow}\left(\psi_{4} \psi_{3} \psi_{4}(2,1,2)\right) \psi_{2} \psi_{3} z_{\lambda} \\
& =\psi \underset{4}{\downarrow} \underset{1}{\psi} \downarrow_{1}^{2}\left(\psi_{3} \psi_{4} \psi_{3}-1\right) \psi_{2} \psi_{3} z_{\lambda} \\
& =\psi \underset{4}{\downarrow} \underset{{ }_{5}}{\psi} \stackrel{2}{\downarrow} \psi_{3} \psi_{4}\left(\psi_{3} \psi_{2} \psi_{3}(2,1,0)\right) z_{\lambda}-\psi \underset{4}{\downarrow}\left(\psi_{2} \psi_{1} \psi_{2}(0,2,0)\right) \psi_{3} z_{\lambda} \\
& =\psi \underset{4}{\stackrel{5}{\downarrow}} \underset{1}{\psi} \downarrow_{1}^{2} \psi_{3} \psi_{4}\left(\psi_{2} \psi_{3} \psi_{2}\right) z_{\lambda}-\psi \underset{4}{\downarrow}\left(\psi_{1} \psi_{2} \psi_{1}-1\right) \psi_{3} z_{\lambda} \\
& =0-0+\psi \underset{3}{\downarrow} z_{\lambda} .
\end{aligned}
$$

We now suppose that either $e=3$ and $\lambda=((3),(3))$, or $e>3$ and $a>2$. Then we have

$$
\begin{aligned}
& =\underset{e+3}{\downarrow \underset{~}{\downarrow}} \underset{1}{2 e-1} \underset{2}{\downarrow-1} \underset{2}{\downarrow} \underset{e}{e}\left(\psi_{e+2}^{2}(-2, a-1)\right) \psi \underset{3}{\downarrow} \underset{4}{\downarrow} \underset{e}{e+3} \cdots{ }_{e}^{\downarrow} z_{\lambda}^{2 e-1} z_{\lambda} \\
& \text { : }
\end{aligned}
$$

It thus suffices to show that

$$
\begin{aligned}
& =-y_{e+b} \psi \underset{1}{\downarrow-1} \underset{2}{\downarrow} \cdots \cdots \underset{b+1}{\downarrow} \psi \underset{b+2}{\downarrow} \underset{b+3}{\downarrow} \cdots{ }_{e}^{e+b-1} \downarrow^{e+b+1} z_{\lambda} .
\end{aligned}
$$

We will prove the first equality here, for which we have set up the relevant computational lemmas the second equality may be proved in a similar manner.

$$
\begin{aligned}
& \vdots
\end{aligned}
$$

If $e=3$, then this expression becomes

$$
\begin{aligned}
& -\psi \underset{1}{\downarrow} \underset{2}{2} \underset{2}{4} \underset{\sim}{4}{\underset{\sim}{4}}_{((3),(3))}=-\psi \underset{1}{2}\left(\psi_{4} \psi_{3} \psi_{4}(1,2,1)\right) \psi_{2} \psi_{3} z_{((3),(3))} \\
& =-\psi \downarrow_{1}^{2}\left(\psi_{3} \psi_{4} \psi_{3}+1\right) \psi_{2} \psi_{3} z_{((3),(3))} \\
& =-\psi \downarrow_{1}^{2} \psi_{3} \psi_{4}\left(\psi_{3} \psi_{2} \psi_{3}(1,2,0)\right) z_{((3),(3))}-\left(\psi_{2} \psi_{1} \psi_{2}(0,1,0)\right) \psi_{3} z_{((3),(3))} \\
& =-\psi \underset{1}{2} \psi_{3} \psi_{4} \psi_{2} \psi_{3} \psi_{2} z_{((3),(3))}-\left(\psi_{1} \psi_{2} \psi_{1}+1\right) \psi_{3} z_{((3),(3))} \\
& =0-0-\psi_{3} z_{((3),(3))} \text {, }
\end{aligned}
$$

as required.
If $e>3$, then the above expression becomes

$$
\begin{aligned}
& -\psi \stackrel{e-1}{\downarrow} \underset{1}{\downarrow} \underset{2}{\downarrow} \cdots \underset{b+1}{\downarrow+b-1} \underset{b+2}{\downarrow} \underset{b+3}{\downarrow b+2} \underset{b+3}{\downarrow} \cdots \stackrel{e+b}{\downarrow} z_{\lambda} \text { by Lemma 6.1(iii) }
\end{aligned}
$$

$$
\begin{aligned}
& =0-\psi \stackrel{b+1}{\downarrow} \underset{2}{\downarrow} \underset{3}{\downarrow-1} \psi \underset{3}{\downarrow+3} \underset{4}{\downarrow} \underset{e}{\downarrow+4} \cdots \stackrel{e+b}{\downarrow} \underset{e}{\psi} \underset{2}{\downarrow-1} \underset{3}{\downarrow} \underset{b+1}{\downarrow} \underset{\substack{e-2}}{\downarrow} z_{\lambda} .
\end{aligned}
$$

Now, we handle the case $b=0$ separately. In this case, the above expression is

$$
\begin{aligned}
& =-\psi \stackrel{e-1}{\downarrow} \underset{4}{\downarrow}\left(\psi_{3}^{2}(2,0)\right) \psi{ }_{4}^{e} z_{\lambda} \\
& =-\psi \stackrel{e-1}{\downarrow} \stackrel{\left(\psi_{4}^{2}(3,0)\right)}{\psi_{5}^{e}}{ }_{5}^{e} z_{\lambda} \\
& \vdots \\
& =-\left(\psi_{e-1}^{2}(-2,0)\right) \psi_{e} z_{\lambda} \\
& =-\psi_{e} z_{\lambda},
\end{aligned}
$$

in which case our proof is complete here.
Now suppose that $b>0$. Then by Lemma 6.3 followed by repeated application of Lemma 6.5(ii),

$$
\begin{aligned}
& =(-1)^{b+1} \underset{\psi}{\stackrel{e+b}{\downarrow}} z_{\lambda} \text { by Corollary } 6.7 \text {, completing the proof. }
\end{aligned}
$$

If $e>3$ and $\lambda=\left(\left(2,1^{e-2}\right),\left(2,1^{e-2}\right)\right)$ or $\left(\left(1^{e}\right),\left(1^{e}\right)\right)$, then we have
and the proof may be finished in a similar manner to the other cases.

6.2 Proof of Proposition 4.12

Let $\lambda=((k e),(j e))$ for some $j, k \geqslant 1$. In order to prove Proposition 4.12, we now look at the action of the KLR generators $\psi_{1}, \ldots, \psi_{n-1}$ on an arbitrary basis element $v_{\mathrm{T}} \in \mathrm{S}_{\lambda}$, where T does not necessarily lie in \mathcal{T}_{e}.

Lemma 6.8. Let $\mathrm{T} \in \operatorname{Std}(\lambda), v_{\mathrm{T}}=v\left(a_{1}, \ldots, a_{j e}\right), 1 \leqslant r<n$, and $1 \leqslant s<j e$ such that $r \not \equiv 2 s$ $(\bmod e)$.
(i) If $a_{s}=r, a_{s+1}=r+1$, then $\psi_{r} v\left(a_{1}, \ldots, a_{j e}\right)=0$.
(ii) If s is maximal such that $a_{s} \leqslant r-1$, and $r, r+1 \notin\left\{a_{1}, \ldots, a_{j e}\right\}$, then $\psi_{r} v\left(a_{1}, \ldots, a_{j e}\right)=0$.

