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Abstract

We study the decomposability of Specht modules labelled by bihooks, bipartitions with a hook
in each component, for the Iwahori–Hecke algebra of type B. In all characteristics, we determine
a large family of decomposable Specht modules, and conjecture that these provide a complete list
of decomposable Specht modules indexed by bihooks. We prove the conjecture for small n.

1 Introduction

Specht modules are of fundamental importance in the study of reflection groups and their deforma-
tions. We are particularly interested in the Iwahori–Hecke algebras of types A and B. In type B, these
Hecke algebras have been studied from the point of view of their decomposition numbers [Fay06, AJ10],
their Kazhdan–Lusztig theory [GIP08, Jac11], and via applications from higher representation the-
ory [BS11]. Nowadays, the subject often takes on a more diagrammatic and categorical flavour, for
example with the inception of Elias and Williamson’s diagrammatic Hecke category [EW16], Webster’s
diagrammatic Cherednik algebra [Web17] and recent work of Elias–Losev [EL].

It is known by [DJ91, Rou08, FS16] that the Specht modules are indecomposable if the quantum
characteristic e is not 2, and under the further assumption in type B that the parameters κ1 and κ2

are distinct. Rouquier’s work in fact gives us that the Hecke algebras admit faithful quasi-hereditary
covers, whence indecomposability follows easily by considering the trivial endomorphism spaces of
standard modules.

In type A, Murphy [Mur80] and the first author [Spe14] completely determined the decompos-
ability of Specht modules indexed by hook partitions. The general case is very difficult, owing to the
complicated structure of the endomorphism rings of Specht modules. In the case of the symmetric
group, Dodge and Fayers [DF12] give the first new family of decomposable Specht modules in thirty
years, which are indexed by partitions of the form (a, 3, 1b). Parallel to this, the graded composition
multiplicities for Specht modules indexed by hooks have been determined using Fock space machinery
in [CMT04].

Here, we take the natural first step in extending this study of decomposable Specht modules to
Iwahori–Hecke algebras of type B. We study Specht modules indexed by bihooks, that is bipartitions
for which both components are hook partitions. In a certain subfamily of these, the second author has
determined graded decomposition numbers [Sut18, Sut], drawing an analogue in type B with the afore-
mentioned work of [CMT04]. As in [Spe14], we study these Specht modules from the perspective of
the cyclotomic Khovanov–Lauda–Rouquier algebras that were introduced by Khovanov–Lauda [KL09]
and Rouquier [Rou], an equivalent point of view by virtue of the isomorphism theorem of Brundan and
Kleshchev [BK09a]. In this framework, we investigate endomorphisms of Specht modules, and obtain
non-trivial generalised eigenspace decompositions for several large families of Specht modules, which
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we conjecture are the only decomposable Specht modules indexed by bihooks if e 6= 2 and charF 6= 2
(see Conjectures 4.2 and 5.5). In other words, our main results prove one direction of our conjectural
classification in all of the cases where decomposable Specht modules may arise, and we prove our
classification in full in a few cases. For small n or e = 2, we have some extra decomposable Specht
modules – see Theorems 3.8 and 5.4, respectively. We summarise the majority of our decomposable
Specht modules as follows.

Theorem 4.1. Suppose that we take a Hecke algebra of type B with parameters κ1 = κ2. Let
λ = ((ke+ a, 1b), (je+ a, 1b)) or ((b+ 1, 1je+a−1), (b+ 1, 1ke+a−1)), for some j, k > 1, 0 < a 6 e and
0 6 b < e with a+ b 6= e, or for a = b = 0.

(i) For j, k > 1, if j + k is even and charF 6= 2, or if j + k is odd, then Sλ is decomposable.

(ii) If j = 1 or k = 1, then Sλ is decomposable if and only if charF - j + k.

Theorem 5.3. Let e = 2, and suppose that µ is a hook partition of n such that Sµ is a decomposable
Specht module over the Hecke algebra of type A (cf. Theorems 5.1 and 5.2). Then, for any partition
ν of m, the Specht modules S(µ,ν) and S(ν,µ) over the Hecke algebra of type B are decomposable.

We now outline the layout of this paper. In Section 2, we will collect all necessary definitions and
background from the literature, before studying the case of ‘small bihooks’ (when n 6 2e) in Section 3.
In this case, we are able to completely determine the decomposability of Specht modules: we prove
the above results in this special case, and furthermore show the converse, that all other bihooks index
indecomposable Specht modules. Our method for this converse is a case-by-case analysis examining
the tableaux that can appear in endomorphisms of these Specht modules. We emphasise that this
method will not readily extend to large n. Next, we conduct the majority of our study of Specht
modules labelled by bihooks in Section 4, finding the aforementioned families of decomposable Specht
modules. Our method here is to first use the divided power functors to reduce proving Theorem 4.1 to
the case of bipartitions of the form ((ke), (je)), and then determine certain endomorphisms for Specht
modules in Theorem 4.13 indexed by these bipartitions. We compute three eigenvalues for these
endomorphisms, yielding at least two distinct eigenvalues in any characteristic (with the exception
of characteristic 2 when j + k is even), resulting in a generalised eigenspace decomposition for the
Specht modules having at least two non-trivial summands. Section 5 covers the e = 2 situation, which
makes use of previous work of the first author in [Spe14] to yield quick results and prove Theorems 5.3
and 5.4. We leave some long technical calculations for Section 6, where the keen reader may find the
grittier details of our work.

Acknowledgements. The authors are grateful to the organisers of the conference Representation Theory
of Symmetric Groups and Related Algebras, National University of Singapore, which allowed them
to collaborate closely on parts of this research. The second author is supported by Singapore MOE
Tier 2 AcRF MOE2015-T2-2-003, and thanks the Universities of Osaka and Virginia for hosting her
visits, as well as the Japan Society for the Promotion of Science for financial support. The authors
would also like to thank both Chris Bowman and Matthew Fayers for their helpful comments, as well
as for the use of Fayers’s GAP package, which was used extensively for computations. We thank the
referee for their close reading of the paper, offering many helpful comments and corrections.

2 Background

In this section we give an overview of KLR algebras, Specht modules labelled by bihooks, and the
associated combinatorics. Throughout, F will denote an arbitrary field.

2.1 Lie theoretic notation

Let e ∈ {2, 3, . . . }∪ {∞}, which we call the quantum characteristic. If e <∞, then we set I := Z/eZ,
which we identify with the set {0, 1, . . . , e − 1}, whereas if e = ∞, we set I := Z. We let Γ be the



Decomposable Specht modules indexed by bihooks 3

quiver with vertex set I and an arrow i→ i− 1 for each i ∈ I. If e =∞, then Γ is the quiver of type

A∞, otherwise Γ is of type A
(1)
e−1.

Following Kac’s book [Kac90], we recall standard notation for the Kac–Moody algebra associated
to the generalised Cartan matrix (aij)i,j∈I . We have simple roots {αi | i ∈ I}, fundamental dominant
weights {Λi | i ∈ I}, and the invariant symmetric bilinear form ( , ) such that (αi, αj) = ai,j and
(Λi, αj) = δij , for all i, j ∈ I. Let Q+ :=

⊕
i∈I Z>0αi be the positive cone of the root lattice. If

α =
∑

i∈I ciαi ∈ Q+, then we define the height of α to be ht(α) =
∑

i∈I ci.
An e-bicharge is an ordered pair κ = (κ1, κ2) ∈ I2. We define its associated dominant weight Λ of

level two to be Λ = Λκ := Λκ1 + Λκ2 .

2.2 The symmetric group

Let Sn be the symmetric group on n letters. We let s1, . . . , sn−1 denote the standard Coxeter gener-
ators, where si is the simple transposition (i, i+ 1) for 1 6 i < n. We define a reduced expression for
a permutation w ∈ Sn to be an expression si1 . . . sim such that m is minimal, and call m the length
of w, denoted `(w).

We define the Bruhat order 6 on Sn as follows. If x,w ∈ Sn, then we write x 6 w if there is a
reduced expression for x which is a subexpression of a reduced expression for w.

For 1 6 i 6 j 6 n− 1, we define s
j

↓
i

:= sjsj−1 . . . si and s
j

↑
i

:= sisi+1 . . . sj .

2.3 Bipartitions

A partition λ of n is a weakly decreasing sequence of non-negative integers λ = (λ1, λ2, . . . ) such
that |λ| :=

∑
λi = n. We write ∅ for the empty partition (0, 0, . . . ). A bipartition λ of n is a pair

λ = (λ(1), λ(2)) of partitions such that |λ| = |λ(1)| + |λ(2)| = n. We refer to λ(1) and λ(2) as the 1st
and 2nd component, respectively, of λ. We abuse notation and also write ∅ for the empty bipartition
(∅,∅). We denote the set of all bipartitions of n by P2

n.
For λ, µ ∈P2

n, we say that λ dominates µ, and write λ Q µ, if for all k > 1,

k∑
j=1

λ
(1)
j >

k∑
j=1

µ
(1)
j and |λ(1)|+

k∑
j=1

λ
(1)
j > |µ(1)|+

k∑
j=1

µ
(1)
j .

The Young diagram of λ = (λ(1), λ(2)) ∈P2
n is defined to be

[λ] := {(i, j,m) ∈ N× N× {1, 2} | 1 6 j 6 λ
(m)
i }.

We refer to elements of [λ] as nodes of λ. We draw the Young diagram of a bipartition as a column
vector of Young diagrams [λ(1)], [λ(2)]. We say that a node A ∈ [λ] is removable if [λ] \ {A} is a
Young diagram of a bipartition, while a node A 6∈ [λ] is addable if [λ] ∪ {A} is a Young diagram of a
bipartition.

If λ is a partition, the conjugate partition, denoted λ′, is defined by

λ′i = | {j > 1 | λj > i} |.

If λ ∈P2
n, then we define the conjugate bipartition, also denoted λ′, to be λ′ = (λ(2)′ , λ(1)′).

2.4 Tableaux

Let λ ∈P2
n. Then a λ-tableau is a bijection T : [λ]→ {1, . . . , n}. We depict a λ-tableau T by inserting

entries 1, . . . , n into the Young diagram [λ] with no repeats; we let T(i, j,m) denote the entry lying
in node (i, j,m) ∈ [λ]. We say that T is standard if its entries increase down each column and along
each row, within each component, and denote the set of all standard λ-tableaux by Std(λ).

The column-initial tableau Tλ is the λ-tableau where the entries 1, . . . , n appear in order down
consecutive columns, working from left-to-right, first in component 2, then component 1.
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The symmetric group Sn acts naturally on the left on the set of λ-tableaux. For T a λ-tableau,
we define the permutation wT ∈ Sn by wTTλ = T.

Suppose λ ∈P2
n. Let S and T be λ-tableaux with corresponding reduced expressions wS and wT,

respectively. Then we say that T dominates S, written as T Q S, if and only if wT > wS.

2.5 Residues and degrees

Fix an e-bicharge κ = (κ1, κ2). The e-residue of a node A = (i, j,m) ∈ N×N×{1, 2} is defined to be

resA := κm + j − i (mod e).

We call a node of residue r an r-node.

Let T be a λ-tableau. If T(i, j,m) = r, we set resT(r) = res(i, j,m). The residue sequence of T is
defined to be

iT = (resT(1), . . . , resT(n)).

We denote the residue sequence of the column-initial tableau Tλ by iλ := iTλ .

We now define the degree of a standard tableau, which is the codegree as given in [BKW11, §3.5].
For λ ∈P2

n and an i-node A of λ, we define

dA(λ) : = # {addable i-nodes of λ strictly above A}
−# {removable i-nodes of λ strictly above A} .

Let T ∈ Std(λ) with T−1(n) = A. We define the degree of T, denoted deg(T), recursively, by setting
deg(∅) := 0, and

deg(T) := dA(λ) + deg(T<n),

where T<n is the standard tableau obtained from T by removing the node A.

2.6 Regular bipartitions

Let λ ∈ P2
n. We define the i-signature of λ by reading the Young digram [λ] from the top of the

first component down to the bottom of the last component, writing a + for each addable i-node and
a − for each removable i-node. We obtain the reduced i-signature of λ by successively deleting all
adjacent pairs +− from the i-signature of λ, always of the form − · · · −+ · · ·+.

The removable i-nodes corresponding to the − signs in the reduced i-signature of λ are called the
normal i-nodes of λ, while the addable i-nodes corresponding to the + signs in the reduced i-signature
of λ are called the conormal i-nodes of λ. The lowest normal i-node of [λ], if there is one, is called
the good i-node of λ, which corresponds to the last − sign in the i-signature of λ. Analogously, the
highest conormal i-node of [λ], if there is one, is called the cogood i-node of λ, which corresponds to
the first + sign in the i-signature of λ.

We say that a bipartition λ ∈ P2
n is regular, or conjugate-Kleshchev, if [λ] can be obtained by

successively adding cogood nodes to ∅. That is, we have a sequence ∅ = λ(0), λ(1), . . . , λ(n) = λ
such that [λ(i)]∪ {A} = [λ(i+ 1)], where A is a cogood node of λ(i). Equivalently, λ is regular if and
only if ∅ can be obtained by successively removing good nodes from [λ]. Observe in level one that
the set of all regular partitions coincides with the set of all e-regular partitions.

2.7 Cyclotomic Khovanov–Lauda–Rouquier algebras

Suppose α ∈ Q+ has height n, and set

Iα = { i = (i1, i2, . . . , in) ∈ In | αi1 + · · ·+ αin = α} .

Recalling that Λ = Λκ, we define RΛ
α to be the unital associative F-algebra with generating set

{e(i) | i ∈ Iα} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}
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and relations

e(i)e(j) = δi,je(i);∑
i∈Iα

e(i) = 1;

yre(i) = e(i)yr;

ψre(i) = e(sri)ψr;

yrys = ysyr;

ψrys = ysψr if s 6= r, r + 1;

ψrψs = ψsψr if |r − s| > 1;

yrψre(i) = (ψryr+1 − δir,ir+1)e(i);

yr+1ψre(i) = (ψryr + δir,ir+1)e(i);

ψ2
re(i) =


0 if ir = ir+1,

e(i) if ir+1 6= ir, ir ± 1,

(yr+1 − yr)e(i) if ir = ir+1 + 1,

(yr − yr+1)e(i) if ir = ir+1 − 1;

ψrψr+1ψre(i) =


(ψr+1ψrψr+1 + 1)e(i) if ir+2 = ir = ir+1 + 1,

(ψr+1ψrψr+1 − 1)e(i) if ir+2 = ir = ir+1 − 1,

(ψr+1ψrψr+1)e(i) otherwise;

y
(Λ,αi1 )
1 e(i) = 0;

for all admissible r, s, i, j. When e = 2, we actually have slightly different ‘quadratic’ and ‘braid’
relations, which may be found, for example, in [KMR12, §3.1]. We omit them here, as we will not
explicitly calculate with these relations when e = 2.

Lemma 2.1. [BK09b, Corollary 1] There is a unique Z-grading on RΛ
α such that, for all admissible

r and i,

deg(e(i)) = 0, deg(yr) = 2, degψr(e(i)) = −air,rr+1 .

The cyclotomic Khovanov–Lauda–Rouquier (KLR) algebra or cyclotomic quiver Hecke algebra RΛ
n

is defined to be the direct sum
⊕

α RΛ
α , where the sum is taken over all α ∈ Q+ of height n.

Here we sum over all α ∈ Q+ of height n, though in fact only finitely many of the summands will
be non-zero, so (even when e =∞) RΛ

n is a unital algebra.

These Z-graded algebras are connected to the Hecke algebras of type B via (a special case of)
Brundan and Kleshchev’s Graded Isomorphism Theorem.

Theorem 2.2. [BK09a, Main Theorem] If e = char(F) or char(F) - e, then RΛ
n is isomorphic to

the integral Hecke algebra Hn(q,Q1, Q2) of type B with parameters q ∈ F a primitive eth root of
unity, Q1 = qκ1, and Q2 = qκ2. That is, Hn(q,Q1, Q2) has generators T0, . . . , Tn−1 satisfying type B
Coxeter relations, with the quadratic relations replaced with

(T0 − qκ1)(T0 − qκ2) = 0 and (Ti − q)(Ti + 1) = 0 ∀ 1 6 i 6 n− 1.