Proof. We proceed by induction on $r-s$ on both of the statements.
(i) For $r=s$, we observe that

$$
\psi_{r} v\left(a_{1}, \ldots, a_{j e}\right)=\psi_{r} \psi \underset{r+2}{\downarrow} \cdots \underset{k e}{\downarrow} z_{\lambda}=\psi \underset{r+2}{\downarrow} \cdots{ }_{k+2}^{a_{r+2}-1} \cdots \underset{k e}{\downarrow} \psi_{r} z_{\lambda}=0
$$

Now assuming that $r>s$, we have

$$
\begin{aligned}
& =\psi \underset{1}{a_{1}-1} \cdots \underset{s-1}{\downarrow} \psi_{r-1} \psi_{r} \psi_{r-1} \psi \underset{s}{\downarrow-2} \underset{s+1}{\downarrow} \psi \underset{s+2}{\downarrow-1}{\underset{s}{s+2}}_{\downarrow}^{a_{s+2}-1} \cdots \underset{j e}{\downarrow} z_{j} z_{j e} \\
& =\psi \stackrel{a_{1}-1}{\downarrow} \cdots \underset{s-1}{a_{s-1}^{-1}} \psi_{r-1} \psi_{r} \psi_{r-1} v\left(1, \ldots, s-1, r-1, r, a_{s+2}, \ldots, a_{j e}\right)
\end{aligned}
$$

which is 0 by induction if $r \not \equiv 2 s+1(\bmod e)$ or if $r=s+1$ as ψ_{r-1} commutes through to the right. If $r \equiv 2 s+1(\bmod e)$ and $r>s+1$, then we continue:

The first term becomes

$$
\begin{aligned}
& \psi \stackrel{a_{1}-1}{\downarrow} \cdots \underset{s-1}{\downarrow} \psi_{r-1}^{a_{s-1}-1} \psi_{r} \psi_{r-2} \psi_{r-1} \psi_{r-2} \psi \underset{s}{\downarrow-3} \underset{s+1}{\downarrow} \psi^{r-2} \underset{s+2}{a_{s+2}-1} \underset{j e}{a^{\prime}} \cdots \underset{j e}{a_{j e}-1} z_{\lambda} \\
& =\psi \stackrel{a_{1}-1}{\downarrow} \cdots \underset{s-1}{\downarrow} \psi_{r-1}^{a_{s-1}-1} \psi_{r} \psi_{r-2} \psi_{r-1} \psi_{r-2} v\left(1, \ldots, s-1, r-2, r-1, a_{s+2}, \ldots, a_{j e}\right)
\end{aligned}
$$

$=0$ by induction.
If $s=j e-1$, then the second term becomes

If $s<j e-1$, then the second term becomes

$$
\begin{aligned}
& \psi \stackrel{a_{1}-1}{\downarrow} \cdots \underset{s-1}{\downarrow} \psi_{r-1} \psi \underset{s}{a_{s-1}-1} \psi_{r} \psi \underset{s+1}{\downarrow-3} \psi_{s+2}^{\downarrow-2}{\underset{s}{ }}_{a_{s+2}-1}^{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda} \\
& =\psi \stackrel{a_{1}-1}{\downarrow} \cdots \underset{s-1}{\downarrow} \psi_{r-1} \psi \underset{s}{a_{s-1}-1} \psi_{r} v\left(1, \ldots, s, r-1, a_{s+2}, \ldots, a_{j e}\right) \\
& =0
\end{aligned}
$$

by the inductive hypothesis of (ii) as $a_{s+1} \leqslant r-1, a_{s+2} \geqslant r+2$, and $r \not \equiv 2(s+1)(\bmod e)$.
(ii) For $r=s+1$, we have

$$
\psi_{s+1} v\left(a_{1}, \ldots, a_{j e}\right)=\psi_{s+1} \psi \underset{s+1}{a_{s+1}-1} \cdots \underset{j e}{\downarrow} z_{\lambda}
$$

We observe that the first $s+2$ residues in the residue sequence of $s_{s+1} s \underset{s+1}{a_{s+1}-1} \ldots{ }_{j}^{\downarrow} \underset{j e}{\downarrow} \mathrm{~T}_{\lambda}$ are $0,1, \ldots, s-1,1,0$. There exists no $S \in \operatorname{Std}(\lambda)$ with such a residue sequence, and hence $\psi_{s+1} v\left(a_{1}, \ldots, a_{j e}\right)=0$.
Now assuming that $r>s+1$, we argue by induction on $\ell\left(w_{T}\right)$. For the base case, the minimal length is obtained when $s=j e-1$ and $v_{\mathrm{T}}=v(1,2, \ldots, j e-1, r-2)$. Then

$$
\begin{aligned}
\psi_{r} v(1,2, \ldots, j e-1, r+2) & =\left(\psi_{r} \psi_{r+1} \psi_{r}(-1, r, r+1)\right) \underset{j e}{\stackrel{r-1}{\downarrow} z_{\lambda}} \\
& =\psi_{r+1} \psi_{r} \psi_{r+1} \psi \stackrel{r-1}{\downarrow}{ }_{j e} z_{\lambda} \\
& =\psi_{r+1} \psi_{r} \psi \underset{j e}{\downarrow-1} \psi_{r+1} z_{\lambda} \\
& =0 \text { since } r+1 \not \equiv-1 \quad(\bmod e) \text { by our residue hypothesis. }
\end{aligned}
$$

Now for $\ell\left(w_{\mathrm{T}}\right)$ arbitrary, we have

$$
\begin{aligned}
& \psi_{r} v\left(a_{1}, \ldots, a_{j e}\right) \\
& =\psi \stackrel{a_{1}-1}{\downarrow} \cdots \underset{\substack{a_{s}-1}}{\downarrow} \psi \underset{r+2}{a_{s+1}-1}\left(\psi_{r} \psi_{r+1} \psi_{r}(s, r-s-1, r-s)\right) \psi \underset{s+1}{\downarrow-1} \psi \underset{s+2}{\downarrow}{\underset{s}{s+2}}_{\downarrow}^{\downarrow} \underset{j e}{\downarrow} z_{\lambda},
\end{aligned}
$$

where $r-s \not \equiv s(\bmod e)$.

$$
\stackrel{a_{1}-1}{\psi} \underset{1}{\downarrow} \cdots \underset{s}{\downarrow} \psi \underset{r+2}{a_{s}-1} \psi \stackrel{a_{s+1}-1}{\downarrow} \psi_{r+1} \psi_{r} \psi_{r+1} \psi \underset{s+1}{\downarrow-1} \psi \underset{s+2}{\downarrow} \stackrel{a}{s+2}_{\downarrow}^{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda}
$$

$$
=\psi \stackrel{a_{1}-1}{\downarrow} \ldots \underset{s}{\downarrow} \psi \underset{r+2}{a_{s}-1} \psi_{r+1}^{a_{s+1}-1} \psi_{r} \psi_{r+1} v\left(1, \ldots, s, r, a_{s+2}, \ldots, a_{j e}\right)=0
$$

by the inductive hypothesis if $r+1 \not \equiv 2(s+1)(\bmod e)$. If $r+1 \equiv 2 s+2(\bmod e)$, then

If $s=j e-2$, then this becomes

$$
\psi \underset{1}{\downarrow} \cdots \underset{j e-1}{\downarrow} \psi \underset{r+3}{a_{1}-1}\left(\psi_{r+2} \psi_{r+1} \psi_{r+2}+1\right) \psi \underset{j e}{a_{j e-1}-1} z_{\lambda}=0
$$

If $s<j e-2$, then the first term becomes

$$
\begin{aligned}
& =\psi \stackrel{a_{1}-1}{\downarrow} \cdots \underset{s+1}{\downarrow} \psi \underset{r+3}{a_{s+1}-1} \psi_{r+2}^{a_{s+2}-1} \psi_{r+1} \psi_{r+2} v\left(1, \ldots, s+1, r+1, a_{s+3}, \ldots, a_{j e}\right) \\
& =0 \text { by induction as } r+2 \not \equiv 2 s+4 \quad(\bmod e) \text {. }
\end{aligned}
$$

Now, the second term becomes

$$
\begin{aligned}
& =\psi \underset{1}{\downarrow} \cdots \underset{s}{a_{1}-1} \psi \underset{r+1}{\downarrow} \psi \underset{r+3}{a_{s}-1} \underset{a_{s+1}-1}{\downarrow} \psi_{r} \underset{s+1}{a_{s+2}-1} \underset{s+2}{\downarrow-1} \underset{s+3}{\downarrow} \psi \underset{s+3}{\downarrow} \cdots{ }_{j e}^{\downarrow} z_{\lambda} \\
& =\psi \underset{1}{\downarrow} \cdots \underset{s}{a_{1}-1} \psi \underset{r+1}{\downarrow} \psi \underset{r+3}{a_{s}-1} \psi_{r}^{a_{s+1}-1} \psi_{r} v\left(1, \ldots, s, r, r+1, a_{s+3}, \ldots, a_{j e}\right) \\
& =0 \text { by the inductive hypothesis on }(\mathrm{i}) \text {, as } r \not \equiv 2 s+2(\bmod e) \text {. }
\end{aligned}
$$

Corollary 6.9. Let $1 \leqslant r<n, 1 \leqslant s<j e$ with $r \geqslant s+1$ and $r \equiv 2 s(\bmod e)$. Then
(i) $\psi_{r} v\left(1, \ldots, s, r+2, a_{s+2}, \ldots, a_{j e}\right)=v\left(1, \ldots, s, r, a_{s+2}, \ldots, a_{j e}\right)$;
(ii) $\psi_{r} v\left(1, \ldots, s-1, r, r+1, a_{s+2}, \ldots, a_{j e}\right)=v\left(1, \ldots, s-1, r-1, r, a_{s+2}, \ldots, a_{j e}\right)$.

Proof. (i) We have

$$
\begin{aligned}
& \psi_{r} v\left(1, \ldots, s, r+2, a_{s+2}, \ldots, a_{j e}\right) \\
& =\psi_{r} \psi \underset{s+1}{\downarrow+1} \psi \underset{s+2}{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda} \\
& =\left(\psi_{r} \psi_{r+1} \psi_{r}(s, s-1, s)\right) \psi \stackrel{r-1}{\downarrow} \psi \underset{s+1}{\psi} \underset{s+2}{a_{s+2}-1} \cdots \underset{j e}{\downarrow} z_{\lambda} \\
& =\left(\psi_{r+1} \psi_{r} \psi_{r+1}+1\right) \psi \underset{s+1}{\downarrow-1} \psi \underset{s+2}{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda} \\
& =\psi_{r+1} \psi_{r} \psi_{r+1} v\left(1, \ldots, s, r, a_{s+2}, \ldots, a_{j e}\right)+v\left(1, \ldots, s, r, a_{s+2}, \ldots, a_{j e}\right),
\end{aligned}
$$

and $\psi_{r+1} v\left(1, \ldots, s, r, a_{s+2}, \ldots, a_{j e}\right)=0$ by Lemma 6.8(ii).
(ii) We have

$$
\psi_{r} v\left(1, \ldots, s-1, r, r+1, a_{s+2}, \ldots, a_{j e}\right)
$$

$$
\begin{aligned}
& =\psi r \psi \underset{s}{\downarrow} \underset{s+1}{\downarrow} \psi \underset{s+2}{\downarrow} \psi \stackrel{a_{s+2}-1}{\downarrow} \cdots{ }_{j e}^{\downarrow} z_{\lambda} z_{j e}-1
\end{aligned}
$$

$$
\begin{aligned}
& =\psi_{r-1} \psi_{r} \psi_{r-1} v\left(1, \ldots, s-1, r-1, r, a_{s+2}, \ldots, a_{j e}\right)+v\left(1, \ldots, s-1, r-1, r, a_{s+2}, \ldots, a_{j e}\right) \text {, }
\end{aligned}
$$

and the first term is 0 by Lemma 6.8(i) since $r-1 \not \equiv 2 s(\bmod e)$.
Lemma 6.10. Let $1 \leqslant s \leqslant i \leqslant r<n, s+r-i \leqslant j e, a_{s-1}<i$, and $i \not \equiv x(\bmod e)$ for any $x \in\{2 s-2,2 s-1, \ldots, 2 s+r-i\}$. Then

$$
\begin{aligned}
& \psi \underset{i}{\downarrow} v\left(a_{1}, \ldots, a_{s-1}, i+1, i+2, \ldots, r+1, a_{s+r-i+1}, \ldots, a_{j e}\right) \\
= & v\left(a_{1}, \ldots, a_{s-1}, i, i+1, \ldots, r, a_{s+r-i+1}, \ldots, a_{j e}\right) .
\end{aligned}
$$

Proof. Suppose that $a_{s+l-i-1}<l$ for all $l \in\{i, i+1, \ldots, r\}$. Then the result follows directly from the KLR relations since, for all l,

$$
\begin{aligned}
& \psi_{l} v\left(a_{1}, \ldots, a_{s+l-i-1}, l+1, a_{s+l-i+1}, a_{s+l-i+2}, \ldots, a_{j e}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{1}{\downarrow} \ldots \underset{s+l-i-1}{a_{1}-1} v\left(1, \ldots, s+l-i-1, l, a_{s+l-i+1}^{a_{s+l-i-1}-1}, a_{s+l-i+2}, \ldots, a_{j e}\right)
\end{aligned}
$$

if $i \not \equiv 2 s+l-i-2,2 s+l-i-1,2 s+l-i(\bmod e)$.
Corollary 6.11. Suppose that $1 \leqslant s \leqslant i \leqslant r<n, s+r-i<j e, a_{s-1} \leqslant i-2, i \equiv 2 s(\bmod e)$ and $r-i+2<e$. Then

$$
\begin{aligned}
& \psi \stackrel{r}{i} v\left(a_{1}, \ldots, a_{s-1}, i, i+1, i+2, \ldots, r+1, a_{s+r-i+2}, \ldots, a_{j e}\right) \\
& =v\left(a_{1}, \ldots, a_{s-1}, i-1, i, i+1, \ldots, r, a_{s+r-i+2}, \ldots, a_{j e}\right) .
\end{aligned}
$$

Proof. Since $i \equiv 2 s(\bmod e)$, we apply Corollary 6.9(ii) to give us

$$
\begin{aligned}
& \psi \underset{i+1}{\downarrow} \psi_{i} v\left(a_{1}, \ldots, a_{s-1}, i, i+1, i+2, \ldots, r+1, a_{s+r-i+2}, \ldots, a_{j e}\right) \\
& =\psi \underset{i+1}{\downarrow} v\left(a_{1}, \ldots, a_{s-1}, i-1, i, i+2, \ldots, r+1, a_{s+r-i+2}, \ldots, a_{j e}\right) .
\end{aligned}
$$

We now obtain our desired result by applying Lemma 6.10 since $i+1 \not \equiv x(\bmod e)$ for all $x \in$ $\{2 s, 2 s+1, \ldots, 2 s+r-i+1\}$ (note that x runs over $r-i+2<e$ terms).

Lemma 6.12. Let $1 \leqslant r \leqslant j e$. If $r \not \equiv 1(\bmod e)$, then $y_{r} \psi_{r} \psi_{r+1} \ldots \psi_{j e} z_{\lambda}=0$.
Proof. We proceed by induction on $\ell\left(w_{\mathrm{T}}\right)$, where the minimal length is obtained when $r=j e$.
For $r=j e$, we have

$$
\left(y_{j e} \psi_{j e}(-1,0)\right) z_{\lambda}=\psi_{j e} y_{j e+1} z_{\lambda}=0
$$

Now assuming that $r<j e$,

$$
\left(y_{r} \psi_{r}(r-1,0)\right) \psi_{r+1} \psi_{r+2} \ldots \psi_{j e} z_{\lambda}=\psi_{r} y_{r+1} \psi_{r+1} \psi_{r+2} \psi_{r+3} \ldots \psi_{j e} z_{\lambda}=0
$$

by induction if $r \not \equiv 0(\bmod e)$. If $r \equiv 0(\bmod e)$, then this term becomes

$$
\psi_{r}\left(y_{r+1} \psi_{r+1}(0,0)\right) \psi_{r+2} \psi_{r+3} \ldots \psi_{j e} z_{\lambda}=\psi_{r}\left(\psi_{r+1} y_{r+2}+1\right) \psi_{r+2} \psi_{r+3} \ldots \psi_{j e} z_{\lambda} .
$$

The second term becomes $\psi_{r+2} \psi_{r+3} \ldots \psi_{j e}\left(\psi_{r} z_{\lambda}\right)=0$, whilst the first term is 0 by induction.