2.8 Specht modules labelled by bihooks

Definition 2.3. We call a bipartition λ a bihook if it is of the form λ = ((a, 1b), ((c, 1d)) for some
integers a, c > 1 and b, d > 0.

Definition 2.4. [KMR12, Definition 7.11] Let λ = ((a, 1b), ((c, 1d)) ∈ P2
n. The (column) Specht

module Sλ is the cyclic RΛ
n -module generated by zλ of degree deg(zλ) := deg(Tλ) subject to the

relations:
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� e(iλ)zλ = zλ;

� yrzλ = 0 for all r ∈ {1, . . . , n};

� ψrzλ = 0 for all r ∈ {1, . . . , n− 1} \ {d+ 1, c+ d, b+ c+ d+ 1};

� ψ1ψ2 . . . ψd+1zλ = 0 = ψc+d+1ψc+d+2 . . . ψb+c+d+1zλ (these are the Garnir relations arising from
nodes (1, 1, 2) and (1, 1, 1), respectively).

For each w ∈ Sn, we fix a reduced expression w = si1 . . . sim throughout. We define the associated
element of RΛ

n to be ψw := ψi1 . . . ψim , which, in general, depends on the choice of reduced expression
for w. For λ ∈P2

n and a λ-tableau T, we define vT := ψwTzλ.

Whilst these vectors vT of Sλ also depend on the choice of reduced expression in general, the
following result does not.

Theorem 2.5. [BKW11, Corollary 4.6] and [KMR12, Proposition 7.14 and Corollary 7.20] For
λ ∈ P2

n, the set of vectors {vT | T ∈ Std(λ)} is a homogeneous F-basis of Sλ, with deg(vT) = deg(T).
Moreover, for any λ-tableau S, vS is a linear combination of basis elements vT such that S Q T.

We record the following useful lemma that we will use frequently.

Lemma 2.6 [BKW11, Lemma 4.4]. Let λ ∈P2
n, and T ∈ Std(λ). Then e(i)vT = δi,iTvT.

Of particular importance to the present paper is the following result on the decomposability of
Specht modules, which is a special case of a result for higher level cyclotomic KLR algebras.

Proposition 2.7 [FS16, Corollary 3.12]. If e 6= 2 and κ1 6= κ2, then the Specht modules Sλ are
indecomposable for all λ ∈P2

n.

The following useful result is obtained from [KMR12, Theorems 7.25 and 8.5].

Theorem 2.8. Sλ is decomposable if and only if Sλ′ is.

We know from [BK09b, Theorem 5.10] that Specht modules Sλ indexed by regular bipartitions
have simple heads, yielding the following.

Proposition 2.9. If λ ∈P2
n is a regular bipartition, then the Specht module Sλ is indecomposable.

Lemma 2.10 [BKW11, Lemma 4.9]. Let λ ∈P2
n, 1 6 r < n, and T ∈ Std(λ). If r and r + 1 lie

in the same row or in the same column of T, then

ψrvT =
∑

S∈Std(λ)
iS=isrT
SCT

aSvS for some aS ∈ F.

Definition 2.11. We define

ψ
x

↓
y

= ψxψx−1 . . . ψy and ψ
x

↑
y

= ψyψy+1 . . . ψx

if x > y and set both equal to 1F if x < y. Furthermore, we use the shorthand

ψ
x

↓
y

x+1

↓
y+1

. . .
x+c

↓
y+c

:= ψ
x

↓
y

ψ
x+1

↓
y+1

. . . ψ
x+c

↓
y+c

, ψ
x

↓
y

x−1

↓
y−1

. . .
x−c
↓
y−c

:= ψ
x

↓
y

ψ
x−1

↓
y−1

. . . ψ
x−c
↓
y−c

,

ψ
y

↑
x

y+1

↑
x+1

. . .
y+c

↑
x+c

:= ψ
y

↑
x

ψ
y+1

↑
x+1

. . . ψ
y+c

↑
x+c

, ψ
y

↑
x

y−1

↑
x−1

. . .
y−c
↑
x−c

:= ψ
y

↑
x

ψ
y−1

↑
x−1

. . . ψ
y−c
↑
x−c

.
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3 Small bihooks

In light of Proposition 2.7, we suppose that κ1 = κ2 throughout Sections 3 and 4. In fact, we need
only assume that κ = (0, 0) since residue shifts do not change the isomorphism type of RΛ

n . Here,
we begin our examination of Specht modules labelled by bihooks by completely determining which
Specht modules are decomposable when n 6 2e. We first make the following easy observation.

Lemma 3.1. If k < e, then λ = ((k), (k)) is a regular bipartition. In particular, Sλ is indecomposable.

Proof. Starting from (∅,∅), we may add two cogood 0-nodes, then two cogood 1-nodes, and continue
in this fashion until we have added two cogood (k−1)-nodes. The resulting bipartition is λ. It follows
from Proposition 2.9 that Sλ is indecomposable.

Remark. In the above proof, we may go so far as adding two cogood (e−2)-nodes to reach the regular
bipartition ((e − 1), (e − 1)), but can go no further. Adding a cogood e-node yields the bipartition
((e), (e−1)), but adding a second cogood e-node results in the bipartition ((e, 1), (e−1)), not ((e), (e)).
One can check that ((k), (k)) is not regular for any k > e.

In fact, it is not difficult to see that we may generalise the previous lemma as follows.

Lemma 3.2. Suppose a > 1 and b > 0 with a + b < e. Then λ = ((a, 1b), (a, 1b)) is a regular
bipartition, so Sλ is indecomposable.

Conversely, we will next show that if we instead have a + b = e, then the Specht modules
S((a,1b),(a,1b)) are all decomposable.

Lemma 3.3. Suppose a > 1 and b > 0 with a + b 6 e, and let λ = ((a, 1b), (a, 1b)). Then there is a
unique standard λ-tableau T 6= Tλ with res T = iλ.

Proof. This is an easy consequence of the fact that iλ = (0, e − 1, . . . , e − b, 1, 2, . . . , a − 1, 0, e −
1, . . . , e− b, 1, 2, . . . , a− 1). If we write Tλ = (T(1), T(2)), then T = (T(2), T(1)).

Lemma 3.4. Suppose a > 1 and b > 0 with a + b = e, and let λ = ((a, 1b), (a, 1b)). There is an
endomorphism ϕ of Sλ determined by ϕ(zλ) = vT, where T is the tableau in Lemma 3.3.

Proof. The proof proceeds by checking that the annihilator of zλ also annihilates vT.
We already know by Lemmas 2.6 and 3.3 that e(i)vT = δi,iλvT. It is easy to see that deg T = 1 =

deg Tλ, and therefore that deg(yrvT) = 3. However, yrvT ∈ e(iλ) Sλ = 〈vTλ , vT〉F, so deg(yrvT) = 1.
This contradiction gives us that yrvT = 0 for all r ∈ {1, . . . , n}.

Finally, we check the relations involving ψ generators. We know by Lemma 2.10 that ψwvT = 0 if
there exists no standard λ-tableau with residue sequence wiλ, for any w ∈ Sn.

Observe that for 1 6 r 6 b,

sriλ = (0, e− 1, e− 2, . . . , e− r + 2, e− r, e− r + 1, ir+2, . . . , in).

It is clear that there is no standard λ-tableau with residue sequence sriλ, and hence ψrvT = 0 for all
1 6 r 6 b. Similarly, ψrvT = 0 for all r ∈ {b+ 2, . . . , e− 1}∪{e+ 1, . . . , e+ b}∪{e+ b+ 2, . . . , 2e− 1}.

If a > 1, we must also check the longer Garnir relations arising from the Garnir nodes (1, 1, 1) and
(1, 1, 2). Applying s1s2 . . . sb+1 to iλ, we find that the residue sequence s1s2 . . . sb+1iλ begins with 1,
and thus ψ1ψ2 . . . ψb+1zλ = 0. Similarly, if we apply se+1se+2 . . . se+b+1 to iλ, we find that the residue
sequence se+1se+2 . . . se+b+1iλ contains 1 in its eth and (e+1)th positions, and the 0 residues occur
in the 1st and (e+2)nd positions. Clearly there is no standard λ-tableau with this residue sequence,
and thus ψe+1ψe+2 . . . ψe+b+1zλ = 0. This completes the proof.

Proposition 3.5. If ϕ(zλ) = vT as above, then ϕ(vT) =

{
(−1)b+12vT if a > 1;

(−1)e−12vT if λ = ((1e), (1e)).

We prove Proposition 3.5 by a rather lengthy calculation, which we relegate to Section 6.
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Theorem 3.6. Suppose a > 1 and b > 0 with a + b = e, and let λ = ((a, 1b), (a, 1b)). Then Sλ is
decomposable if and only if charF 6= 2.

Proof. If charF 6= 2, then there is an endomorphism ϕ′ of Sλ determined by ϕ′ = (−1)(b+1) 1
2ϕ, which

is an idempotent. If charF = 2, then it is easy to see from Lemma 3.3 and Proposition 3.5 that Sλ
has no non-trivial idempotent endomorphisms, and the result follows.

Next, we will generalise Lemma 3.2 and show that all Specht modules indexed by ‘small’ bihooks
not appearing in Theorem 3.6 are indecomposable. More precisely:

Theorem 3.7. Suppose e 6= 2, and let λ = ((a, 1b), (c, 1d)) ∈P2
n such that either a+ b+ c+ d < 2e

or a+ b+ c+ d = 2e with a 6= c or b 6= d. Then Sλ is indecomposable.

Proof. We determine all of the possible standard λ-tableaux with residue sequence

iλ = (0,−1, . . . ,−d, 1, 2, . . . , c− 1, 0,−1, . . . ,−b, 1, 2, . . . , a− 1).

If no standard λ-tableau other than Tλ has residue sequence iλ, then there exists no non-trivial
endomorphism of Sλ and thus Sλ is indecomposable. For any other standard λ-tableau T distinct
from Tλ such that iT = iλ, we show that there exists no non-trivial endomorphisms of Sλ in each of
these cases.

We fill [λ] with 1, . . . , n to find all standard λ-tableaux with residue sequence iλ.

(i) Suppose b < d < e. Since n 6 2e, we must have that b 6 e − 2. First, we shall assume that
b < e − 2. Since b 6= e − 1, e − 2, it follows that −b − 1 6≡ 0 or 1 (mod e), so we cannot put
1, . . . , b + 1 down the first column of the first component, as b + 2 would have nowhere to go.
Thus we must have 1, . . . , b+ 2 down the first column of the second component, and in fact the
only way to fill in the remaining entries yields Tλ, so there are no non-trivial endomorphisms of
Sλ.

If instead we assume that b = e− 2, then our conditions give λ = ((a, 1e−2), (c, 1e−1)), for which
there are only 3 possible bihooks: ((1e−1), (1e)), ((1e−1), (2, 1e−1)), and ((2, 1e−2), (1e)). It is easy
to check that the first has no standard tableaux of residue iλ besides Tλ, the second also has the

standard tableau T = seTλ, and the third has the standard tableau S = s
e

↓
1

s
e+1

↓
2

. . . s
2e−1

↓
e

Tλ. Since

ψe−1vT = vse−1T, and ψe−1vS = vse−1S (plus possibly some lower order terms), while ψe−1zλ = 0,
these cases yield no non-trivial homomorphisms.

(ii) Suppose b < d and d > e. If b = e−2, then we must have λ = ((1e−1), (1e+1)), for which we may
easily see that only Tλ and se+1Tλ have the correct residue sequence, and that ψevse+1Tλ =
vsese+1Tλ , and therefore there are no non-trivial homomorphisms. So we may assume that
b < e − 2. As in part (i), we must place 1, . . . , b + 2 down the first column of the second
component, and in fact must place 1, . . . , e− 1 in there. If we place the entry e in node (e, 1, 2),
we can either place e+ 1 in node (e+ 1, 1, 2) or node (1, 1, 1). One can check that in the former
case, we may only obtain Tλ. In the latter, we must then place e + 2, . . . , d + 1 down the first
column of the first component, which is only possible if b > d − e. If so, we may continue,
placing d+2, . . . , d+ c in the first row of the second component, then d+ c+1, . . . , 2d+ c−e+1
down the remaining nodes in the second component, and 2d+ c− e+ 2, . . . , n as in Tλ. Call this
standard tableau R.

If a > c > 2 we could have also placed d + 2, . . . , d + c in the first row of the first component,
whence we are forced to place d+ c+ 1, . . . , 2d+ c− e+ 1 down the first column of the second
component, then 2d+ c− e+ 2, . . . , b+ c+ d+ 1 down the first column of the first component,
then b+c+d+2, . . . , b+2c+d in the first row of the second component, then b+2c+d+1, . . . , n
as in Tλ. Call this standard tableau S.

Finally, suppose that c > 2, and we instead placed the entry e in the node (1, 2, 2). Then we
must put the entries e+ 1, . . . , d+ 1 down the first column of the first component, which is only
possible if b > d− e. We must then place d+ 2 in node (e, 1, 2) and place d+ 3, . . . , d+ c along
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the first row of the second component, then d+ c+ 1, . . . , 2d+ c− e+ 1 down the first column of
the second component, then 2d+ c− e+ 2, . . . , n are filled as in Tλ. Call this standard tableau
T.

Then ψezλ = 0, while ψevR = vseR, ψevS = vseS, and ψevT = vseT (plus possibly some lower order
terms in this final case). It follows that there is no non-trivial endomorphism of Sλ in any of
these cases.

(iii) Suppose b > d. If c < a, the result follows from parts (i) and (ii) by applying Theorem 2.8. So we
may assume that c > a. The only bihook for fitting these conditions with d > e−1 is ((1e), (1e)),
so we may further assume that d 6 e − 2. If we place 1, . . . , d + 1 down the first column of
the second component, then d+ 2, . . . , d+ c must also be in the second component, if c 6 e. If
b 6= e− 1, then the only option at this point is to fill in d+ c+ 1, . . . , n as in Tλ. If b = e− 1 and
a > 2, we may also obtain the standard tableau R = sb+c+d+1Tλ. If c > e (in which case we also
have b < e−1 and c > a), then we must fill d+2, . . . , d+e in the second component, but can place
d+ e+ 1, . . . , d+ c along the first row of the first component, if c 6 a+ e. In this case, we may
obtain a standard tableau U by filling in d+c+1 in node (1, e+1, 2), then d+c+2, . . . , d+c+b+1
down the first column of the first component, then d + c + b + 2, . . . , d + 2c + b − e along the
first row of the second component, with d+ 2c+ b− e+ 1, . . . , n being in the first component,
as in Tλ. Since ψd+evU = vsd+eU (plus possibly lower order terms), there is no homomorphism
mapping zλ to vU.

If instead, we place 1, . . . , d+1 down the first column of the first component, then d+2, . . . , d+a
must be placed in the first row of the first component. If c > a, then we have nowhere left to put
d+a+1, so there is no such standard tableau. If c = a, then we may place d+a+1, . . . , 2d+a+1
down the first column of the second component, then 2d+ a+ 2, . . . d+ a+ b+ 1 down the first
column of the first component, and the remaining entries along the first row of the second
component, obtaining a standard tableau we shall call S. If we further have that b = e− 1, we
also have the standard tableau T = sd+a+b+1S. There are no other standard tableaux of the
correct residue sequence.

We now show that there exists no homomorphism ϕ such that ϕ(zλ) = αvR + βvS + γvT for
some α, β, γ ∈ F. We observe that ψc+2d+1vR = ψc+2d+1ψc+d+ezλ = ψc+d+eψc+2d+1zλ = 0,
since d + 1 6 e − 1, and we cannot have that d = e − 2, b = e − 1, c > a > 2, while
ψc+2d+1vS = vsc+2d+1S (plus lower order terms), and ψc+2d+1vT = vsc+2d+1T (plus lower order
terms). Thus ψc+2d+1(vR + vS + vT) = vsc+2d+1S + vsc+2d+1T (plus lower order terms), so that
there exists no homomorphism mapping zλ to a linear combination of vS and vT. Furthermore,
ψc+d+e−1vR = vsc+d+e−1R, whilst ψc+d+e−1zλ = ψc+2d+1zλ = 0. Hence there is no non-trivial
endomorphism of Sλ.