Lemma 6.13. Let $1 \leqslant s<i \leqslant r<n$ and $s<j e$, and suppose that $r \equiv 2 s(\bmod e)$ and $r-i+2<e$. Then

$$
\psi \stackrel{r}{i} v\left(1, \ldots, s, r+2, a_{s+2}, \ldots, a_{j e}\right)=v\left(1, \ldots, s, i, a_{s+2}, \ldots, a_{j e}\right)
$$

Proof. The proof is similar to the proof of Corollary 6.11.
Lemma 6.14. Let $0 \leqslant s \leqslant j e-e$ and $v_{\mathrm{T}}=v\left(a_{1}, \ldots, a_{j e}\right)$. Then
(i) If $a_{s+e}=r$ for some $1 \leqslant r \leqslant n$ such that $r \not \equiv 2 s, 2 s+1(\bmod e)$ and $r-1, r+1, r+2, r+$ $3, \ldots, r+e-2 \notin\left\{a_{1}, \ldots, a_{j e}\right\}$, then $y_{r-1} v_{\mathrm{T}}=0$.
(ii) If $a_{s+e}=r$ for some $1 \leqslant r \leqslant n$ such that $r \not \equiv 2 s, 2 s+1(\bmod e)$ and $r+1, r+2, r+3, \ldots, r+e-2 \notin$ $\left\{a_{1}, \ldots, a_{j e}\right\}$, then $y_{r} v_{\mathrm{T}}=0$.
(iii) If for some $1 \leqslant r<n$, we have $a_{s+i}=r-e+i$ for all $i \in\{1, \ldots, e-1\}$, $a_{s+e}=r+1$, $r \equiv 2 s$ $(\bmod e)$ and $r+2, r+3, \ldots, r+e \notin\left\{a_{s+e+1}, \ldots, a_{j e}\right\}$, then $\psi_{r} v_{\mathrm{T}}=0$.

Proof. We proceed by simultaneous induction on $r-s$ on each of the three statements. Note that we apply Corollary 6.9 without further reference.
(i) Our base case is when $r=s+e+1$, so that $s \not \equiv 0,1(\bmod e)$ and $a_{s+e-1}=s+e-1$. We prove this by induction on $\ell\left(w_{\mathrm{T}}\right)$. For the base case, the minimal length is obtained when $s+e+1=j e$. We thus have

$$
\begin{aligned}
y_{r-1} v_{\mathrm{T}} & =\left(y_{j e-1} \psi_{j e-1}(-2,0)\right) \psi \stackrel{a_{j e}-1}{\downarrow} z_{\lambda e} \\
& =\psi_{j e-1} \psi \underset{j e+1}{a_{j e}-1}\left(y_{j e} \psi_{j e}(-1,0)\right) z_{\lambda}=\psi_{j e-1} \psi \underset{j e+1}{\downarrow} \psi_{j e}^{a_{j e}-1} \psi_{j e} y_{j e+1} z_{\lambda}=0 .
\end{aligned}
$$

Now suppose that $s+e+1<j e$, and assume without loss of generality that $v_{\mathrm{T}}=v(1, \ldots, s+$ $e-1, s+e+1, s+2 e, \ldots, j e+e-1)$. Then we have

$$
\begin{aligned}
& y_{r-1} v_{\mathrm{T}}=\left(y_{s+e} \psi_{s+e}(s-1,0)\right) \psi \underset{s+e+1}{\stackrel{s+2 e-1}{\downarrow}} \underset{s+e+2}{\downarrow+2 e} \cdots \underset{j e}{\downarrow} \ldots \stackrel{j e+e-2}{\downarrow} z_{\lambda} \\
& =\psi_{s+e} y_{s+e+1} \psi \underset{s+e+1}{\stackrel{s+2 e-1}{\downarrow}} \underset{s+e+2}{\downarrow+2 e} \cdots \underset{j e}{\downarrow} \cdots \underset{j}{\downarrow e+e-2} z_{\lambda} \\
& =\psi_{s+e} \psi \underset{s+e+2}{\stackrel{s+2 e-1}{\downarrow}} y_{s+e+1} \psi_{s+e+1} \psi \underset{s+e+2}{\stackrel{s+2 e}{\downarrow}} \underset{s+e+3}{\downarrow+2 e+1} \cdots \underset{j e}{\downarrow} \cdots \stackrel{j e+e-2}{\downarrow} z_{\lambda} \\
& =\psi_{s+e} \psi \underset{s+e+2}{\substack{s+2 e-1}} y_{s+e+1} v(1, \ldots, s+e, s+e+2, s+2 e+1, \ldots, j e+e-3) \\
& =0 \text { by induction if } s \not \equiv-1 \quad(\bmod e) \text {. }
\end{aligned}
$$

If $s \equiv-1 \quad(\bmod e)$, then

$$
\begin{aligned}
& \psi_{s+e} \psi \underset{s+e+2}{\downarrow+2 e-1}\left(y_{s+e+1} \psi_{s+e+1}(-1,0)\right) \psi \underset{s+e+2}{\downarrow} \underset{s+e+3}{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda} \\
& =\psi_{s+e} \psi \underset{s+e+1}{\downarrow+2 e-1} y_{s+e+2} \psi \underset{s+e+2}{\downarrow} \underset{s+e+3}{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda} \\
& =\psi_{s+e} \psi \underset{s+e+1}{\downarrow+2 e-1} \psi \underset{s+e+3}{\downarrow}\left(y_{s+e+2} \psi_{s+e+2}(0,0)\right) \psi \underset{s+e+3}{\downarrow} \underset{s+e+4}{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda} \\
& =\psi_{s+e} \psi \underset{s+e+1}{\downarrow+2 e-1} \psi \stackrel{s+2 e}{\downarrow}\left(\psi_{s+e+2} y_{s+e+3}-1\right) \psi \underset{s+e+3}{\downarrow} \underset{s+e+4}{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda} \\
& =\psi_{s+e} \psi \underset{s+e+1}{\downarrow+2 e-1} \psi \underset{s+e+2}{\downarrow} \underset{s+2 e}{\psi} \underset{s+e+4}{\downarrow} \underset{s+e+5}{\downarrow} \cdots \underset{j e+1}{\downarrow} y_{s+e+3}^{\downarrow} \psi_{s+e+3} \psi_{s+e+4} \ldots \psi_{j e} z_{\lambda}
\end{aligned}
$$

$$
-\psi_{s+e} \psi \underset{s+e+2}{\stackrel{s+2 e-1}{\downarrow}} \psi \underset{s+e+3}{\downarrow+2 e} \psi \underset{s+e+3}{\downarrow} \underset{s+e+4}{\downarrow+2 e+1} \cdots \underset{j e}{\downarrow+2 e+2} \cdots \psi_{s+e+1}^{\downarrow} z_{\lambda}
$$

$=0$ by Lemma 6.12.
Next, we assume that $r>s+e+1$, and again argue by induction on $\ell\left(w_{T}\right)$. For the base case, the minimal length is obtained when $s+e=j e$ and $v_{\mathrm{T}}=v(1, \ldots, j e-1, r)$. Then

$$
y_{r-1} v_{\mathrm{T}}=\left(y_{r-1} \psi_{r-1}(-1, r-1)\right) \psi \underset{j e}{\stackrel{r-2}{\downarrow}} z_{\lambda}=0
$$

Now for $s+e<j e$, we may assume by induction (on $\ell\left(w_{\mathrm{T}}\right)$) that $v_{\mathrm{T}}=v(1, \ldots, s+e-1, r, r+$ $e-1, r+e, \ldots, r+j e-s-2)$ and we have

$$
\begin{aligned}
& y_{r-1} v_{\mathrm{T}}=\left(y_{r-1} \psi_{r-1}(s-1, r-s-1)\right) \psi \underset{s+e}{\downarrow} \underset{s+2}{\downarrow} \underset{\substack{r+e+1 \\
\downarrow \\
\underset{s+e+2}{ } \\
\downarrow}}{\substack{r+e-1}} \stackrel{r+j e-s-3}{\downarrow} z_{\lambda} \\
& =\psi \underset{s+e}{\downarrow-1} \underset{\substack{r+e-2} \underset{r+1}{\downarrow}}{\psi} y_{r} \psi \underset{s+e+1}{\downarrow} \underset{\substack{r+e+2}}{\underset{r+e-1}{\downarrow}} \underset{\substack{r+e+3}}{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda} \\
& =\underset{s+e}{\stackrel{r-1}{\downarrow}} \psi \stackrel{r+e-2}{\downarrow} y_{r+1}^{\downarrow} y_{r} v(1, \ldots, s+e, r+1, r+e, \ldots, r+j e-s-2), \\
& =0 \text { by induction if } r \not \equiv 2 s+2(\bmod e) \text {. }
\end{aligned}
$$

If $r \equiv 2 s+2(\bmod e)$, then we have

$$
\begin{aligned}
& =\psi \underset{s+e}{\downarrow-1} \underset{s+e+1}{\downarrow+e-2} y_{r+1} \psi \underset{s+e+2}{\downarrow+e-1} \underset{s+e+3}{\downarrow} \cdots \underset{j e}{\downarrow+e} \ldots \stackrel{r+j e-s-3}{\downarrow} z_{\lambda} \\
& =0 \text { if } s+e=j e-1 \text {. }
\end{aligned}
$$

Now suppose that $s+e<j e-1$. Then the above term becomes

$$
\begin{aligned}
& =\psi \underset{s+e}{\stackrel{r-1}{\downarrow}} \underset{\substack{r+e-2}}{\downarrow} \underset{s+1}{\downarrow} \underset{r+2}{\downarrow+e-1}\left(\psi_{r+1} y_{r+2}-1\right) \psi \underset{s+e+2}{\downarrow} \underset{s+e+3}{\underset{r+e+4}{\downarrow} \underset{s+e+4}{\downarrow} \cdots \underset{j e}{\downarrow+e+1}}{ }^{r+j e-s-3} z_{\lambda} \\
& =0 \text { if } s+e=j e-2 \text {. }
\end{aligned}
$$

If $s+e<j e-2$, the first term becomes

$$
\begin{aligned}
& =\underset{\sim}{\psi} \stackrel{r-1}{\downarrow} \underset{s+e}{\psi} \underset{s+e+1}{r+e-2} \underset{s+e+2}{\downarrow} \underset{r+e-1}{\downarrow} \underset{r+3}{\downarrow+e} y_{r+2} v(1, \ldots, s+e+2, r+3, r+e+2, \ldots, r+j e-s-2) \text {, } \\
& =0 \text { by induction since } r \not \equiv 2 s+3,2 s+4 \quad(\bmod e) \text {. }
\end{aligned}
$$

Then the second term above becomes
which is zero if $s+e=j e-3$. If $s+e<j e-3$, then we continue

$$
\begin{aligned}
& -\psi \underset{s+e}{\downarrow-1} \underset{\substack{r-e-2} \underset{s+e+1}{\downarrow} \psi \underset{s+e+2}{\downarrow} \underset{s+e+3}{\downarrow} \psi \underset{r+3}{\downarrow} \underset{r+4}{\downarrow} \underset{r+e-1}{\downarrow+e} \underset{s+e+4}{\downarrow} \underset{s+e+5}{\downarrow} \cdots{ }_{j e}^{\downarrow+e+1}}{\substack{r+e+2}} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =-\psi \stackrel{r-1}{\downarrow}\left(\begin{array}{c}
\psi+e \\
\psi+e-2 \\
\underset{r+2}{\downarrow} \\
r+e-1 r+e \\
\downarrow \\
r+4 \\
\underset{r+4}{\downarrow}
\end{array}\right) \psi_{r+1} v(1, \ldots, s+e, r-1, r, r+2, r+e+2, \ldots, r+j e-s-2) \\
& =0 \text { by the inductive hypothesis of part (iii) if } e=3 .
\end{aligned}
$$

We apply Lemma 6.13 without further reference. If $e>3$, we have

$$
\begin{aligned}
& \cdot \psi_{r+2}^{r+4} \stackrel{r}{r} v(1, \ldots, s+e, r-1, r, r+1, r+6, r+e+3, \ldots, r+j e-s-2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \psi_{r+2} v(1, \ldots, s+e, r-1, r, r+1, r+3, r+e+3, \ldots, r+j e-s-2)
\end{aligned}
$$

$=0$ by the inductive hypothesis of part (iii) if $e=4$.
If $e>4$, then we have

$$
\begin{aligned}
& =-\psi \underset{s+e}{\downarrow-1}(\psi \underset{r+4}{\downarrow} \underset{r+5}{\downarrow+e-2} \underset{r+e-1}{\downarrow} \cdots \underset{r+8}{\downarrow+e+2}) \\
& \cdot \stackrel{r+6}{\uparrow} \stackrel{r+3}{\uparrow} v(1, \ldots, s+e, r-1, r, r+1, r+2, r+8, r+e+4, \ldots, r+j e-s-2) \\
& =-\psi \stackrel{r-1}{\downarrow}(\psi \stackrel{r+e-2}{\downarrow} \underset{r+4}{\downarrow} \underset{r+5}{\downarrow+e-1} \cdots \underset{r+8}{\downarrow} \cdots \underset{r+e+2}{\downarrow}) \\
& \text { - } \psi_{r+3} v(1, \ldots, s+e, r-1, r, r+1, r+2, r+4, r+e+4, \ldots, r+j e-s-2)
\end{aligned}
$$

$=0$ by the inductive hypothesis of part (iii) if $e=5$.
Continuing in this fashion, we eventually obtain

$$
\begin{aligned}
& -\psi \underset{s+e}{\downarrow-1} \psi_{r+e-2}^{r+2 e-4} \uparrow_{r-2}^{r-1} v(1, \ldots, s+e, r-1, r, \ldots, r+e-3, r+2 e-2, r+2 e-1, \ldots, j e+r-s-2) \\
= & -\psi \stackrel{\downarrow}{\downarrow} \psi_{r+e-2} v(1, \ldots, s+e, r-1, r, \ldots, r+e-3, r+e-1, r+2 e-1, \ldots, j e+r-s-2) \\
= & 0 \text { by the inductive hypothesis of part (iii). }
\end{aligned}
$$

(ii) If $r=s+e$, then the term $\underset{s+e}{\psi-1}$ is trivial so that

$$
y_{r} v_{\mathrm{T}}=y_{s+e} \psi \underset{s+e+1}{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda}=\psi \underset{s+e+1}{\downarrow} z^{a_{s+e}-1} \stackrel{a_{j e}-1}{\downarrow} \cdots \underset{j e}{\downarrow} y_{s+e} z_{\lambda}=0
$$

We now suppose that $r>s+e$, and assume without loss of generality that $v_{\mathrm{T}}=v(1, \ldots, s+$ $e-1, r, r+e-1, r+e, \ldots, j e-s+r-2)$. Then

$$
\begin{aligned}
& y_{r} v_{\mathrm{T}} \\
& =\left(y_{r} \psi_{r-1}(s-1, r-s-1)\right) \psi \underset{s+e}{\downarrow-2} \underset{s+e+1}{\downarrow} \underset{s+e+2}{\downarrow+e-2} \underset{r+e-1}{\downarrow} \cdots \underset{j e}{\downarrow} \cdots{ }_{j}^{j e-s+r-3} z_{\lambda}, \\
& =\psi_{r-1} y_{r-1} \psi \stackrel{r-2}{\downarrow} \underset{s+e}{\downarrow} \underset{s+e+1}{\stackrel{r+e-2}{\downarrow}} \underset{s+e+2}{\downarrow} \cdots \underset{j e}{\downarrow} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}0 & \text { if } r=s+e+1 \\
\psi_{r-1} y_{r-1} v(1, \ldots, s+e-1, r-1, r+e-1, \ldots, j e-s+r-2) & \text { if } r \geqslant s+e+2\end{cases} \\
& =0 \text { by induction if } r \not \equiv 2 s+2 \quad(\bmod e) .
\end{aligned}
$$