We summarise the results of this section in the following theorem.

Theorem 3.8. Let n 6 2e and λ ∈P2
n be a bihook. If e 6= 2, then Sλ is decomposable if and only if

charF 6= 2, n = 2e and λ = ((a, 1b), (a, 1b)) for some a > 1, b > 0. If e = 2, then Sλ is decomposable
if and only if charF 6= 2 and λ = ((2), (2)), ((12), (12)), ((2), (12)) or ((12), (2)).

Remark. If e = 2, the four decomposable Specht modules are pairwise isomorphic. It is easy to check
that no other small bihooks label decomposable Specht modules.

4 General bihooks

This section comprises our main body of work, where we determine several large families of decom-
posable Specht modules in any characteristic when e is finite. Throughout this section, we will assume
that κ = (0, 0). We begin by applying induction and restriction functors to reduce our proof to the
case of Specht modules S((ke),(je)). We then show that these are decomposable by exploiting certain
endomorphisms, for which we determine at least two distinct eigenvalues, so that the generalised
eigenspace decompositions contain at least two summands. The amalgamation of these results can be
stated in our main theorem of this section as follows.
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Theorem 4.1. Let λ = ((ke + a, 1b), (je + a, 1b)) or ((b + 1, 1je+a−1), (b + 1, 1ke+a−1)), for some
j, k > 1, 0 < a 6 e and 0 6 b < e with a+ b 6= e, or for a = b = 0.

(i) For j, k > 1, if j + k is even and charF 6= 2, or if j + k is odd, then Sλ is decomposable.

(ii) If j = 1 or k = 1, then Sλ is decomposable if and only if charF - j + k.

Conjecture 4.2. When e 6= 2 and charF 6= 2, Theorems 3.8 and 4.1 provides a complete list of
decomposable Specht modules indexed by bihooks.

Remark. We have checked Conjecture 4.2 in GAP for all e ∈ {3, 4, 5}, charF ∈ {0, 3, 5}, and n 6 22.
In characteristic 2, we have found an extra handful of decomposable Specht modules which our
theorem and our methods do not detect – namely those indexed by ((4e), (2e)), ((2e), (4e)), ((8e), (2e)),
((2e), (8e)), ((5e), (3e)), ((3e), (5e)), their conjugates, and those bihooks obtained from these by our
induction functor arguments. It is tempting to speculate that the extra decomposable Specht modules
in characteristic 2 correspond to λ as in Theorem 4.1 with j 6= k and j − k ≡ 2 mod 4.

We begin with a reduction result, greatly simplifying the work we must do to prove Theorem 4.1.

Proposition 4.3. Let k, j > 1, and 0 6 a < e. The Specht module S((ke),(je)) is decomposable if and
only if S((ke+a),(je+a)) is.

Proof. Our argument is similar to that in [Spe14, Theorem 3.2], using the graded ‘cyclotomic divided

power functors’ of [BK09b, §4.6], which we denote here by e
(r)
i and f

(r)
i . Let λ = ((ke), (je)) and

µ = ((ke+a), (je+a)). Then e
(2)
0 e

(2)
1 . . . e

(2)
a−1 Sµ = Sλ and f

(2)
a−1f

(2)
a−2 . . . f

(2)
0 Sλ = Sµ. It follows that Sλ

and Sµ have the same composition length, and that e
(2)
0 e

(2)
1 . . . e

(2)
a−1D 6= 0 for any composition factor

D of Sµ. Hence, by exactness, e
(2)
0 e

(2)
1 . . . e

(2)
a−1M 6= 0 for any submodule M ⊆ Sµ. It follows that if Sµ

is decomposable, then so is Sλ. Repeating the argument the other way round completes the proof.

In fact, we may extend the above proposition as follows.

Proposition 4.4. Let k, j > 1, 0 < a 6 e, and 0 6 b < e with a+b 6= e. The Specht module S((ke),(je))

is decomposable if and only if S((ke+a,1b),(je+a,1b)) is.

Proof. The argument is similar to the proof of Proposition 4.3. By Proposition 4.3, we know that
S((ke),(je)) is decomposable if and only if S((ke+1),(je+1)) is.

Let λ = ((ke + 1), (je + 1)) and µ = ((ke + a, 1b), (je + a, 1b)). If a + b < e, we find that

e
(2)
1 e

(2)
2 . . . e

(2)
a−1 · e

(2)
e−1e

(2)
e−2 . . . e

(2)
e−b Sµ = Sλ and f

(2)
e−bf

(2)
e−b+1 . . . f

(2)
e−1 · f

(2)
a−1f

(2)
a−2 . . . f

(2)
1 Sλ = Sµ.

If a+ b > e, we find that

e
(2)
1 e

(2)
2 . . . e

(2)
a−2 · e

(2)
e−1e

(2)
e−2 . . . e

(2)
a · e

(4)
a−1 · e

(2)
a−2e

(2)
a−3 . . . e

(2)
e−b Sµ = Sλ

and
f

(2)
e−b . . . f

(2)
a−3f

(2)
a−2 · f

(4)
a−1 · f

(2)
a f

(2)
a+1 . . . f

(2)
e−1 · f

(2)
a−2f

(2)
a−3 . . . f

(2)
1 Sλ = Sµ

where we adopt the convention that f
(2)
a f

(2)
a+1 . . . f

(2)
e−1 = id = e

(2)
e−1e

(2)
e−2 . . . e

(2)
a if a = e.

We may now complete the proof identically to Proposition 4.3.

The following result handles some indecomposable Specht modules when n is reasonably small,
essentially extending Theorem 3.7.

Proposition 4.5. Let 1 6 a 6 e, and 0 6 b < e with a+ b 6= e, and let λ = ((a, 1b), (a, 1b)). Then Sλ
is indecomposable.

Proof. It is easy to see that λ is regular, from which the result also follows: starting with ∅, we
may add two cogood 0-nodes, followed by two cogood 1-nodes, and so on up to adding two cogood
(a−1)-nodes, then two cogood (−1)-nodes, and so on up to adding two cogood (−b)-nodes. If n > 2e,
then after adding the first 2e − 2 cogood nodes in the above, we must add four cogood nodes of the
next residue before reverting to adding two at a time.
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In view of the above results, we may assume that λ = ((ke), (je)) as we prove our main result.
We fix this choice of λ for the remainder of the section, and compute an endomorphism of Sλ which
we will use to prove our result.

We now introduce notation for the basis vectors vT of Sλ, analogous to [Sut18, §5.2]. Observe that
a standard λ-tableau T is determined by the entries ar := T(1, r, 2) lying in its second component, for
all r ∈ {1, . . . , je}. We can thus write T = wTTλ, where

wT = s
a1−1

↓
1

s
a2−1

↓
2

. . . s
aje−1

↓
je

∈ Sn.

It follows that vT = ψTzλ where

ψT = ψ
a1−1

↓
1

ψ
a2−1

↓
2

. . . ψ
aje−1

↓
je

∈ RΛ
n .

In order to distinguish our standard tableaux compactly, we will often write v(a1, a2, . . . , aje) for the
standard λ-tableau with entries a1, a2, . . . , aje in the second component.

Definition 4.6. Let T ∈ Std(λ). An e-brick is a sequence of e adjacent nodes containing entries
je+1, je+2, . . . , (j+1)e for j > 0. We say that T is an e-brick tableau if all entries of T lie in e-bricks.
We denote the set of all standard e-brick λ-tableaux by Te.

Example. If e = 3 and λ = ((6), (6)) then Te consists of the following six tableaux, obtained by
permuting the four e-bricks.

T1 = 7 8 9 10 11 12

1 2 3 4 5 6

T2 = 4 5 6 10 11 12

1 2 3 7 8 9

T3 = 4 5 6 7 8 9

1 2 3 10 11 12

T4 = 1 2 3 10 11 12

4 5 6 7 8 9

T5 = 1 2 3 7 8 9

4 5 6 10 11 12

T6 = 1 2 3 4 5 6

7 8 9 10 11 12

These tableaux correspond to vT1 = v(1, 2, 3, 4, 5, 6), vT2 = v(1, 2, 3, 7, 8, 9), vT3 = v(1, 2, 3, 10, 11, 12),
vT4 = v(4, 5, 6, 7, 8, 9), vT5 = v(4, 5, 6, 10, 11, 12) and vT6 = v(7, 8, 9, 10, 11, 12) in S((6),(6)).

The following easy lemma is our motivation for introducing this definition.

Lemma 4.7. For any T ∈ Std(λ), vT ∈ e(iλ) Sλ if and only if T ∈ Te.

In particular, this lemma tells us that for any endomorphism ϕ of Sλ,

ϕ(zλ) =
∑
T∈Te

aTvT for some aT ∈ F.

Lemma 4.8. For all T ∈ Te, deg T = j.

Proof. Any nodes in the first component of T cannot contribute to the degree, since there can’t be
any nodes above them. In the second component, each e-brick contributes +1 to the degree. If the
first component is empty when adding such a brick, this comes from only having an addable 0-node
higher up in the diagram. Otherwise, there is an addable 0-node, as well as one addable (e−1)-node
and one removable (e−1)-node.

Lemma 4.9. For all T ∈ Te and 1 6 r 6 n, yrvT = 0.

Proof. Since vT has degree j, deg(yrvT) = j + 2. But yrvT ∈ e(iλ) Sλ, so deg(yrvT) = j. This
contradiction yields the result.
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Similarly, the following result computes the actions of many ψr generators on vT ∈ e(iλ) Sλ.

Lemma 4.10. For all T ∈ Te and 1 6 r < n with r 6≡ 0 (mod e), ψrvT = 0.

Proof. We know that

ψrvT =
∑

T∈Std(λ)
iS=isrT

aSvS for some aS ∈ F,

and the result follows since no standard λ-tableau can have residue sequence isrT.

In order to calculate an endomorphism of Sλ, it remains to understand the action of the generators
ψre on basis vectors vT. In general, ψre does not annihilate vT. We will find an endomorphism of
Sλ which maps zλ to a linear combination of elements vT which we will show is annihilated by ψre if
r 6= j. First, we will introduce some necessary notation for working with tableaux in Te.

For any T ∈ Te, we number the e-bricks in the order of their entries, i.e. T comprises of bricks
1, 2, . . . , j + k. Then we have brick transpositions and their corresponding ψ expressions, which we
will denote by Ψr. In particular, the brick transposition which transposes the rth and (r+1)th bricks
corresponds to

Ψr = ψ
re

↓
(r−1)e+1

re+1

↓
(r−1)e+2

. . .
(r+1)e−1

↓
re

.

As with our ψ generators, we introduce the shorthand Ψ
x

↓
y

= ΨxΨx−1 . . .Ψy and Ψ
x

↑
y

= ΨyΨy+1 . . .Ψx.

Note that for any T ∈ Te, wT is fully commutative since the reading word is 321-avoiding. We
can write vT in terms of the e-bricks lying in the second component of T, i.e. we may write vT =
v(Bi1 , Bi2 , . . . , Bij ), for 1 6 i1 < i2 < · · · < ij 6 j + k. Then

vT = Ψ
i1−1

↓
1

Ψ
i2−1

↓
2

. . .Ψ
ij−1

↓
j

zλ.

Analogously, we write v(Bi1 , Bi2 , . . . , Bik) for the standard basis vector of Sλ indexed by the standard
λ-tableau that has the e-bricks Bi1 , Bi2 , . . . , Bik lying in its first component.

Example. As in the previous example, let e = 3 and λ = ((6), (6)). Then, for example,

Ψ1 = ψ
3

↓
1

ψ
4

↓
2

ψ
5

↓
3

= ψ3ψ2ψ1ψ4ψ3ψ2ψ5ψ4ψ3.

The six tableaux in Te, given in the previous example, are determined by which two bricks (from the
available bricks 1, 2, 3, 4) are in the second component, and correspond to the basis elements

zλ, Ψ2zλ, Ψ
3

↓
2

zλ = Ψ3Ψ2zλ,

Ψ1Ψ2zλ, Ψ1Ψ
3

↓
2

zλ = Ψ1Ψ3Ψ2zλ, Ψ
2

↓
1

Ψ
3

↓
2

zλ = Ψ2Ψ1Ψ3Ψ2zλ.

The following lemma is easy to see from the relations in the KLR algebras and their Specht
modules, and we will use it frequently without reference.

Lemma 4.11. (i) If |r − s| > 1, then ΨrΨs = ΨsΨr.

(ii) If λ = ((ke), (je)), for some j, k > 1 and r 6= j, then Ψrzλ = 0.

The following proposition will be crucial in our computations, particularly when e > 2. For e = 2,
it follows from the proof of [Spe14, Lemma 5.5], where the first author proves the result for hook
partitions in level one, assuming that the residue sequence iλ alternates between 0 and 1. Its proof
for e > 3 is long and technical, requiring many preliminary lemmas, and we relegate this to Section 6.
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Proposition 4.12. Suppose that e ∈ {2, 3, . . . }, and let λ = ((ke), (je)), for some j, k > 1. If
v ∈ e(iλ) Sλ and 1 6 r 6 j + k − 1, then

(i) ψreΨrv = −2ψrev;

(ii) for r < j + k − 1, ψreΨr+1Ψrv = ψrev;

(iii) for r > 1, ψreΨr−1Ψrv = ψrev.

Theorem 4.13. Suppose that k > j > 1.

(i) Let λ = ((ke), (je)). Then there is an endomorphism of Sλ defined by

ϕ(zλ) =
∑

06i6k−1
06l6j−1

(j − l)(k − i)Ψ
j−1

↑
j−l

Ψ
j+i

↓
j

zλ.

(ii) Let λ = ((je), (ke)). Then there is an endomorphism of Sλ defined by

ϕ(zλ) =
∑

06i6j−1
06l6k−1

(k − l)(j − i)Ψ
k−1

↑
k−l

Ψ
k+i

↓
k

zλ.

Proof. (i) By Lemmas 4.7, 4.9 and 4.10, we just need to show that ψreϕ(zλ) = 0, for all r ∈
{1, . . . , j − 1} ∪ {j + 1, . . . , k + j − 1}. So we shall fix r and look at the action of ψre on each
summand of ϕ(zλ). We will use Proposition 4.12 many times in this proof, without further
reference.

We first suppose that r ∈ {1, . . . , j − 1}. If j − l < r − 1, we observe that

ψreΨ
j−1

↑
j−l

Ψ
j+i

↓
j

zλ = ψreΨj−lΨj−l+1 . . .Ψr−2��
��Ψr−1ΨrΨr+1Ψr+2 . . .Ψj−1Ψ

j+i

↓
j

zλ = 0.

Similarly, if j − l > r + 1, we have

ψreΨ
j−1

↑
j−l

Ψ
j+i

↓
j

zλ = Ψ
j−1

↑
j−l

Ψ
j+i

↓
j

ψrezλ = 0.

If j − l = r − 1, we obtain the reduced expression

ψreΨr−1ΨrΨr+1Ψr+2 . . .Ψj−1Ψ
j+i

↓
j

zλ = ψreΨr+1Ψr+2 . . .Ψj−1Ψ
j+i

↓
j

zλ.

If j − l = r, we obtain the reduced expression

ψreΨrΨr+1Ψr+2 . . .Ψj−1Ψ
j+i

↓
j

zλ = −2ψreΨr+1Ψr+2 . . .Ψj−1Ψ
j+i

↓
j

zλ.

If j − l = r + 1, we immediately obtain the reduced expression

ψreΨr+1Ψr+2 . . .Ψj−1Ψ
j+i

↓
j

zλ.