If $r \geqslant s+e+2$ and $r \equiv 2 s+2(\bmod e)$, then

$$
\begin{aligned}
& \psi_{r-1}\left(y_{r-1} \psi_{r-2}(s-1, s)\right) \psi \underset{s+e}{\downarrow-3} \underset{s+e+1}{\psi+e-2} \cdots \underset{j e}{\downarrow} \cdots z_{\lambda}^{j e-s+r-3} z_{j} \\
& =\psi_{r-1} \psi_{r-2}\left(y_{r-2} \psi_{r-3}(s-1, s-1)\right) \psi \underset{s+e}{\downarrow-4} \underset{s+e+1}{\psi} \stackrel{r+e-2}{\downarrow} \cdots \underset{j e}{\downarrow} \cdots \stackrel{j e-s+r-3}{\downarrow} z_{\lambda}
\end{aligned}
$$

Assuming $r \geqslant s+e+3$, the first term of this is

$$
\psi_{r-1} \psi_{r-2} \psi_{r-3} y_{r-3} v(1, \ldots, s+e-1, r-3, r+e-1, \ldots, j e-s+r-2)=0 \text { by induction. }
$$

If $j e=s+e$, then the second term becomes

$$
\psi_{r-1} \psi_{r-2} \psi \stackrel{r-4}{\downarrow} \downarrow z_{\lambda}=\psi_{r-1} \psi \stackrel{r-4}{\downarrow} \psi_{j e} \psi_{r-2} z_{\lambda}=0
$$

Now suppose that $j e>s+e$. Then the second term becomes

$$
\begin{aligned}
& =\psi \underset{r+1}{r+e-2} \downarrow \underset{r+2}{\downarrow} \underset{r+e-1}{\downarrow} \psi_{r-1} v(1, \ldots, s+e-1, r-3, r-2, r, r+e+1, \ldots, j e-s+r-2)
\end{aligned}
$$

$=0$ by the inductive hypothesis of part (iii) if $e=3$.
From here, the proof concludes in a similar manner to the proof of part (i).
(iii) Our base case is when $r=s+e$, so that $s \equiv 0(\bmod e)$. We prove this by induction on $\ell\left(w_{\mathrm{T}}\right)$, and assume without loss of generality that $v_{\mathrm{T}}=v(1, \ldots, s+e-1, s+e+1, s+2 e+1, s+2 e+$ $2, \ldots, j e+e)$. For the base case, the minimal length is obtained when $s+e=j e$.

$$
\psi_{r} v_{\mathrm{T}}=\left(\psi_{s+e}^{2}(-1,0)\right) z_{\lambda}=\left(y_{s+e}-y_{s+e+1}\right) z_{\lambda}=0
$$

Now suppose that $s+e<j e$. Then we have

$$
\begin{aligned}
& \psi_{r} v_{\mathrm{T}}=\left(\psi_{s+e}^{2}(-1,0)\right) \psi \underset{s+e+1}{\stackrel{s+2 e}{\downarrow} \underset{s+e+2}{\downarrow+2 e+1} \cdots \underset{j e}{\downarrow} \cdots \stackrel{j e+e-1}{\downarrow}} z_{\lambda} \\
& =\left(y_{s+e}-y_{s+e+1}\right) \psi \underset{s+e+1}{\stackrel{s+2 e}{\downarrow}} \underset{s+e+2}{\downarrow+2 e+1} \cdots \underset{j e}{\downarrow} \cdots \stackrel{j e+e-1}{\downarrow} z_{\lambda} \\
& =0-\psi \underset{s+e+2}{\downarrow}\left(y_{s+e+1} \psi_{s+e+1}(0,0)\right) \psi \underset{s+e+2}{\stackrel{s+2 e+1}{\downarrow} \underset{s+e+3}{\downarrow+2 e+2}} \cdots \underset{j e}{\downarrow} \cdots z_{\lambda} \\
& =-\psi \underset{s+e+2}{\stackrel{s+2 e}{\downarrow}}\left(\psi_{s+e+1} y_{s+e+2}-1\right) \psi \underset{s+e+2}{\stackrel{s+2 e+1}{\downarrow}} \underset{s+e+3}{\downarrow+2 e+2} \cdots \underset{j e}{\downarrow} \cdots \stackrel{j e+e-1}{\downarrow} z_{\lambda} .
\end{aligned}
$$

The first term becomes

$$
-\psi \underset{s+e+1}{\downarrow+2 e} \underset{\substack{s+e+3} \underset{s+e+4}{\downarrow+2 e+1} \underset{s+2 e+2}{\downarrow} \ldots \underset{j e+1}{\downarrow} \ldots}{\downarrow} y_{s+e+2} \psi_{s+e+2} \psi_{s+e+3} \ldots \psi_{j e} z_{\lambda}=0 \text { by Lemma 6.12. }
$$

The second term becomes

$$
\begin{aligned}
& \psi \underset{s+e+3}{\downarrow} \underset{s+e+4}{\downarrow+2 e} \frac{s+2 e+1}{\downarrow} \psi_{s+e+2} \psi_{s+e+3} \psi_{s+e+2} \psi \underset{s+e+3}{\downarrow} \underset{s+e+4}{\downarrow} \cdots{ }_{j e}^{\downarrow} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{s+e+4}{\downarrow} \underset{s+e+5}{\downarrow} \underset{s+e+6}{\downarrow} \downarrow \psi_{s+e+3} v(1, \ldots, s+e+2, s+e+4, s+2 e+4, \ldots, j e+e) \\
& =0 \text { by induction if } e=3 \text {. }
\end{aligned}
$$

If $e>3$, then we have

$$
\begin{aligned}
& =\psi \underset{s+e+5}{\downarrow+2 e} \underset{\substack{s+2 e+1 s+6 \\
\downarrow \\
s+e+6+e+7 \\
\downarrow \\
s+2 s+2 e+3}}{\downarrow}{ }_{s+e+8}^{\downarrow} \psi_{s+e+4} v(1, \ldots, s+e+3, s+e+5, s+2 e+5, \ldots, j e+e) \\
& =0 \text { by induction if } e=4 \text {. }
\end{aligned}
$$

If $e>4$, then we have

$$
\begin{aligned}
& =\psi \underset{s+e+6}{\downarrow+2 e} \underset{s+e+7}{\downarrow+2 e+1} \downarrow \underset{s+e+10}{\downarrow} \downarrow+2 e+4 . \\
& =0 \text { by induction if } e=5 \text {. }
\end{aligned}
$$

If $e>5$, we continue in this way until we obtain

$$
\underset{s+2 e+1}{\underset{s+2 e+2}{s+2 e}} \underset{\substack{s+2 e+1}}{\downarrow} \underset{s+3 e}{\downarrow+3 e-1} \downarrow \psi_{s+2 e} v(1, \ldots, s+2 e-1, s+2 e+1, s+3 e+1, \ldots, j e+e)=0
$$

by induction.
We now suppose that $r>s+e$, and again we will use induction on $\ell\left(w_{\mathrm{T}}\right)$, so we may assume without loss of generality that $v_{\mathrm{T}}=v(1, \ldots, s, r-e+1, r-e+2, \ldots, r-1, r+1, r+e+1, r+$ $e+2, \ldots, j e+r-s)$.
For the base case, we assume that $s+e=j e$ and hence $r \equiv s \equiv 0(\bmod e)$. Applying Corollary 6.11, we have

$$
\begin{aligned}
& \psi_{r} v_{\mathrm{T}}=\psi_{r} v(1, \ldots, j e-e, r-e+1, r-e+2, \ldots, r-1, r+1)
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{j e-e+1}{\stackrel{r-e}{\downarrow}} \stackrel{r-e-e+2}{\downarrow+1} \cdots \underset{j e-1}{\downarrow-2}\left(\psi_{r}^{2}(-1,0)\right) \psi \stackrel{r-1}{\downarrow} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{j e-e+1}{\downarrow} \stackrel{r-e}{\downarrow-e+1} \stackrel{r-2}{\downarrow} \cdots \underset{j e-e+2}{\downarrow}\left(y_{r}-y_{r+1}\right) \psi \stackrel{r-1}{\downarrow} z_{j e} z_{\lambda} \\
& =\psi \underset{j e-e+1}{\downarrow} \underset{j e-e+2}{\downarrow} \cdots \underset{j e-1}{\downarrow} y_{r} \psi \stackrel{r-1}{\downarrow}{ }_{j e}^{\downarrow} z_{\lambda}-0
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{j e-e+1}{\downarrow-e} \underset{j e-e+2}{\downarrow} \cdots \underset{j e-1}{\downarrow-e+1}\left(\psi_{r-1} y_{r-1}+1\right) \psi \stackrel{r-2}{\downarrow}{ }_{j e}^{\downarrow} z_{\lambda} \\
& =0+\psi \underset{j e-e+1}{\downarrow} \stackrel{r-e}{\downarrow-e+1} \cdots \underset{j e-1}{\downarrow} \psi_{j e}^{\downarrow-2} \underset{j e}{\downarrow-2} z_{\lambda} \text { by the inductive hypothesis of part (ii) } \\
& =\psi \underset{j e-e+1}{\downarrow} \underset{j e-e+2}{\downarrow-e} \underset{j e-2}{\downarrow-e+1} \stackrel{r-3}{\downarrow} \psi_{r-2} \underset{r-2}{\stackrel{r-2}{\uparrow}} \underset{r-3}{\stackrel{r-4}{\downarrow}} \underset{j e-1}{\downarrow} \underset{j e}{\downarrow-3} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{j e-e+1}{\downarrow} \underset{j e-e+2}{\downarrow-e} \cdots \underset{j e-4}{\downarrow-e+1} \underset{r-6}{\downarrow-5} \underset{r-7}{\downarrow-4} \underset{j e-3}{\downarrow} \underset{j e-2 j e-1}{\downarrow} \underset{j e}{\downarrow} \underset{j-8}{\downarrow} \underset{j-7}{\downarrow-6} \underset{\sim}{r-5} z_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{j e-e+1}{\downarrow} \underset{j e-e+2}{\downarrow-2 e} \cdots \underset{j e-1}{\downarrow-2 e+1}\left(\psi_{r-e}^{2}(-1,0)\right) \psi \stackrel{r-e-2}{\downarrow} \psi_{j e}^{\downarrow} z_{\lambda} .
\end{aligned}
$$

We repeat the above process $s-j-1$ more times, until we reach

$$
\left(\psi_{j e}^{2}(-1,0)\right) z_{\lambda}=\left(y_{j e}-y_{j e+1}\right) z_{\lambda}=0
$$

We now suppose that $s+e<j e$. We thus have

$$
\begin{aligned}
& \psi_{r} v_{\mathrm{T}}=\psi_{r} \psi \underset{s+1}{\downarrow-e} \underset{s+2}{\downarrow} \cdots \underset{s+e-1}{\downarrow-e+1} \psi \underset{s+e}{\downarrow-2} \underset{s+e+1}{\downarrow} \underset{s+e+2}{\downarrow} \cdots \underset{j e}{\downarrow+e} \underset{r+e+1}{\downarrow} z_{\lambda}
\end{aligned}
$$

Applying the inductive hypothesis of part (ii), the first term of (\dagger) becomes

$$
\begin{aligned}
& =\psi \underset{r-e-2}{\downarrow} \underset{r-e-1}{\downarrow} \cdots \underset{r-6}{\downarrow-e} \psi_{r-3}^{r-e+1} v(1, \ldots, s, r-e-2, r-e-1, \ldots, r-4, r-2, r+e+1, \ldots, j e+r-s) \\
& =0 \text { by induction on } r-s \text { if } e=3 \text {. }
\end{aligned}
$$

If $e>3$, then by applying Corollary 6.11, we have

$$
=0 \text { by induction if } e=4 \text {. }
$$

As in parts (i) and (ii), we continue in this fashion for $e>4$, until we eventually obtain

$$
\psi_{r-e} v(1, \ldots, s, r-2 e+1, r-2 e+3, \ldots, r-e-1, r-e+1, r+e+1, \ldots, j e+r-s)=0
$$

by induction. Applying the inductive hypothesis of part (i), the second term of (\dagger) becomes

$$
=0 \text { by induction if } e=3 \text {. }
$$

If $e>3$, then we have

$$
=0 \text { by induction if } e=4 \text {. }
$$

We continue for $e>4$ in a similar manner until we reach

$$
\begin{aligned}
& \cdot \psi_{r+4} v(1, \ldots, s+4, r-e+5, r-e+6, \ldots, r+3, r+5, r+e+5, r+e+6, \ldots, j e+r-s)
\end{aligned}
$$

$$
\begin{aligned}
& =-\psi \underset{s+1}{\downarrow-e} \underset{s+2}{\downarrow} \cdots \underset{s+e}{r-e+1} \psi \underset{s+e+1}{\downarrow-1} \psi \underset{r+3}{\downarrow} \underset{\sim}{\downarrow} \underset{r+e}{\downarrow} y_{r+2} v(1, \ldots, s+e+1, r+3, r+e+3, \ldots, j e+r-s)
\end{aligned}
$$

$$
\begin{aligned}
& =\psi \underset{r+4}{r+e} \underset{r+5}{\downarrow+e+1} \underset{r+6}{\downarrow} \underset{r+e+2}{\downarrow} \underset{s+1}{\downarrow-e} \underset{s+2}{\downarrow-e+1} \underset{s+3}{\downarrow} \underset{r-e+2}{\downarrow} \\
& \text { - } \psi_{r+3} v(1, \ldots, s+3, r-e+4, r-e+5, \ldots, r+2, r+4, r+e+4, \ldots, j e+r-s)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \psi_{r-6}^{r-5} v(1, \ldots, s+e-4, r-6, r-5, r-4, r-3, r+e+1, \ldots, j e+r-s)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \psi_{r-4} v(1, \ldots, s+e-4, r-7, r-6, r-5, r-3, r+e+1, \ldots, j e+r-s)
\end{aligned}
$$

$$
=\psi_{r+e} v(1, \ldots, s, r-e+1, r-e+2, \ldots, r+e-1, r+e+1, r+2 e+1, r+2 e+2, \ldots, j e+r-s)
$$

$$
=0 \text { by induction. }
$$

Proof of Proposition 4.12. (i) This in fact follows just like the proof of Proposition 3.5, with indices shifted by the corresponding multiples of e. In fact, that proof gives that

$$
\psi_{(r+1) e-1} \psi_{(r+1) e-2} \ldots \psi_{r e} \Psi_{r} v=-2 \psi_{(r+1) e-1} \psi_{(r+1) e-2} \ldots \psi_{r e} v
$$

since there we allow each component to be an arbitrary (small) hook, not just the trivial partition (e). If we follow the proof, setting $b=0$, it may be considerably shortened and in fact the prefix of generators $\psi_{(r+1) e-1} \psi_{(r+1) e-2} \ldots \psi_{r e+1}$ is not needed at all - the special case $b=0$ of that proof ends on page 32 .
(ii) Without loss of generality, we will assume that $\Psi_{r+1} \Psi_{r} v$ is reduced, i.e. v is a linear combination of basis vectors indexed by standard tableaux that have brick r in the second component and bricks $r+1$ and $r+2$ in the first. One can show that if brick r is in the first component, the calculation of $\Psi_{r} v_{\mathrm{T}}$ reduces to applying part (i) of the proposition to basis vectors of the assumed form. If brick r is in the second component but bricks $r+1$ and $r+2$ are not both in the first component, then the calculation of $\Psi_{r+1} \Psi_{r} v_{\mathrm{T}}$ reduces to applying part (iii) of the proposition to basis vectors of the assumed form.
By repeatedly applying Corollary 6.9(i), we have

If $e=3$, this becomes $\psi_{3 r+3} \psi \stackrel{3 r-1}{\downarrow} \underset{3 r-2}{\downarrow} \psi \underset{3 r-1}{\sqrt[3 r+1]{\downarrow}} \psi \underset{3 r}{\stackrel{3 r+3}{\downarrow}} v$. However, if $e>3$, then by applying
Lemma 6.10, we have

$$
\begin{aligned}
& \psi_{r e} \Psi_{r+1} \Psi_{r} v
\end{aligned}
$$

$$
\begin{aligned}
& =\psi_{r e} \psi \underset{r e-e+1}{\stackrel{r e+e}{\downarrow}} \underset{r e-e+2}{\text { re+e+1 }} \downarrow \underset{r e}{\downarrow} \cdots \stackrel{r e+2 e-1}{\downarrow} v
\end{aligned}
$$

$$
\begin{aligned}
& \vdots
\end{aligned}
$$

$$
\begin{aligned}
& \left(\psi_{r e+2 e-3} \psi \underset{r e-2}{\downarrow}\right)\binom{r e+2 e-7}{\psi \underset{r e-1}{\downarrow}} \xrightarrow[r e+2 e-2 \psi_{r e+2 e-1}]{\downarrow} \psi_{r e+2 e-2} \psi_{r e}^{r e+2 e-3} \downarrow \downarrow v
\end{aligned}
$$