Thus the only summands of ϕ(zλ) which are not killed by ψre are those corresponding to
j − l ∈ {r − 1, r, r + 1}, and for a fixed i all three yield the same basis vector, so we must
check the coefficients to show that they cancel. If r > 1, then the corresponding coefficients are
(r − 1)(k − i), −2r(k − i), and (r + 1)(k − i), respectively, so they cancel. If r = 1, we do not
have a term corresponding to j − l = r − 1, so we only have the latter two terms, which clearly
cancel.
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We now suppose that r ∈ {j + 1, . . . , j + k − 1}. If j + i < r − 1, we have

ψreΨ
j−1

↑
j−l

Ψj+iΨj+i−1 . . .Ψjzλ = Ψ
j−1

↑
j−l

Ψj+iΨj+i−1 . . .Ψjψrezλ = 0.

Similarly, if j + i > r + 1, we have

ψreΨ
j−1

↑
j−l

Ψ
j+i

↓
r+2

Ψr+1ΨrΨ
r−1

↓
j

zλ = ψreΨ
j−1

↑
j−l

Ψ
j+i

↓
r+3

Ψ
r−1

↓
j

Ψr+2zλ = 0.

If j + i = r − 1, we see that the following expression is reduced

ψreΨ
j−1

↑
j−l

Ψr−1Ψr−2 . . .Ψjzλ.

If j + i = r, we obtain the reduced expression

ψreΨ
j−1

↑
j−l

ΨrΨr−1 . . .Ψjzλ = −2ψreΨ
j−1

↑
j−l

Ψr−1 . . .Ψjzλ.

If j + i = r + 1, we obtain the reduced expression

ψreΨ
j−1

↑
j−l

Ψr+1ΨrΨr−1Ψr−2 . . .Ψjzλ = ψreΨ
j−1

↑
j−l

Ψr−1Ψr−2 . . .Ψjzλ.

As in the previous case, it is an easy check to verify that the coefficients (j − l)(k − r + j + 1),
−2(j − l)(k − r + j) and (j − l)(k − r + j − 1) cancel. We note that here r = j + k − 1 is the
exceptional case, for which there is no term corresponding to j+ i = r+ 1, but the j+ i = r− 1
and j+ i = r terms contribute 2(j− l) and −2(j− l), respectively, so that the terms still cancel.

(ii) Similar to the first part.

Example. Let e = 3, κ = (0, 0) and λ = ((9), (9)). Then we have the following endomorphism of Sλ

ϕ(zλ) = 9Ψ3zλ + 6Ψ4Ψ3zλ + 3Ψ5Ψ4Ψ3zλ + 6Ψ2Ψ3zλ + 4Ψ2Ψ4Ψ3zλ

+ 2Ψ2Ψ5Ψ4Ψ3zλ + 3Ψ1Ψ2Ψ3zλ + 2Ψ1Ψ2Ψ4Ψ3zλ + Ψ1Ψ2Ψ5Ψ4Ψ3zλ,

where the summands correspond to the tableaux

9 7 8 9 13 14 15 16 17 18

1 2 3 4 5 6 10 11 12

6 7 8 9 10 11 12 16 17 18

1 2 3 4 5 6 13 14 15

3 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 16 17 18

6 4 5 6 13 14 15 16 17 18

1 2 3 7 8 9 10 11 12

4 4 5 6 10 11 12 16 17 18

1 2 3 7 8 9 13 14 15

2 4 5 6 10 11 12 13 14 15

1 2 3 7 8 9 16 17 18

3 1 2 3 13 14 15 16 17 18

4 5 6 7 8 9 10 11 12

2 1 2 3 10 11 12 16 17 18

4 5 6 7 8 9 13 14 15

1 1 2 3 10 11 12 13 14 15

4 5 6 7 8 9 16 17 18

Proposition 4.14. Suppose that λ = ((e), (ke)) or λ = ((ke), (e)) with k > 1. Then Sλ is decompos-
able if and only if charF - k + 1.
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Proof. We first let λ = ((e), (ke)). For any non-trivial endomorphism ϕ of Sλ, we have

ϕ(zλ) =
k∑
j=1

ajΨ
k

↑
j

zλ for some aj ∈ F.

Since ψreϕ(zλ) = 0 for all r ∈ {1, 2, . . . , k − 1}, and by Proposition 4.12 we have

ψreΨ
k

↑
j

zλ =


ψreΨ

k

↑
j

zλ if j = r − 1 or r + 1,

−2ψreΨ
k

↑
j

zλ if j = r,

0 otherwise,

it follows that a1 = 1
2a2 and 2aj = aj−1 + aj+1 for j ∈ {2, 3, . . . , k − 1}. One can check that, up to

scalar multiplication, the only non-trivial endomorphism of Sλ is thus the one given in Theorem 4.13,
which simplifies to

ϕ(zλ) =
k∑
j=1

jΨ
k

↑
j

zλ.

Using Proposition 4.12, we find that

ϕ2(zλ) = (
k∑
j=1

jΨ
k

↑
j

)(
k∑
j=1

jΨ
k

↑
j

)zλ

= (
k∑
j=1

jΨ
k

↑
j

)((k−1)Ψ
k

↑
k−1

+kΨk)zλ

= (k−1)ϕ(zλ)− (2k)ϕ(zλ),

and so − 1
k+1ϕ is an idempotent when charF - k + 1, or equivalently, when (k + 1, charF) = 1.

Moreover, it is clear that ϕ2 = 0 when charF | k + 1, so that there are no non-trivial idempotent
endomorphisms.

We now let λ = ((ke), (e)). We similarly find that there exists only a single non-trivial endomor-
phism of Sλ, up to scalar multiplication, which is defined by

ϕ(zλ) =
k∑
j=1

(k + 1− j)Ψ
j

↓
1

zλ.

Analogously, − 1
k+1ϕ is an idempotent when charF - k + 1 and ϕ2 = 0 when charF | k + 1.

Corollary 4.15. Let 1 6 a < e and 0 6 b < e such that a + b < e. Then S((e+a,1b),(ke+a,1b)) and
S((ke+a,1b),(e+a,1b)) are decomposable if and only if (k + 1, charF) = 1 with k > 1.

Proof. The result follows from Proposition 4.14 by applying Proposition 4.4.

Theorem 4.16. Suppose that k > j > 1. Let λ = ((ke), (je)), and let ϕ be the endomorphism of Sλ
from Theorem 4.13(i). Then

(i) ϕ has an eigenvalue −j(k + 1) with corresponding eigenvector

v(Bk+1, Bk+2, Bk+3, . . . , Bk+j);

(ii) ϕ has an eigenvalue −(j − 1)(k + 2) with corresponding eigenvector

� v(B2, B3, Bk+2, Bk+3, . . . , B2k−1)− v(B1, Bk+2, Bk+3, . . . , B2k) if k = j,
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�
k−j+2∑
i=1

iv(B2, B4, B6, . . . , B2j−2, Bk+j−i+1) if k > j;

(iii) if k > j > 2, then ϕ has an eigenvalue −(j − 2)(k + 3) with corresponding eigenvector

k−j+3∑
i=1

1

2
i(i+ 1)v(B2, B4, B6, . . . , B2j−4, Bk+j−i, Bk+j−i+1)

+

k−j+2∑
i=1

i(i+ 1)v(B2, B4, B6, . . . , B2j−4, Bk+j−i−1, Bk+j−i+1)

+

k−j+1∑
i=1

i∑
l=1

l(i+ 2)v(B2, B4, B6, . . . , B2j−4, Bk+j−i−2, Bk+j−l+1);

(iv) if k > j = 2, then ϕ has an eigenvalue 0 with corresponding eigenvector

k∑
i=0

1

2
(i+ 1)(i+ 2)v(Bk−i+1, Bk−i+2) +

k−1∑
l=0

k−l−1∑
i=1

(i+ 1)(k − l + 1)v(Bl+1, Bk−i+2).

Analogously, we also have the following theorem.

Theorem 4.17. Suppose that k > j > 1. Let λ = ((je), (ke)), and let ϕ be the endomorphism of Sλ
from Theorem 4.13(ii). Then

(i) ϕ has an eigenvalue −j(k + 1) with corresponding eigenvector

v(Bk+1, Bk+2, Bk+3, . . . , Bk+j);

(ii) ϕ has an eigenvalue −(j − 1)(k + 2) with corresponding eigenvector

� v(B2, B3, Bk+2, Bk+3, . . . , B2k−1)− v(B1, Bk+2, Bk+3, . . . , B2k) if k = j,

�
k−j+2∑
i=1

iv(B2, B4, B6, . . . , B2j−2, Bk+j−i+1) if k > j;

(iii) if k > j > 2, then ϕ has an eigenvalue −(j − 2)(k + 3) with corresponding eigenvector

k−j+3∑
i=1

1

2
i(i+ 1)v(B2, B4, B6, . . . , B2j−4, Bk+j−i, Bk+j−i+1)

+

k−j+2∑
i=1

i(i+ 1)v(B2, B4, B6, . . . , B2j−4, Bk+j−i−1, Bk+j−i+1)

+

k−j+1∑
i=1

i∑
l=1

l(i+ 2)v(B2, B4, B6, . . . , B2j−4, Bk+j−i−2, Bk+j−l+1);

(iv) if k > j = 2, then ϕ has an eigenvalue 0 with corresponding eigenvector

k∑
i=0

1

2
(i+ 1)(i+ 2)v(Bk−i+1, Bk−i+2) +

k−1∑
l=0

k−l−1∑
i=1

(i+ 1)(k − l + 1)v(Bl+1, Bk−i+2).

Below, we will prove Theorem 4.16(iii). This is the most difficult part of Theorem 4.16 to prove,
and the others are proved analogously. Likewise, similar calculations prove Theorem 4.17.
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Proof of Theorem 4.16(iii). Let η = Ψ1Ψ
3

↓
2

Ψ
5

↓
3

. . .Ψ
2j−7

↓
j−3

Ψ
2j−5

↓
j−2

, and

ψw(1,s)
:= η ·Ψ

k+j−s−1

↓
j−1

Ψ
k+j−s
↓
j

(1 6 s 6 k − j + 3) ,

ψw(2,s)
:= η ·Ψ

k+j−s−2

↓
j−1

Ψ
k+j−s
↓
j

(1 6 s 6 k − j + 2) ,

ψw(r,s)
:= η ·Ψ

k+j−s−3

↓
j−1

Ψ
k+j−r+2

↓
j

(1 6 s 6 k − j + 1, 3 6 r 6 s+ 2) ,

and define vrs = ψw(r,s)
zλ in all cases above. We can now write

k−j+3∑
s=1

1
2s(s+ 1)v(B2, B4, B6, . . . , B2j−4, Bk+j−s, Bk+j−s+1)

+

k−j+2∑
s=1

s(s+ 1)v(B2, B4, B6, . . . , B2j−4, Bk+j−s−1, Bk+j−s+1)

+

k−j+1∑
s=1

s+2∑
r=3

(r − 2)(s+ 2)v(B2, B4, B6, . . . , B2j−4, Bk+j−s−2, Bk+j−r+3)

=

k−j+3∑
s=1

1
2s(s+ 1)v1s +

k−j+2∑
s=1

s(s+ 1)v2s +

k−j+1∑
s=1

s+2∑
r=3

(r − 2)(s+ 2)vrs .

We want to show that(
k−j+3∑
s=1

1
2s(s+ 1)ψw(1,s)

+

k−j+2∑
s=1

s(s+ 1)ψw(2,s)
+

k−j+1∑
s=1

s+2∑
r=3

(r − 2)(s+ 2)ψw(r,s)

)
· ϕ(zλ)

= −(j − 2)(k + 3)

(
k−j+3∑
s=1

1
2s(s+ 1)v1s +

k−j+2∑
s=1

s(s+ 1)v2s +

k−j+1∑
s=1

s+2∑
r=3

(r − 2)(s+ 2)vrs

)
.

First suppose we are in one of the following cases, where l is the index in the summation form for
ϕ(zλ) from Theorem 4.13:

� s 6 k − j for all r and l;

� s = k − j + 1 and r = 1 or r = 2 or (r > 3 and l 6 j − 2);

� s = k − j + 2 and l 6 j − 2;

� s = k − j + 3 and l 6 j − 3.

In these cases, we will show that

ψw(r,s)
·Ψ

j−1

↑
j−l

Ψ
j+i

↓
j

zλ =


−2vrs if l = i,

vrs if l = i± 1,

0 otherwise.

Suppose that l = 0. If i = 0 or 1, we have

ψw(r,s)
·Ψjzλ = −2vrs or ψw(r,s)

·����Ψj+1Ψjzλ = vrs , respectively.

If i > 1, we have

ψw(r,s)
·Ψ

j+i

↓
j

zλ = η ·Ψ
ij−1−1

↓
j−1

Ψ
ij−1

↓
j

Ψ
j+i

↓
j+2
��

��Ψj+1Ψjzλ = 0.
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Now suppose l = 1. If i = 0, we have

ψw(r,s)
·����Ψj−1Ψjzλ = vrs .

If i = 1, we have

ψw(r,s)
·Ψj−1Ψj+1Ψjzλ = η ·Ψ

ij−1−1

↓
j−1

Ψ
ij−1

↓
j+1
��

��ΨjΨj+1Ψj−1Ψjzλ = −2η ·Ψ
ij−1−1

↓
j−1

Ψ
ij−1

↓
j

zλ = −2vrs .

If i = 2, we have

ψw(r,s)
·Ψj−1Ψj+2Ψj+1Ψjzλ = η ·Ψ

ij−1−1

↓
j−1

Ψ
ij−1

↓
j+2
���

��Ψj+1Ψj+2ΨjΨj−1Ψj+1Ψjzλ

= η ·Ψ
ij−1−1

↓
j−1

��
��ΨjΨj−1Ψ

ij−1

↓
j

zλ

= vrs .

If i > 2, we have

ψw(r,s)
Ψj−1Ψ

j+i

↓
j

zλ = η ·Ψ
ij−1−1

↓
j−1

Ψ
ij−1

↓
j+i
(((

(((Ψj+i−1Ψj+iΨ
j+i−2

↓
j−1

Ψ
j+i−1

↓
j

zλ

= η ·Ψ
ij−1−1

↓
j

Ψ
j+i−2

↓
j+1

Ψj−1���
�ΨjΨj−1Ψ

ij−1

↓
j

zλ

= η ·Ψ
ij−1−1

↓
j−1

Ψ
j+i−2

↓
j+2

Ψ
ij−1

↓
j+3

Ψj+1��
���Ψj+2Ψj+1Ψjzλ

= 0.

Now assuming that l > 1, we have

ψw(r,s) ·Ψ
j−1

↑
j−l

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
3

. . .Ψ
2j−2l−1

↓
j−l

Ψ
2j−2l+1

↓
j−l

Ψ
2j−2l+3

↓
j−l+1

. . .Ψ
2j−5

↓
j−3

Ψ
ij−1−1

↓
j−2

Ψ
ij−1

↓
j−1

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
3

. . .Ψ
2j−2l−1

↓
j−l+1

Ψ
2j−2l+1

↓
j−l+2

Ψj−l((((
((Ψj−l+1Ψj−lΨ

2j−2l+3

↓
j−l+1

. . .Ψ
2j−5

↓
j−3

Ψ
ij−1−1

↓
j−2

Ψ
ij−1

↓
j−1

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
3

. . .Ψ
2j−2l−1

↓
j−l

Ψ
2j−2l+1

↓
j−l+3

Ψ
2j−2l+3

↓
j−l+4

Ψj−l+2((((
(((Ψj−l+3Ψj−l+2Ψj−l+1Ψ

2j−2l+5

↓
j−l+2

. . .

. . .Ψ
2j−5

↓
j−3

Ψ
ij−1−1

↓
j−2

Ψ
ij−1

↓
j−1

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
3

. . .Ψ
2j−2l+1

↓
j−l+1

Ψ
2j−2l+3

↓
j−l+5

Ψ
2j−2l+5

↓
j−l+6

Ψj−l+4((((
(((Ψj−l+5Ψj−l+4Ψ

j−l+3

↓
j−l+2

Ψ
2j−2l+7

↓
j−l+3

. . .

. . .Ψ
2j−5

↓
j−3

Ψ
ij−1−1

↓
j−2

Ψ
ij−1

↓
j−1

Ψ
j+i

↓
j

zλ

...

= Ψ1Ψ
3

↓
2

Ψ
5

↓
3

. . .Ψ
2j−7

↓
j−3

Ψ
2j−5

↓
j+l−3

Ψ
ij−1−1

↓
j+l−2

Ψj+l−4(((
((((Ψj+l−3Ψj+l−4Ψ

j+l−5

↓
j−2

Ψ
ij−1

↓
j−1

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
3

. . .Ψ
2j−7

↓
j−3

Ψ
2j−5

↓
j−2

Ψ
ij−1−1

↓
j+l−1

Ψ
ij−1

↓
j+l

Ψj+l−2((((
(((Ψj+l−1Ψj+l−2Ψ

j+l−3

↓
j−1

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
3

. . .Ψ
2j−7

↓
j−3

Ψ
2j−5

↓
j−2

Ψ
ij−1−1

↓
j−1

Ψ
ij−1

↓
j+l

Ψ
j+i

↓
j

zλ.
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If l = i, observe

Ψ
ij−1

↓
j+i

Ψ
j+i

↓
j

zλ = −2Ψ
ij−1

↓
j

zλ.

If l = i− 1, observe

Ψ
ij−1

↓
j+i−1

(((
(((Ψj+iΨj+i−1Ψ

j+i−2

↓
j

zλ = Ψ
ij−1

↓
j

zλ.

If l = i+ 1, observe

Ψ
ij−1

↓
j+i+1

Ψ
j+i

↓
j

zλ = Ψ
ij−1

↓
j

zλ.

If l > i+ 1, observe

Ψ
ij−1

↓
j+l

Ψ
j+i

↓
j

zλ = Ψ
ij−1

↓
j+l+1

Ψ
j+i

↓
j

Ψj+lzλ = 0.

If l < i− 1, observe

Ψ
ij−1

↓
j+l

Ψ
j+i

↓
j

zλ = Ψ
ij−1

↓
j+l

Ψ
j+i

↓
j+l+2

(((
(((Ψj+l+1Ψj+lΨ

j+l−1

↓
j

zλ = Ψ
ij−1

↓
j+l

Ψ
j+i

↓
j+l+3

Ψ
j+l−1

↓
j

Ψj+l+2zλ = 0.

We now suppose that we are not in the listed cases and that we lie in the exceptional cases.
First let r = 1, s = k − j + 3 and l = j − 2. Similarly to above, we obtain

ψw(r,s) ·Ψ
j−1

↑
j−l

Ψ
j+i

↓
j

zλ = · · · = Ψ1Ψ
3

↓
2

Ψ
5

↓
4

. . .Ψ
2j−7

↓
j−3

Ψ2j−5Ψ2j−6Ψ
2j−4

↓
j−2

Ψ
2j−3

↓
j−1

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
4

. . .Ψ
2j−7

↓
j−3

Ψ2j−5Ψ2j−4Ψ2j−6(((
(((Ψ2j−5Ψ2j−6Ψ

2j−7

↓
j−2

Ψ
2j−3

↓
j−1

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
4

. . .Ψ
2j−7

↓
j−3

Ψ
2j−5

↓
j−2

Ψ2j−4((((
((Ψ2j−3Ψ2j−4Ψ

2j−5

↓
j−1

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
4

. . .Ψ
2j−7

↓
j−3

Ψ
2j−5

↓
j−2

Ψ
2j−4

↓
j−1

Ψ
j+i

↓
j

zλ.

If i > j − 3, then this expression is clearly reduced. If i < j − 3, we have

Ψ1Ψ
3

↓
2

Ψ
5

↓
4

. . .Ψ
2j−7

↓
j−3

Ψ
2j−5

↓
j−2

Ψ
2j−4

↓
j−1

Ψ
j+i

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
4

. . .Ψ
2j−7

↓
j−3

Ψ
2j−5

↓
j−2

Ψ
2j−4

↓
j+i+1

Ψj+i(((
(((Ψj+i−1Ψj+iΨ

j+i−2

↓
j−1

Ψ
j+i−1

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
4

. . .Ψ
2j−7

↓
j−3

Ψ
2j−5

↓
j+i−1

Ψj+i−2((((
(((Ψj+i−3Ψj+i−2Ψ

j+i−4

↓
j−2

Ψ
j+i−3

↓
j−1

Ψ
2j−4

↓
j

zλ

...

= Ψ1Ψ
3

↓
2

Ψ
5

↓
4

. . .Ψ
2j−2i−5

↓
j−i−2

Ψ
2j−2i−3

↓
j−i+1

Ψj−i((((
((Ψj−i−1Ψj−iΨ

2j−2i−1

↓
j−i+1

. . .Ψ
2j−5

↓
j−1

Ψ
2j−4

↓
j

zλ

= Ψ1Ψ
3

↓
2

Ψ
5

↓
4

. . .Ψ
2j−2i−7

↓
j−i−3

Ψ
2j−2i−5

↓
j−i−1

Ψ
2j−2i−3

↓
j−i

Ψ
2j−2i−1

↓
j−i+1

. . .Ψ
2j−5

↓
j−1

Ψ
2j−4

↓
j

Ψj−i−2zλ

= 0.

If instead l = j − 1, we similarly obtain

ψw(r,s)
·Ψ

j−1

↑
j−l

Ψ
j+i

↓
j

zλ = η ·Ψ
2j−3

↓
j−1

Ψ
j+i

↓
j

zλ,

which is clearly reduced if i > j − 2. If i < j − 2, then the expression becomes zero.
Let r = 1, s = k − j + 2, and l = j − 1. Then the above expression becomes

η ·Ψ
2j−3

↓
j−1

Ψ
j+i

↓
j

zλ,
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which is clearly reduced if i > j − 2. If i < j − 2, then the expression becomes zero, as before.
Now let r = 2, s = k − j + 2, and l = j − 1. Then the above expression becomes

η ·Ψ
2j−2

↓
j−1

Ψ
j+i

↓
j

zλ,

which is clearly reduced if i > j−1. If i < j−2, then the expression becomes zero, while for i = j−2
we get

η ·Ψ
2j−4

↓
j−1

Ψ
2j−2

↓
j

zλ.

Finally, let r > 2, s = k − j + 1, and l = j − 1. Then the above expression becomes

η ·Ψ
k+j−r+2

↓
j−1

Ψ
j+i

↓
j

zλ,

which is clearly reduced if i > k − r + 3. If j − 2 6 i 6 k − r + 2, then

η ·Ψ
k+j−r+2

↓
j−1

Ψ
j+i

↓
j

zλ = η ·Ψ
k+j−r+2

↓
j+i+1

Ψj+i((((
((Ψj+i−1Ψj+iΨ

j+i−2

↓
j−1

Ψ
j+i−1

↓
j

zλ = η ·Ψ
j+i−2

↓
j−1

Ψ
k+j−r+2

↓
j

zλ,

which is reduced. If i < j − 2, then the expression becomes zero.
We summarise the exceptional cases. First suppose r = 1, s = k − j + 3, and l = j − 2. Then

ψw(1,s)
·Ψ

j−1

↑
2

Ψ
j+i

↓
j

zλ =


0 if i 6 j − 4,

v1s if i = j − 3,

v2s−1 if i = j − 2,

v(k−i+2)s−2
if i > j − 1.

If s = k − j + 2 or s = k − j + 3 and l = j − 1, then

ψw(1,s)
·Ψ

j−1

↑
1

Ψ
j+i

↓
j

zλ =


0 if i 6 j − 3,

v1k−j+2
if i = j − 2,

v2k−j+1
if i = j − 1,

v(k−i+2)k−j if i > j.

Now suppose that r = 2. If s = k − j + 2 and l = j − 1, then

ψw(2,s)
·Ψ

j−1

↑
1

Ψ
j+i

↓
j

zλ =



0 if i 6 j − 3,

v2s if i = j − 2,

v1s−1 if i = j − 1,

v2s−2 if i = j,

v(k−i+2)s−3
if i > j + 1.

Finally, suppose that s = k − j + 1. If r ∈ {3, . . . , k − j + 3} and l = j − 1, then

ψw(r,s)
·Ψ

j−1

↑
1

Ψ
j+i

↓
j

zλ =



0 if i 6 j − 3,

vrk−i−1
if j − 2 6 i 6 k − r + 1,

v2r−2 if i = k − r + 2,

v1r−3 if i = k − r + 3,

v2r−4 if i = k − r + 4,

v(k−i+2)r−5
if i > k − r + 5.

In the non-exceptional cases, we determine the coefficient α ∈ Z in

ψw(r,s)
· ϕ(zλ) = αvrs .
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If s 6 k − j, we obtain

ψw(r,s)
· ϕ(zλ) = ψw(r,s)

·
∑

06i6k−1
06l6j−1

(j − l)(k − i)Ψ
j−i
↑
j−l

Ψ
j+i

↓
j

zλ

=

j−1∑
l=0

−2(j − l)(k − l)vrs +

j−1∑
l=0

(j − l)(k − l − 1)vrs +

j−1∑
l=1

(j − l)(k − l + 1)vrs

= −j(k + 1)vrs .

Similarly, we also obtain α = −j(k + 1) in the other non-exceptional cases.
By combining this with the exceptional cases, we now determine αrs where(

k−j+3∑
s=1

1
2s(s+ 1)ψw(1,s)

+

k−j+2∑
s=1

s(s+ 1)ψw(2,s)
+

k−j+1∑
s=1

s+2∑
r=3

(r − 2)(s+ 2)ψw(r,s)

)
· ϕ(zλ)

=

k−j+3∑
s=1

α1sv1s +

k−j+2∑
s=1

α2sv2s +

k−j+1∑
s=1

s+2∑
r=3

αrsvrs .

We first let r = 1. If s = k − j + 3, we know from above that

α1sv1s = 1
2s(s+ 1)ψw(1,s)

·

 ∑
06i6k−1
06l6j−3

(j − l)(k − i)Ψ
j−1

↑
j−l

Ψ
j+i

↓
j

zλ + 2sΨ
j−1

↑
1

Ψ
2j−3

↓
j

zλ


= 1

2s(s+ 1) (−j(k + 1)v1s + 2sv1s)

= −(j − 2)(k + 3) · 1
2s(s+ 1)v1s ,

hence α1s = −(j − 2)(k + 3) · 1
2s(s+ 1), as required.

If s = k − j + 2, then we have

α1sv1s = 1
2s(s+ 1)ψw(1,s)

·

 ∑
06i6k−1
06l6j−2

(j − l)(k − i)Ψ
j−1

↑
j−l

Ψ
j+i

↓
j

zλ + sΨ
j−1

↑
1

Ψ
2j−2

↓
j

zλ


+ 1

2(s+ 1)(s+ 2)ψw(1,s+1)
· sΨ

j−1

↑
1

Ψ
2j−2

↓
j

zλ

= 1
2s(s+ 1) (−j(k + 1) + s) v1s + 1

2s(s+ 1)(s+ 2)v1s

= −(j − 2)(k + 3) · 1
2(s+ 1)(s+ 2)v1s .

If s = k − j + 1, then we have

α1sv1s = 1
2s(s+ 1)ψw(1,s)

· ϕ(zλ) + (s+ 1)(s+ 2)ψw(2,s+1)
· sΨ

j−1

↑
1

Ψ
2j−1

↓
j

zλ

= −(j − 2)(k + 3) · 1
2s(s+ 1)v1s .

For 1 6 s 6 k − j, we have

α1sv1s = 1
2s(s+ 1)ψw(1,s)

· ϕ(zλ) + (s+ 1)(k − j + 3)ψw(s+3,k−j+1)
· sΨ

j−1

↑
1

Ψ
j+k−s
↓
j

zλ

= −(j − 2)(k + 3) · 1
2s(s+ 1)v1s .

We now suppose that r = 2. If s = k − j + 2, then

α2sv2s = s(s+ 1)ψw(2,s)
·
∑

06i6k−1
06l6j−2

(j − l)(k − i)Ψ
j−1

↑
j−l

Ψ
j+i

↓
j

zλ
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+ 1
2(s+ 1)(s+ 2)ψw(1,s+1)

· 2sΨ
j−1

↑
2

Ψ
2j−2

↓
j

zλ + s(s+ 1)ψw(2,s)
· sΨ

j−1

↑
1

Ψ
2j−2

↓
j

zλ

= −s(s+ 1)j(k + 1)v2s + s(s+ 1)(s+ 2)v2s + s2(s+ 1)v2s

= −(j − 2)(k + 3) · s(s+ 1)v2s .

If s = k − j + 1, then

α2sv2s = s(s+ 1)ψw(2,k−j+1)
· ϕ(zλ) + 1

2(s+ 1)(s+ 2)ψw(1,s+1)
· sΨ

j−1

↑
1

Ψ
2j−1

↓
j

zλ

+ 1
2(s+ 2)(s+ 3)ψw(1,s+2)

· sΨ
j−1

↑
1

Ψ
2j−1

↓
j

zλ + s(s+ 2)ψw(s+2,s)
· sΨ

j−1

↑
1

Ψ
2j−1

↓
j

zλ

= −j(k + 1)s(s+ 1)v2s + s(s+ 2)
(

1
2(s+ 1) + 1

2(s+ 3) + s
)
v2s

= −(j − 2)(k + 3) · s(s+ 1)v2s .

If s = k − j, then

α2sv2s = s(s+ 1)ψw(2,s)
· ϕzλ + (s+ 2)(s+ 3)ψw(2,s+2)

· sΨ
j−1

↑
1

Ψ
2j

↓
j

zλ

+ s(s+ 3)ψw(s+2,s+1)
· sΨ

j−1

↑
1

Ψ
2j

↓
j

zλ

= −j(k + 1)s(s+ 1)v2s + s(s+ 3) (2s+ 2) v2s

= −(j − 2)(k + 3) · s(s+ 1)v2s .

If s ∈ {1, . . . , k − j − 1}, then

α2sv2s = s(s+ 1)ψw(2,s)
· ϕ(zλ) + s(k − j + 3)ϕw(s+2,k−j+1)

· sΨ
j−1

↑
1

Ψ
j+k−s
↓
j

zλ

+ (s+ 2)(k − j + 3)ψw(s+4,k−j+1)
· sΨ

j−1

↑
1

Ψ
j+k−s
↓
j

zλ

= −j(k + 1)s(s+ 1)v2s + s(k − j + 3)(2s+ 2)v2s

= −(j − 2)(k + 3) · s(s+ 1)v2s .

Finally, suppose that r ∈ {3, . . . , k − j + 3}. If s = k − j + 1, then

αrsvrs = (r − 2)(s+ 2)ψw(r,s)
·
∑

06i6k−1
06l6j−2

(j − l)(k − i)Ψ
j−1

↑
j−l

Ψ
j+i

↓
j

zλ

+ 1
2(s+ 2)(s+ 3)ψw(1,s+2)

· 2(r − 2)Ψ
j−1

↑
2

Ψ
j+k−r+2

↓
j

zλ

+ (r − 2)(s+ 2)ψw(r,s)
· (s+ 1)Ψ

j−1

↑
1

Ψ
2j−2

↓
j

zλ

= −(j − 2)(k + 3) · (r − 2)(s+ 2)vrk−j+1
.

If s = k − j, then

αrsvrs = (r − 2)(s+ 2)ψw(r,s)
· ϕ(zλ)

+ 1
2(s+ 2)(s+ 3)ψw(1,s+2)

· (r − 2)Ψ
j−1

↑
1

Ψ
j+k−r+2

↓
j

zλ

+ 1
2(s+ 3)(s+ 4)ψw(1,s+3)

· (r − 2)Ψ
j−1

↑
1

Ψ
j+k−r+2

↓
j

zλ

+ (r − 2)(s+ 3)ψw(r,s+1)
· (s+ 1)Ψ

j−1

↑
1

Ψ
2j−1

↓
j

zλ

= (r − 2)(s+ 2) (−j(k + 1) + 2(s+ 3)) vrs
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= −(j − 2)(k + 3) · (r − 2)(s+ 2)vrs .

If s = k − j − 1, then

αrsvrs = (r − 2)(s+ 2)ψw(r,s)
· ϕ(zλ) + (s+ 3)(s+ 4)ψw(2,s+3)

· (r − 2)Ψ
j−1

↑
1

Ψ
j+k−r+2

↓
j

zλ

+ (r − 2)(s+ 4)ψw(r,s+2)
· (k − j)Ψ

j−1

↑
1

Ψ
2j−1

↓
j

zλ

= −(j − 2)(k + 3) · (r − 2)(s+ 2)vrs .

If s ∈ {1, . . . , k − j − 2}, then

αrsvrs = (r − 2)(s+ 2)ψw(r,s)
· ϕzλ

+ (r − 2)(k − j + 3)ψw(r,k−j+1)
· (s+ 1)Ψ

j−1

↑
1

Ψ
j+k−s−1

↓
j

zλ

+ (s+ 3)(k − j + 3)ψw(s+5,k−j+1)
· (r − 2)Ψ

j−1

↑
1

Ψ
j+k−r+2

↓
j

zλ

= (r − 2) (−j(k + 1)(s+ 2) + (k − j + 3)(2s+ 4)) vrs

= −(j − 2)(k + 3) · (r − 2)(s+ 2)vrs .

Hence

αrs = −(j − 2)(k + 3) ·


1
2s(s+ 1) if r = 1;

s(s+ 1) if r = 2;

(r − 2)(s+ 2) if r > 3,

for all s, as required.

Corollary 4.18. Let λ = ((ke), (je)) or ((1ke), (1je)) with k, j > 1.

(i) If j + k is odd, then Sλ is decomposable.

(ii) If j + k is even and charF 6= 2, then Sλ is decomposable.

Proof. By Theorems 4.16 and 4.17 parts (i) and (ii), there is an endomorphism ϕ of Sλ with two
eigenvalues differing by j − k − 2. If j = k, then j + k is even and these eigenvalues differ by 2, and
are hence these are distinct if charF 6= 2.

If k > j > 2, then by part (iii), we have a third eigenvalue differing from the second by j − k − 4.
If charF | (j − k − 2), then the first two eigenvalues are equal, but the third is distinct if charF 6= 2.
If charF = 2, then charF - (j − k − 2) when j + k is odd.

If k > j = 2, then by part (iv), we have 0 as our third eigenvalue. If k is odd, we have at least
two distinct eigenvalues in any characteristic. Likewise, if k is even and charF 6= 2, we have at least
two distinct eigenvalues.

Thus, in each case, the generalised eigenspace decomposition of Sλ has at least two direct sum-
mands, which are easily seen to be RΛ

n -modules.

By applying Theorem 2.8 and the method in the proof of Propositions 4.3 and 4.4, and combining
with Theorem 3.8, Proposition 4.14 and Corollary 4.15, we obtain Theorem 4.1.

5 Quantum characteristic two

We now focus our attention on the case where e = 2.

Thankfully most of the difficult work here is already done, and we are able to use results from
[Spe14, Mur80, FS16] on Specht modules over the level one cyclotomic quiver Hecke algebra to obtain
a lot of decomposable Specht modules with little effort. We collect the results we will need.
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Theorem 5.1 [Mur80, Theorem 4.5]. If e = charF = 2, a > b, and either λ or λ′ is (a, 1b), then
Sλ is decomposable if and only if a+ b is odd and a− 1 6≡ b (mod 2L), where 2L−1 6 b < 2L.

Theorem 5.2 [Spe14, Theorem 6.8]. If e = 2, charF 6= 2, a > b, and either λ or λ′ is (a, 1b),
then Sλ is decomposable if and only if a+ b is odd and either

(i) a > b > 4; or

(ii) a > b = 2 or 3, and charF - da2e.

When looking for decomposable Specht modules, the cases κ = (0, 1) and κ = (0, 0) must be
treated separately. However, our first result is independent of this.

Theorem 5.3. Let κ be arbitrary, with corresponding Λ = Λκ. Let µ be a hook partition of n such
that Sµ is a decomposable RΛ0

n -module (cf. Theorems 5.1 and 5.2). Then for any partition ν of m,
the Specht modules S(µ,ν) and S(ν,µ) are decomposable RΛ

m+n-modules.

Proof. Since Sµ is decomposable, it has a non-trivial idempotent endomorphism ϕ determined by

ϕ(zµ) =
∑

T∈Std(µ)

aTvT for some aT ∈ F.

Via the embedding Rm ↪→ Rm+n, it is easy to see that ϕ also defines an idempotent endomorphism
of S(ν,µ). For the other Specht module,

ϕ̂(z(µ,ν)) =
∑

T∈Std(µ)

aT shiftm(ψT)z(µ,ν)

is a non-trivial idempotent endomorphism of S(µ,ν), where shiftm : Rm ↪→ Rm+n is the shift map
(cf. [FS16, §2.6.1]).

Remark. Theorem 5.3 readily extends to higher levels, i.e. we can use Theorems 5.1 and 5.2 to
construct many decomposable Specht modules in higher levels, regardless of the chosen κ. Similarly,
for any finite e, we may embed the bihooks of Theorem 4.1 into higher levels whenever we have a
repeat in the e-multicharge.

The following result is the e = 2 extension of Theorem 4.1.

Theorem 5.4. Let κ = (0, 0), and let λ = ((2k+a, 1b), (2j+a, 1b)), ((b+1, 12j+a−1), (b+1, 12k+a−1)),
((2k + a, 1b), (a, 12j+b)), or ((a, 12k+b), (2j + a, 1b)) for some j, k > 1, 0 < a 6 2 and 0 6 b < 2 with
a+ b 6= 2, or for a = b = 0.

(i) For j, k > 1, if j + k is even and charF 6= 2, or if j + k is odd, then Sλ is decomposable.

(ii) If j = 1 or k = 1, then Sλ is decomposable if and only if charF - j + k.

Proof. We extend Theorem 4.1 and use the fact that S((2k),(2j))
∼= S((2k),(12j)) when e = 2, κ1 = κ2.

(In general, their Specht presentations only differ in the idempotent relation, and if e = 2 then the
residues in the second components coincide.)

Conjecture 5.5. Let e = 2. If κ1 6= κ2, then Theorem 5.3 provides a complete list of decomposable
Specht modules indexed by bihooks. If κ1 = κ2, and charF = 0, then Theorems 3.8, 5.3 and 5.4
provide a complete list of decomposable Specht modules indexed by bihooks.

Remark. For charF ∈ {0, 2, 3, 5}, we have checked in GAP that Conjecture 5.5 holds for all i) n 6 14
if κ1 6= κ2; ii) n 6 13 if κ1 = κ2. If κ1 = κ2 and charF = 2, we note that the decomposables appearing
in the remark after Conjecture 4.2 are also decomposable here. However, we have also found further
examples of decomposable Specht modules not accounted for. Namely the bihooks ((3, 12), (3)),
((7, 12), (3)), ((5, 14), (3)), ((7), (3, 12)), and ((5, 14), (5)) if charF = 2, ((5, 12), (3)), ((5, 12), (5)), and
((5, 12), (7)) if charF = 3, and ((9, 12), (3)) if charF = 5, along with all bihooks obtained from these
by conjugating, transposing, and our induction arguments, index decomposable Specht modules if
κ1 = κ2. This list is exhaustive for charF ∈ {0, 2, 3, 5} and n 6 13.
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6 Proof of Propositions 3.5 and 4.12

In this section, we complete the long calculations necessary in proving Propositions 3.5 and 4.12. We
begin by setting out some notation which will hopefully help the reader follow the calculations.

For any reduced expression w = sr1 . . . srm ∈ Sn, observe that

ψrψr±1ψrψwzλ = ψrψr±1ψrψwe(iλ)zλ

= ψrψr±1ψre(sr1 . . . srm · iλ)ψwzλ

= ψrψr±1ψre(i1, . . . , ir, ir+1, ir+2, . . . , in)ψwzλ.

Since the KLR ‘braid relations’ only depend on the residues ir, ir+1 and ir+2 of the idempotent
e(sr1 . . . srm · iλ), we will instead write the above expression as

(ψrψr±1ψr(ir, ir+1, ir+2))ψwzλ.

Similarly, since yr+1ψre(i)ψwzλ only depends on the residues ir and ir+1, we will write this expression
as (yr+1ψr(ir, ir+1))ψwzλ.

In fact, whenever we apply the KLR relations in our computations, we will analogously abbreviate
idempotents to the two or three necessary, consecutive residues, to help the reader identify which
relations are being applied, and which case of the relation is applicable.

For both propositions, we will break the calculation apart with several preliminary lemmas. First,
we will focus on Proposition 3.5.

6.1 Proof of Proposition 3.5

Lemma 6.1. Suppose that e > 3.

(i) Let 1 6 r 6 a− 2 and 1 6 s 6 e− r − 1. Then

ψ2e−2r−sψ
2e−2r−s−1

↓
e−r

2e−2r−s
↓

e−r+1

. . .
2e−r−s−1

↓
e

zλ = 0.

(ii) Let 1 6 r 6 a− 1. Then

ψ
2e−r−1

↓
2e−2r+1

ψ
2e−2r+1

↓
e−r+2

2e−2r+2

↓
e−r+3

. . .
2e−r−1

↓
e

zλ = ψ
2e−2r

↓
e−r+2

2e−2r+1

↓
e−r+3

. . .
2e−r−2

↓
e

zλ.

(iii) Let 1 6 r 6 a− 1. Then

ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−r−1

↓
e−r

ψ
2e−2r

↓
e−r+1

2e−2r+1

↓
e−r+2

. . .
2e−r−1

↓
e

zλ = ψ
2b+2

↓
b+2

2b+3

↓
b+3

. . .
e+b

↓
e

zλ.

Proof. (i) We argue by reverse induction on s. For the base case, we let s = e− r − 1. Then

ψ2e−2r−sψ
2e−2r−s−1

↓
e−r

2e−2r−s
↓

e−r+1

. . .
2e−r−s−1

↓
e

zλ

= (ψe−r+1ψe−rψe−r+1(a−r−1, a−r, 0))ψe−r+2ψe−r+3 . . . ψezλ

= ψe−rψe−r+1 . . . ψeψe−rzλ

= 0.

Now suppose that s < e− r − 1. Then

ψ2e−2r−sψ
2e−2r−s−1

↓
e−r

2e−2r−s
↓

e−r+1

. . .
2e−r−s−1

↓
e

zλ

= (ψ2e−2r−sψ2e−2r−s−1ψ2e−2r−s(a−r−1, a−r, a−r−s−1))ψ
2e−2r−s−2

↓
e−r

2e−2r−s−1

↓
e−r+1

·
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ψ
2e−2r−s+1

↓
e−r+2

2e−2r−s+2

↓
e−r+3

. . .
2e−r−s−1

↓
e

zλ

= ψ2e−2r−s−1ψ2e−2r−s . . . ψ2e−r−s−1ψ2e−2r−s−1ψ
2e−2r−s−2

↓
e−r

2e−2r−s−1

↓
e−r+1

. . .
2e−r−s−2

↓
e

zλ

= 0 by the induction hypothesis.

(ii) We argue by induction on r. For the base case, when r = 1, both sides of the inequality are
equal to zλ by definition. Thus, we may assume that r > 1. Then

ψ
2e−r−1

↓
2e−2r+1

ψ
2e−2r+1

↓
e−r+2

2e−2r+2

↓
e−r+3

. . .
2e−r−1

↓
e

zλ

= ψ
2e−r−1

↓
2e−2r+2

(ψ2
2e−2r+1(a−r+1, a−r−1))ψ

2e−2r

↓
e−r+2

ψ
2e−2r+2

↓
e−r+3

2e−2r+3

↓
e−r+4

. . .
2e−r−1

↓
e

zλ

= ψ
2e−2r

↓
e−r+2

ψ
2e−r−1

↓
2e−2r+2

ψ
2e−2r+2

↓
e−r+3

2e−2r+3

↓
e−r+4

. . .
2e−r−1

↓
e

zλ

= ψ
2e−2r

↓
e−r+2

2e−2r+1

↓
e−r+3

. . .
2e−r−2

↓
e

zλ by the induction hypothesis.

(iii) We argue by reverse induction on r. For the base case, when r = a − 1, both sides of the
inequality are equal by definition, so there is nothing to prove. So we assume that r < a − 1.
Then

ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−r−1

↓
e−r

ψ
2e−2r

↓
e−r+1

2e−2r+1

↓
e−r+2

. . .
2e−r−1

↓
e

zλ

= ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−r−2

↓
e−r−1

ψ
2e−r−1

↓
2e−2r+1

(ψ2e−2rψ2e−2r−1ψ2e−2r(a−r−1, a−r, a−r−1))·

ψ
2e−2r−2

↓
e−r

2e−2r−1

↓
e−r+1

ψ
2e−2r+1

↓
e−r+2

2e−2r+2

↓
e−r+3

. . .
2e−r−1

↓
e

zλ

= ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−r−2

↓
e−r−1

ψ
2e−r−1

↓
2e−2r+1

ψ
2e−r−1

↑
2e−2r−1

ψ2e−2r−1ψ
2e−2r−2

↓
e−r

2e−2r−1

↓
e−r+1

. . .
2e−r−2

↓
e

zλ

+ ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−r−2

↓
e−r−1

ψ
2e−2r−2

↓
e−r

2e−2r−1

↓
e−r+1

(
ψ

2e−r−1

↓
2e−2r+1

ψ
2e−2r+1

↓
e−r+2

2e−2r+2

↓
e−r+3

. . .
2e−r−1

↓
e

zλ

)
= 0 + ψ

e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−r−2

↓
e−r−1

ψ
2e−2r−2

↓
e−r

2e−2r−1

↓
e−r+1

ψ
2e−2r

↓
e−r+2

2e−2r+1

↓
e−r+3

. . .
2e−r−2

↓
e

zλ by parts (i) and (ii)

= ψ
2b+2

↓
b+2

2b+3

↓
b+3

. . .
e+b

↓
e

zλ by the induction hypothesis.

Lemma 6.2. Suppose that e > 3.

(i) Let 1 6 r 6 b, 0 6 s 6 a− 3, and 0 6 k 6 b. Then

ψ
2b−r+s+2

↓
2b−r+s+3−k

ψ
e+b−r
↓

b−r+s+2

ψ
2b−r+s+3−k
↓

b−r+s+3

ψ
2b−r+s+4

↓
b−r+s+4

2b−r+s+5

↓
b−r+s+5

. . .
e+b

↓
e

ψ
b−r+s+1

↓
b−r+2

ψ
e−r
↓

b−r+3

e−r+1

↓
b−r+4

. . .
e−2

↓
b+1

zλ

= ψ
2b−r+s+2

↓
2b−r+s+2−k

ψ
e+b−r
↓

b−r+s+2

ψ
2b−r+s+2−k
↓

b−r+s+3

ψ
2b−r+s+4

↓
b−r+s+4

2b−r+s+5

↓
b−r+s+5

. . .
e+b

↓
e

ψ
b−r+s+1

↓
b−r+2

ψ
e−r
↓

b−r+3

e−r+1

↓
b−r+4

. . .
e−2

↓
b+1

zλ.

(ii) Let 1 6 r 6 b and 0 6 s 6 a− 3. Then

ψ
2b−r+2

↓
b−r+2

2b−r+3

↓
b−r+3

. . .
2b−r+s+1

↓
b−r+s+1

ψ
e+b−r
↓

b−r+s+2

ψ
2b−r+s+3

↓
b−r+s+3

2b−r+s+4

↓
b−r+s+4

. . .
e+b

↓
e

ψ
b−r+s+1

↓
b−r+2

ψ
e−r
↓

b−r+3

e−r+1

↓
b−r+4

. . .
e−2

↓
b+1

zλ

= ψ
2b−r+2

↓
b−r+2

2b−r+3

↓
b−r+3

. . .
2b−r+s+2

↓
b−r+s+2

ψ
e+b−r
↓

b−r+s+3

ψ
2b−r+s+4

↓
b−r+s+4

2b−r+s+5

↓
b−r+s+5

. . .
e+b

↓
e

ψ
b−r+s+2

↓
b−r+2

ψ
e−r
↓

b−r+3

e−r+1

↓
b−r+4

. . .
e−2

↓
b+1

zλ.
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(iii) Let 1 6 r 6 b. Then

ψ
e+b−r
↓

b−r+2

ψ
2b−r+3

↓
b−r+3

2b−r+4

↓
b−r+4

. . .
e+b

↓
e

ψ
e−r
↓

b−r+3

e−r+1

↓
b−r+4

. . .
e−2

↓
b+1

zλ = ψ
2b−r+2

↓
b−r+2

2b−r+3

↓
b−r+3

. . .
e+b

↓
e

ψ
e−r−1

↓
b−r+2

e−r
↓

b−r+3

. . .
e−2

↓
b+1

zλ.

(iv) The equation in part (i) also holds if r = b+ 1, s = 0 and 0 6 k 6 b− 1. That is,

ψ
b+1

↓
b+2−k

ψ
e−1

↓
1

ψ
b+2−k
↓
2

ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
b+1

↓
b+1−k

ψ
e−1

↓
1

ψ
b+1−k
↓
2

ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

(v) We have

ψ
e−1

↓
1

e

↓
2

. . .
e+b−1

↓
b+1

ψ
2b+2

↓
b+2

2b+3

↓
b+3

. . .
e+b

↓
e

zλ = ψ
b+1

↓
2

ψ
e−1

↓
1

ψ2ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

Proof. (i) We have

ψ
2b−r+s+2

↓
2b−r+s+3−k

ψ
e+b−r
↓

b−r+s+2

ψ
2b−r+s+3−k
↓

b−r+s+3

ψ
2b−r+s+4

↓
b−r+s+4

2b−r+s+5

↓
b−r+s+5

. . .
e+b

↓
e

ψ
b−r+s+1

↓
b−r+2

ψ
e−r
↓

b−r+3

e−r+1

↓
b−r+4

. . .
e−2

↓
b+1

zλ

= ψ
2b−r+s+2

↓
2b−r+s+3−k

ψ
e+b−r
↓

2b−r+s+4−k
(ψ2b−r+s+3−kψ2b−r+s+2−kψ2b−r+s+3−ke(j))·

· ψ
2b−r+s−1−k
↓

b−r+s+2

ψ
2b−r+s+2−k
↓

b−r+s+3

ψ
2b−r+s+4

↓
b−r+s+4

2b−r+s+5

↓
b−r+s+5

. . .
e+b

↓
e

ψ
b−r+s+1

↓
b−r+2

ψ
e−r
↓

b−r+3

e−r+1

↓
b−r+4

. . .
e−2

↓
b+1

zλ

where positions 2b−r+s+2−k, 2b−r+s+3−k, and 2b−r+s+4−k of j are positions b−r+2,
b+ s+ 2 and e+ b+ 1− k of iλ, respectively; i.e. the corresponding residues are e− b+ r − 1,
s+ 1, and e− b+k, respectively. Since 1 6 s+ 1 6 a− 2 and a 6 e− b+ r− 1 6 e− 1, it is clear
that the corresponding braid relation never produces an error term, and the result follows:

= ψ
2b−r+s+2

↓
2b−r+s+2−k

ψ
e+b−r
↓

b−r+s+2

ψ
2b−r+s+2−k
↓

b−r+s+3

ψ
2b−r+s+4

↓
b−r+s+4

2b−r+s+5

↓
b−r+s+5

. . .
e+b

↓
e

ψ
b−r+s+1

↓
b−r+2

ψ
e−r
↓

b−r+3

e−r+1

↓
b−r+4

. . .
e−2

↓
b+1

zλ.

(ii) Apply part (i) for k = 0, then k = 1, and so on up to and including the case k = b.

(iii) Apply part (ii) for s = 0, then s = 1, and so on up to and including the case s = a− 3.

(iv) The proof is identical to part (i), except now we notice that the third residue of the relevant
triple is e− b 6 e− b+ k 6 e− 1, while the second is 1.

(v) Apply part (iii) for r = 1, then r = 2, and so on up to and including the case r = b, to yield

ψ
e−1

↓
1

ψ
e

↓
2

e+1

↓
3

. . .
e+b−1

↓
b+1

ψ
2b+2

↓
b+2

2b+3

↓
b+3

. . .
e+b

↓
e

zλ = ψ
e−1

↓
1

ψ
b+2

↓
2

b+3

↓
3

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

Then, applying part (iv) for k = 0, then k = 1, and so on up to and including the case k = b− 1
gives

ψ
e−1

↓
1

ψ
b+2

↓
2

b+3

↓
3

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ = ψ
b+1

↓
2

ψ
e−1

↓
1

ψ2ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

Lemma 6.3. Suppose that e > 3.
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(i) For 3 6 x 6 a− 1, we have

ψ
e−1

↓
b+x

ψ
b+1

↓
2

b+2

↓
3

. . .
b+x−1

↓
x

ψ
b+x

↓
x

b+x+1

↓
x+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
e−1

↓
b+x+1

ψ
b+1

↓
2

b+2

↓
3

. . .
b+x

↓
x+1

ψ
b+x+1

↓
x+1

b+x+2

↓
x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

(ii) We have

ψ
b+1

↓
2

ψ
e−1

↓
3

ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ = ψ
b+1

↓
2

b+2

↓
3

. . .
e−1

↓
a

ψ
e

↓
a

e+1

↓
a+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

Proof. (i) We have

ψ
e−1

↓
b+x

ψ
b+1

↓
2

b+2

↓
3

. . .
b+x−1

↓
x

ψ
b+x

↓
x

b+x+1

↓
x+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
e−1

↓
b+x+1

ψ
b+1

↓
2

b+2

↓
3

. . .
b+x−2

↓
x−1

(ψb+xψb+x−1ψb+x(0, x− 1,−b))·

ψ
b+x−2

↓
x

ψ
b+x−1

↓
x

ψ
b+x+1

↓
x+1

b+x+2

↓
x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
e−1

↓
b+x+1

ψ
b+1

↓
2

b+2

↓
3

. . .
b+x−2

↓
x−1

ψb+x−1ψb+x(ψb+x−1ψb+x−2ψb+x−1(0, x− 1,−b+ 1))·

ψ
b+x−3

↓
x

ψ
b+x−2

↓
x

ψ
b+x+1

↓
x+1

b+x+2

↓
x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

...

= ψ
e−1

↓
b+x+1

ψ
b+1

↓
2

b+2

↓
3

. . .
b+x−2

↓
x−1

ψ
b+x−1

↓
x+1

ψ
b+x

↓
x+2

(ψx+1ψxψx+1(0, x− 1,−1))·

= ψxψ
b+x+1

↓
x+1

b+x+2

↓
x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
e−1

↓
b+x+1

ψ
b+1

↓
2

b+2

↓
3

. . .
b+x

↓
x+1

(ψ2
x(x− 1, 0))ψ

b+x+1

↓
x+1

b+x+2

↓
x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
e−1

↓
b+x+1

ψ
b+1

↓
2

b+2

↓
3

. . .
b+x

↓
x+1

ψ
b+x+1

↓
x+1

b+x+2

↓
x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

(ii) By applying part (i) repeatedly, we have

ψ
b+1

↓
2

ψ
e−1

↓
3

ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ =ψ
e−1

↓
b+3

ψ
b+1

↓
2

ψ
b+2

↓
3

ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
e−1

↓
b+4

ψ
b+1

↓
2

b+2

↓
3

b+3

↓
4

ψ
b+4

↓
4

ψ
b+5

↓
5

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

...

= ψ
b+1

↓
2

b+2

↓
3

. . .
e−1

↓
a

ψ
e

↓
a

e+1

↓
a+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

Lemma 6.4. Suppose that e > 3. For 0 6 x 6 b− 1 and 1 6 y 6 b− x+ 1, we have

ψa+2x+yψ
e+x+y

↓
a+x+y

e+x+y+1

↓
a+x+y+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ = 0

Proof. We fix x, and prove the statement by reverse induction on y. If y = b−x+ 1, the expression is

ψe+x+1ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ = 0.
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If y < b− x+ 1, then

ψa+2x+yψ
e+x+y

↓
a+x+y

e+x+y+1

↓
a+x+y+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
e+x+y

↓
a+2x+y+2

(ψa+2x+yψa+2x+y+1ψa+2x+y(α,−x,−x− 1))ψ
a+2x+y−1

↓
a+x+y

e+x+y+1

↓
a+x+y+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
e+x+y

↓
a+x+y

ψa+2x+y+1ψ
e+x+y+1

↓
a+x+y+1

e+x+y+2

↓
a+x+y+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= 0 by the induction hypothesis,

where α = −y − x− 1 if y 6 b− x− 1 and α = a− 1 if y = b− x.

Lemma 6.5. Suppose that e > 3. For 0 6 x 6 b− 1 < e− 2 or 0 6 x 6 b− 2 = e− 3, we have

(i)
(
ψ
a+2x−1

↑
a+x

ψ
a+2x−1

↓
a+x

)
ψ
e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ = ψ
e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ;

(ii) ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e−1

↓
a+x

e

↓
a+x+1

. . .
e+x−1

↓
a+2x

ψ
e+x

↓
a+x

e+x+1

↓
a+x+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= −ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e−1

↓
a+(x+1)

e

↓
a+(x+1)+1

. . .
e+(x+1)−1

↓
a+2(x+1)

ψ
e+(x+1)

↓
a+(x+1)

e+(x+1)+1

↓
a+(x+1)+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

Proof. (i) Firstly, it is obvious that the statement holds when x = 0, since the term ψ
a−1

↑
a

ψ
a−1

↓
a

is

trivial. Now assuming that x > 0, we have

ψ
a+2x−1

↑
a+x

ψ
a+2x−1

↓
a+x

ψ
e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
a+2x−2

↑
a+x

(ψ2
a+2x−1(−x− 1,−x+ 1))ψ

a+2x−2

↓
a+x

ψ
e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
a+2x−3

↑
a+x

(ψ2
a+2x−2(−x− 1,−x+ 2))ψ

a+2x−3

↓
a+x

ψ
e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

...

= (ψ2
a+x(−x− 1, 0))ψ

e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

(ii) Applying Lemma 6.4, we have

ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e−1

↓
a+x

e

↓
a+x+1

. . .
e+x−1

↓
a+2x

ψ
e+x

↓
a+x

e+x+1

↓
a+x+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e−1

↓
a+x

e

↓
a+x+1

. . .
e+x−2

↓
a+2x−1

ψ
e+x−1

↓
a+2x+1

ψa+2xψ
e+x

↓
a+x

e+x+1

↓
a+x+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e−1

↓
a+x

e

↓
a+x+1

. . .
e+x−2

↓
a+2x−1

ψ
e+x−1

↓
a+2x+1

e+x

↓
a+2x+2

·

(ψa+2xψa+2x+1ψa+2x(−x− 1,−x,−x− 1))ψ
a+2x−1

↓
a+x

ψ
e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= 0− ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e−1

↓
a+x

e

↓
a+x+1

. . .
e+x−2

↓
a+2x−1

·

ψ
e+x−1

↓
a+2x+1

e+x

↓
a+2x+2

ψ
a+2x−1

↓
a+x

ψ
e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ
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= − ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e−1

↓
a+x+1

e

↓
a+x+2

. . .
e+x

↓
a+2x+2

(
ψ
a+2x−1

↑
a+x

ψ
a+2x−1

↓
a+x

)
ψ
e+x+1

↓
a+x+1

e+x+2

↓
a+x+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= − ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e−1

↓
a+(x+1)

e

↓
a+(x+1)+1

. . .
e+(x+1)−1

↓
a+2(x+1)

ψ
e+(x+1)

↓
a+(x+1)

e+(x+1)+1

↓
a+(x+1)+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ,

by part (i).

Lemma 6.6. Suppose that e > 3. For 2 6 x 6 b+ 1, we have

ψ
a+x−3

↑
x

ψ
a+x−3

↓
x

a+x−2

↓
x+1

. . .
e−2

↓
b+1

zλ = ψ
a+x−2

↓
x+1

a+x−1

↓
x+2

. . .
e−2

↓
b+1

zλ.

Proof. Firstly, if a < 3, then the left-hand side and the right-hand side are both equal to the generator
zλ. If a > 3, we have

ψ
a+x−3

↑
x

ψ
a+x−3

↓
x

a+x−2

↓
x+1

. . .
e−2

↓
b+1

zλ = ψ
a+x−4

↑
x

(ψ2
a+x−3(−x+ 1, a− 2))ψ

a+x−4

↓
x

ψ
a+x−2

↓
x+1

a+x−1

↓
x+2

. . .
e−2

↓
b+1

zλ

= ψ
a+x−5

↑
x

(ψ2
a+x−4(−x+ 1, a− 3))ψ

a+x−5

↓
x

ψ
a+x−2

↓
x+1

a+x−1

↓
x+2

. . .
e−2

↓
b+1

zλ

...

= (ψ2
x(−x+ 1, 1))ψ

a+x−2

↓
x+1

a+x−1

↓
x+2

. . .
e−2

↓
b+1

zλ

= ψ
a+x−2

↓
x+1

a+x−1

↓
x+2

. . .
e−2

↓
b+1

zλ.

Repeated application of Lemma 6.6 yields the following corollary.

Corollary 6.7. Suppose that e > 3. We have

ψ
e−2

↑
b+1

e−3

↑
b

. . .
a−1

↑
2

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ = zλ

We are now ready to prove Proposition 3.5, using the above lemmas.

Proof of Proposition 3.5. In order to prove that ϕ(vT) = (−1)b+12vT, it suffices to prove that

ψ
2e−1

↓
e

·ψ
e

↓
1

e+1

↓
2

. . .
2e−1

↓
e

zλ = (−1)b+12ψ
2e−1

↓
e

zλ or (−1)e−12ψ
2e−1

↓
e

zλ.

We first suppose that e = 3 and λ = ((2, 1), (2, 1)) or ((13), (13)). Then we have

ψ
5

↓
3

·ψ
3

↓
1

ψ
4

↓
2

ψ
5

↓
3

zλ = ψ
5

↓
4

(ψ2
3(0, 1))ψ

2

↓
1

ψ
4

↓
2

ψ
5

↓
3

zλ = ψ
5

↓
4

(y3 − y4)ψ
2

↓
1

ψ
4

↓
2

ψ
5

↓
3

zλ.

The first term becomes

ψ
5

↓
4

(y3ψ2(0, 2))ψ1ψ
4

↓
2

ψ
5

↓
3

zλ = ψ
5

↓
4

ψ2(y2ψ1(0, 0))ψ
4

↓
2

ψ
5

↓
3

zλ

= ψ
5

↓
4

ψ2(ψ1y1 + 1)ψ
4

↓
2

ψ
5

↓
3

zλ

= ψ
5

↓
4

ψ4(ψ2ψ3ψ2(2, 0, 2))ψ
5

↓
3

zλ

= ψ
5

↓
4

ψ4(ψ3ψ2ψ3 − 1)ψ
5

↓
3

zλ

= ψ
5

↓
4

ψ
4

↓
2

ψ5(ψ3ψ4ψ3(1, 0, 2))zλ − ψ5(ψ2
4(2, 1))ψ

5

↓
3

zλ

= ψ
5

↓
4

ψ
4

↓
2

ψ5(ψ4ψ3ψ4)zλ − ψ5(y5 − y4)ψ
5

↓
3

zλ
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= 0− ψ5(y5ψ5(1, 1))ψ
4

↓
3

zλ + ψ2
5(y4ψ4(1, 2))ψ3zλ

= −ψ5(ψ5y6 − 1)ψ
4

↓
3

zλ + ψ2
5ψ

4

↓
3

y5zλ

= 0 + ψ
5

↓
3

zλ + 0.

The second term becomes

−ψ
5

↓
4

ψ
2

↓
1

(y4ψ4(2, 1))ψ
3

↓
2

ψ
5

↓
3

zλ = −ψ
5

↓
4

ψ
2

↓
1

ψ
4

↓
2

(y5ψ5(1, 1))ψ
4

↓
3

zλ

= −ψ
5

↓
4

ψ
2

↓
1

ψ
4

↓
2

(ψ5y6 − 1)ψ
4

↓
3

zλ

= −0 + ψ
5

↓
4

ψ
2

↓
1

(ψ4ψ3ψ4(2, 1, 2))ψ2ψ3zλ

= ψ
5

↓
4

ψ
2

↓
1

(ψ3ψ4ψ3 − 1)ψ2ψ3zλ

= ψ
5

↓
4

ψ
2

↓
1

ψ3ψ4(ψ3ψ2ψ3(2, 1, 0))zλ − ψ
5

↓
4

(ψ2ψ1ψ2(0, 2, 0))ψ3zλ

= ψ
5

↓
4

ψ
2

↓
1

ψ3ψ4(ψ2ψ3ψ2)zλ − ψ
5

↓
4

(ψ1ψ2ψ1 − 1)ψ3zλ

= 0− 0 + ψ
5

↓
3

zλ.

We now suppose that either e = 3 and λ = ((3), (3)), or e > 3 and a > 2. Then we have

ψ
2e−1

↓
e

·ψ
e

↓
1

e+1

↓
2

. . .
2e−1

↓
e

zλ = ψ
2e−1

↓
e+1

(ψ2
e(0, a−1))ψ

e−1

↓
1

ψ
e+1

↓
2

e+2

↓
3

. . .
2e−1

↓
e

zλ

= ψ
2e−1

↓
e+2

ψ
e−1

↓
1

(ψ2
e+1(−1, a−1))ψ

e

↓
2

ψ
e+2

↓
3

e+3

↓
4

. . .
2e−1

↓
e

zλ

= ψ
2e−1

↓
e+3

ψ
e−1

↓
1

ψ
e

↓
2

(ψ2
e+2(−2, a−1))ψ

e+1

↓
3

e+3

↓
4

. . .
2e−1

↓
e

zλ

...

= ψ
2e−1

↓
e+b+1

ψ
e−1

↓
1

e

↓
2

. . .
e+b−2

↓
b

(ψ2
e+b(a, a−1))ψ

e+b−1

↓
b+1

ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−1

↓
e

zλ

= ψ
2e−1

↓
e+b+1

ψ
e−1

↓
1

e

↓
2

. . .
e+b−2

↓
b

(ye+b+1 − ye+b)ψ
e+b−1

↓
b+1

ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−1

↓
e

zλ.

It thus suffices to show that

ye+b+1ψ
e−1

↓
1

e

↓
2

. . .
e+b−1

↓
b+1

ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−1

↓
e

zλ = (−1)b+1ψ
e+b

↓
e

zλ

= −ye+bψ
e−1

↓
1

e

↓
2

. . .
e+b−1

↓
b+1

ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−1

↓
e

zλ.

We will prove the first equality here, for which we have set up the relevant computational lemmas –
the second equality may be proved in a similar manner.

ye+b+1ψ
e−1

↓
1

e

↓
2

. . .
e+b−1

↓
b+1

ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−1

↓
e

zλ

= ψ
e−1

↓
1

e

↓
2

. . .
e+b−1

↓
b+1

(ye+b+1ψe+b+1(1, a−1))ψ
e+b

↓
b+2

ψ
e+b+2

↓
b+3

e+b+3

↓
b+4

. . .
2e−1

↓
e

zλ

= ψ
e−1

↓
1

e

↓
2

. . .
e+b−1

↓
b+1

ψ
e+b+1

↓
b+2

(ye+b+2ψe+b+2(2, a−1))ψ
e+b+1

↓
b+3

ψ
e+b+3

↓
b+4

e+b+4

↓
b+5

. . .
2e−1

↓
e

zλ
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...

= ψ
e−1

↓
1

e

↓
2

. . .
e+b−1

↓
b+1

ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−2

↓
e−1

(y2e−1ψ2e−1(a−1, a−1))ψ
2e−2

↓
e

zλ

= − ψ
e−1

↓
1

e

↓
2

. . .
e+b−1

↓
b+1

ψ
e+b+1

↓
b+2

e+b+2

↓
b+3

. . .
2e−2

↓
e−1

ψ
2e−2

↓
e

zλ.

If e = 3, then this expression becomes

−ψ
2

↓
1

ψ
4

↓
2

ψ
4

↓
3

z((3),(3)) = −ψ
2

↓
1

(ψ4ψ3ψ4(1, 2, 1))ψ2ψ3z((3),(3))

= −ψ
2

↓
1

(ψ3ψ4ψ3 + 1)ψ2ψ3z((3),(3))

= −ψ
2

↓
1

ψ3ψ4(ψ3ψ2ψ3(1, 2, 0))z((3),(3)) − (ψ2ψ1ψ2(0, 1, 0))ψ3z((3),(3))

= −ψ
2

↓
1

ψ3ψ4ψ2ψ3ψ2z((3),(3)) − (ψ1ψ2ψ1 + 1)ψ3z((3),(3))

= 0− 0− ψ3z((3),(3)),

as required.
If e > 3, then the above expression becomes

− ψ
e−1

↓
1

e

↓
2

. . .
e+b−1

↓
b+1

ψ
2b+2

↓
b+2

2b+3

↓
b+3

. . .
e+b

↓
e

zλ by Lemma 6.1(iii)

= − ψ
b+1

↓
2

ψ
e−1

↓
1

ψ2ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ by Lemma 6.2(v)

= − ψ
b+1

↓
2

ψ
e−1

↓
3

(ψ2ψ1ψ2(0, 1, 0))ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= − ψ
b+1

↓
2

ψ
e−1

↓
3

(ψ1ψ2ψ1 + 1)ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= 0− ψ
b+1

↓
2

ψ
e−1

↓
3

ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ.

Now, we handle the case b = 0 separately. In this case, the above expression is

−ψ
b+1

↓
2

ψ
e−1

↓
3

ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ = −ψ
e−1

↓
3

ψ
e

↑
3

zλ

= −ψ
e−1

↓
4
��

���(ψ2
3(2, 0))ψ

e

↑
4

zλ

= −ψ
e−1

↓
5
���

��(ψ2
4(3, 0))ψ

e

↑
5

zλ

...

= −
���

���
�

(ψ2
e−1(−2, 0))ψezλ

= −ψezλ,

in which case our proof is complete here.
Now suppose that b > 0. Then by Lemma 6.3 followed by repeated application of Lemma 6.5(ii),

− ψ
b+1

↓
2

ψ
e−1

↓
3

ψ
b+3

↓
3

b+4

↓
4

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= − ψ
b+1

↓
2

b+2

↓
3

. . .
e−1

↓
a

ψ
e

↓
a

e+1

↓
a+1

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= (−1)2ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e−1

↓
a+1

e

↓
a+2

ψ
e+1

↓
a+1

e+2

↓
a+2

. . .
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ
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...

= (−1)bψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψe−1ψe . . . ψe+b−2ψ
e+b−1

↓
e−1

e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= (−1)b+1ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
e+b

↓
e

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= (−1)b+1ψ
e+b

↓
e

ψ
b+1

↓
2

b+2

↓
3

. . .
e−2

↓
a−1

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= (−1)b+1ψ
e+b

↓
e

ψ
e−2

↑
b+1

e−3

↑
b

. . .
a−1

↑
2

ψ
a−1

↓
2

a

↓
3

. . .
e−2

↓
b+1

zλ

= (−1)b+1ψ
e+b

↓
e

zλ by Corollary 6.7, completing the proof.

If e > 3 and λ = ((2, 1e−2), (2, 1e−2)) or ((1e), (1e)), then we have

ψ
2e−1

↓
e

·ψ
e

↓
1

e+1

↓
2

. . .
2e−1

↓
e

zλ = ψ
2e−1

↓
e+1

(ψ2
e(0, 1))ψ

e−1

↓
1

ψ
e+1

↓
2

e+2

↓
3

. . .
2e−1

↓
e

zλ

= ψ
2e−1

↓
e+1

(ye − ye+1)ψ
e−1

↓
1

ψ
e+1

↓
2

e+2

↓
3

. . .
2e−1

↓
e

zλ,

and the proof may be finished in a similar manner to the other cases.

6.2 Proof of Proposition 4.12

Let λ = ((ke), (je)) for some j, k > 1. In order to prove Proposition 4.12, we now look at the action of
the KLR generators ψ1, . . . , ψn−1 on an arbitrary basis element vT ∈ Sλ, where T does not necessarily
lie in Te.

Lemma 6.8. Let T ∈ Std(λ), vT = v(a1, . . . , aje), 1 6 r < n, and 1 6 s < je such that r 6≡ 2s
(mod e).

(i) If as = r, as+1 = r + 1, then ψrv(a1, . . . , aje) = 0.

(ii) If s is maximal such that as 6 r − 1, and r, r + 1 /∈ {a1, . . . , aje}, then ψrv(a1, . . . , aje) = 0.

Proof. We proceed by induction on r − s on both of the statements.

(i) For r = s, we observe that

ψrv(a1, . . . , aje) = ψrψ
ar+2−1

↓
r+2

. . .
ake−1

↓
ke

zλ = ψ
ar+2−1

↓
r+2

. . .
ake−1

↓
ke

ψrzλ = 0.

Now assuming that r > s, we have

ψrv(a1, . . . , aje) = ψ
a1−1

↓
1

. . .
as−1−1

↓
s−1

(ψrψr−1ψr(s− 1, s, r − s− 1))ψ
r−2

↓
s

r−1

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= ψ
a1−1

↓
1

. . .
as−1−1

↓
s−1

ψr−1ψrψr−1ψ
r−2

↓
s

r−1

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= ψ
a1−1

↓
1

. . .
as−1−1

↓
s−1

ψr−1ψrψr−1v(1, . . . , s− 1, r − 1, r, as+2, . . . , aje)

which is 0 by induction if r 6≡ 2s+ 1 (mod e) or if r = s+ 1 as ψr−1 commutes through to the
right. If r ≡ 2s+ 1 (mod e) and r > s+ 1, then we continue:

ψ
a1−1

↓
1

. . .
as−1−1

↓
s−1

ψr−1ψr(ψr−1ψr−2ψr−1(s− 1, s, s− 1))ψ
r−3

↓
s

r−2

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ
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= ψ
a1−1

↓
1

. . .
as−1−1

↓
s−1

ψr−1ψr(ψr−2ψr−1ψr−2 + 1)ψ
r−3

↓
s

r−2

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ.

The first term becomes

ψ
a1−1

↓
1

. . .
as−1−1

↓
s−1

ψr−1ψrψr−2ψr−1ψr−2ψ
r−3

↓
s

r−2

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= ψ
a1−1

↓
1

. . .
as−1−1

↓
s−1

ψr−1ψrψr−2ψr−1ψr−2v(1, . . . , s− 1, r − 2, r − 1, as+2, . . . , aje)

= 0 by induction.

If s = je− 1, then the second term becomes

ψ
a1−1

↓
1

. . .
aje−2−1

↓
je−2

ψr−1ψrψ
r−3

↓
je−1

r−2

↓
je

zλ = ψ
a1−1

↓
1

. . .
aje−2−1

↓
je−2

ψr−1ψ
r−3

↓
je−1

r−2

↓
je

ψrzλ = 0.

If s < je− 1, then the second term becomes

ψ
a1−1

↓
1

. . .
as−1−1

↓
s−1

ψr−1ψ
r−3

↓
s

ψrψ
r−2

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= ψ
a1−1

↓
1

. . .
as−1−1

↓
s−1

ψr−1ψ
r−3

↓
s

ψrv(1, . . . , s, r − 1, as+2, . . . , aje)

= 0

by the inductive hypothesis of (ii) as as+1 6 r − 1, as+2 > r + 2, and r 6≡ 2(s+ 1) (mod e).

(ii) For r = s+ 1, we have

ψs+1v(a1, . . . , aje) = ψs+1ψ
as+1−1

↓
s+1

. . .
aje−1

↓
je

zλ.

We observe that the first s + 2 residues in the residue sequence of ss+1s
as+1−1

↓
s+1

. . . s
aje−1

↓
je

Tλ

are 0, 1, . . . , s − 1, 1, 0. There exists no S ∈ Std(λ) with such a residue sequence, and hence
ψs+1v(a1, . . . , aje) = 0.

Now assuming that r > s+ 1, we argue by induction on `(wT). For the base case, the minimal
length is obtained when s = je− 1 and vT = v(1, 2, . . . , je− 1, r − 2). Then

ψrv(1, 2, . . . , je− 1, r + 2) = (ψrψr+1ψr(−1, r, r + 1))ψ
r−1

↓
je

zλ

= ψr+1ψrψr+1ψ
r−1

↓
je

zλ

= ψr+1ψrψ
r−1

↓
je

ψr+1zλ

= 0 since r + 1 6≡ −1 (mod e) by our residue hypothesis.

Now for `(wT) arbitrary, we have

ψrv(a1, . . . , aje)

= ψ
a1−1

↓
1

. . .
as−1

↓
s

ψ
as+1−1

↓
r+2

(ψrψr+1ψr(s, r − s− 1, r − s))ψ
r−1

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ,

where r − s 6≡ s (mod e).

ψ
a1−1

↓
1

. . .
as−1

↓
s

ψ
as+1−1

↓
r+2

ψr+1ψrψr+1ψ
r−1

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ
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= ψ
a1−1

↓
1

. . .
as−1

↓
s

ψ
as+1−1

↓
r+2

ψr+1ψrψr+1v(1, . . . , s, r, as+2, . . . , aje) = 0

by the inductive hypothesis if r + 1 6≡ 2(s+ 1) (mod e). If r + 1 ≡ 2s+ 2 (mod e), then

ψ
a1−1

↓
1

. . .
as+1−1

↓
s+1

ψ
as+2−1

↓
r+3

(ψr+1ψr+2ψr+1(s+ 1, s, s+ 1))ψ
r

↓
s+2

ψ
as+3−1

↓
s+3

. . .
aje−1

↓
je

zλ

= ψ
a1−1

↓
1

. . .
as+1−1

↓
s+1

ψ
as+2−1

↓
r+3

(ψr+2ψr+1ψr+2 + 1)ψ
r

↓
s+2

ψ
as+3−1

↓
s+3

. . .
aje−1

↓
je

zλ.

If s = je− 2, then this becomes

ψ
a1−1

↓
1

. . .
aje−1−1

↓
je−1

ψ
aje−1

↓
r+3

(ψr+2ψr+1ψr+2 + 1)ψ
r

↓
je

zλ = 0.

If s < je− 2, then the first term becomes

ψ
a1−1

↓
1

. . .
as+1−1

↓
s+1

ψ
as+2−1

↓
r+3

ψr+2ψr+1ψr+2ψ
r

↓
s+2

ψ
as+3−1

↓
s+3

. . .
aje−1

↓
je

zλ

= ψ
a1−1

↓
1

. . .
as+1−1

↓
s+1

ψ
as+2−1

↓
r+3

ψr+2ψr+1ψr+2v(1, . . . , s+ 1, r + 1, as+3, . . . , aje)

= 0 by induction as r + 2 6≡ 2s+ 4 (mod e).

Now, the second term becomes

ψ
a1−1

↓
1

. . .
as−1

↓
s

ψ
as+1−1

↓
s+1

ψ
as+2−1

↓
r+3

ψ
r

↓
s+2

ψ
as+3−1

↓
s+3

. . .
aje−1

↓
je

zλ

= ψ
a1−1

↓
1

. . .
as−1

↓
s

ψ
as+1−1

↓
r+1

ψ
as+2−1

↓
r+3

ψrψ
r−1

↓
s+1

r

↓
s+2

ψ
as+3−1

↓
s+3

. . .
aje−1

↓
je

zλ

= ψ
a1−1

↓
1

. . .
as−1

↓
s

ψ
as+1−1

↓
r+1

ψ
as+2−1

↓
r+3

ψrv(1, . . . , s, r, r + 1, as+3, . . . , aje)

= 0 by the inductive hypothesis on (i), as r 6≡ 2s+ 2 (mod e).

Corollary 6.9. Let 1 6 r < n, 1 6 s < je with r > s+