For $e \geqslant 3$, the last terms become

$$
\begin{aligned}
& \psi \underset{r e-e+1}{\downarrow e-1} \underset{r e-e+2}{\downarrow} \underset{r e-e+3}{\downarrow} \cdots \underset{r e-1}{\downarrow}\left(\psi_{r e+e}^{2}(-1,0)\right) \psi \stackrel{r e+2}{\downarrow e+e-2} \underset{r e}{\downarrow} v \\
& =\psi \underset{r e-e+1}{\downarrow} \underset{r e-e+2}{\downarrow} \underset{r e-e+3}{\downarrow} \cdots \underset{r e-1}{\downarrow}\left(y_{r e+e}-y_{r e+e+1}\right) \psi \underset{r e}{\downarrow e+2} \underset{r e+e-2}{\downarrow} v .
\end{aligned}
$$

We know from Lemma 4.9 that the second term becomes zero, whilst the first term is

$$
\begin{aligned}
& \psi \underset{r e-e+1}{\downarrow} \psi \underset{r e-e+2}{\downarrow} \downarrow \underset{r e-e+3}{\downarrow} \cdots \underset{r e-1}{\downarrow}\left(y_{r e+e}^{r e+1} \psi_{r e+e-1}(-1,-1)\right) \psi \underset{r e}{\downarrow e+2} \psi_{r e-2}^{r e+e-2} v \\
& =\psi \underset{r e-e+1}{\downarrow} \psi \underset{r e-e+2}{\downarrow e-1} \underset{r e-e+3}{\downarrow} \cdots \underset{r e-1}{\downarrow}\left(\psi_{r e+e-1}^{r e+1} y_{r e+e-1}^{r e+2}+1\right) \psi \underset{r e}{\downarrow} v .
\end{aligned}
$$

Now the first term is

$$
\begin{aligned}
& \psi \underset{r e-e+1}{\downarrow} \psi \underset{r e-e+2}{\stackrel{r e-1}{\downarrow}} \underset{r e-e+3}{\downarrow} \ldots \underset{r e-1}{\downarrow e+2} \psi_{r e+e-1} y_{r e+e-1} v\left(1, \ldots, r e-1, r e+e-1, a_{r e+1}, \ldots, a_{r e}\right) \\
& =0 \text { by Lemma } 6.14(i i) \text { since } r e+e-1 \not \equiv 0,1 \quad(\bmod e) \text {. }
\end{aligned}
$$

If $e=3$, then applying Corollary 6.9 (ii) to the second term yields

$$
\psi \underset{3 r-2}{\downarrow} \psi_{3 r-1}^{\downarrow r-1} \psi \underset{3 r}{\psi^{3 r+1}} \psi_{3 r+1}^{3 r+} v=\psi_{3 r-2}^{\downarrow r-1} \psi_{3 r+1} \psi_{3 r} \psi_{3 r+1} \psi_{3 r-1} \psi_{3 r} v=\psi_{3 r=1} \psi_{3 r-2} \psi_{3 r-1} \psi_{3 r} v=\psi_{3 r} v
$$

If $e>3$, then repeatedly applying Corollary 6.11 to the second term yields

$$
\begin{aligned}
& \vdots \\
& =\psi \underset{r e-e+1}{\downarrow} \frac{r e-1}{\downarrow} \underset{r e-e+4}{\downarrow} \downarrow \underset{r e-e+3}{r e+1} \psi \underset{r e-e+2}{r e+1} \underset{\uparrow}{r e-1} \underset{r}{r e} v \\
& =\underbrace{\psi \psi_{r e-e+1}^{r e-1} \psi_{r e} v .}_{r e-e+2} \\
& =\psi_{r e} v \text {. }
\end{aligned}
$$

(iii) The proof proceeds analogously to part (ii), and is omitted for the sake of brevity.

References

[AJ10] S. Ariki and N. Jacon, Dipper-James-Murphy's conjecture for Hecke algebras of type B_{n}, Representation theory of algebraic groups and quantum groups, Progr. Math., vol. 284, Birkhäuser/Springer, New York, 2010, pp. 17-32. [Page 1.]
[BK09a] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451-484. [Pages 1, 5.]
[BK09b] , Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math. 222 (2009), no. 6, 1883-1942. [Pages 5, 6, 10.]
[BKW11] J. Brundan, A. Kleshchev, and W. Wang, Graded Specht modules, J. Reine Angew. Math. 655 (2011), 61-87. [Pages 4, 6.]
[BS11] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov's diagram algebra III: category \mathcal{O}, Represent. Theory 15 (2011), 170-243. [Page 1.]
[CMT04] J. Chuang, H. Miyachi, and K. M. Tan, A v-analogue of Peel's theorem, J. Algebra 280 (2004), no. 1, 219-231. [Page 1.]
[DF12] C. Dodge and M. Fayers, Some new decomposable Specht modules, J. Algebra 357 (2012), 235-262. [Page 1.]
[DJ91] R. Dipper and G. D. James, q-tensor space and q-Weyl modules, Trans. Amer. Math. Soc. 327 (1991), 251-282. [Page 1.]
[EL] B. Elias and I. Losev, Modular representation theory in type A via Soergel bimodules, arXiv:1701.00560, 2017, preprint. [Page 1.]
[EW16] B. Elias and G. Williamson, Soergel calculus, Represent. Theory 20 (2016), 295-374. [Page 1.]
[Fay06] M. Fayers, Weight two blocks of Iwahori-Hecke algebras of type B, J. Algebra 303 (2006), no. 1, 154-201. [Page 1.]
[FS16] M. Fayers and L. Speyer, Generalised column removal for graded homomorphisms between Specht modules, J. Algebraic Combin. 44 (2016), no. 2, 393-432. [Pages 1, 6, 23, 24.]
[GIP08] M. Geck, L. Iancu, and C. Pallikaros, Specht modules and Kazhdan-Lusztig cells in type B_{n}, J. Pure Appl. Algebra 212 (2008), no. 6, 1310-1320. [Page 1.]
[Jac11] N. Jacon, Constructible representations and basic sets in type B, J. Algebra 336 (2011), 67-83. [Page 1.]
[Kac90] V. Kac, Infinite dimensional Lie algebras, third ed., Cambridge University Press, Cambridge, 1990. [Page 3.]
[KL09] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309-347. [Page 1.]
[KMR12] A. Kleshchev, A. Mathas, and A. Ram, Universal graded Specht modules for cyclotomic Hecke algebras, Proc. London Math. Soc. 105 (2012), 1245-1289. [Pages 5, 6.]
[Mur80] G. Murphy, On decomposability of some Specht modules for symmetric groups, J. Algebra 66 (1980), 156-168. [Pages 1, 23, 24.]
[Rou] R. Rouquier, 2-Kac-Moody algebras, arXiv:0812.5023, 2008, preprint. [Page 1.]
[Rou08] , q-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), 119-158. [Page 1.]
[Spe14] L. Speyer, Decomposable Specht modules for the Iwahori-Hecke algebra $\mathscr{H}_{\mathbb{F},-1}\left(\mathfrak{S}_{n}\right)$, J. Algebra 418 (2014), 227-264. [Pages 1, 2, 10, 12, 23, 24.]
[Sut18] L. Sutton, Specht modules labelled by hook bipartitions I, J. Algebra 515 (2018), 456-510. [Pages 1, 11.]
[Sut] , Specht modules labelled by hook bipartitions II, arXiv:1709.09251, 2017, preprint. [Page 1.]
[Web17] B. Webster, Rouquier's conjecture and diagrammatic algebra, Forum Math. Sigma 5 (2017), e27, 71. [Page 1.]

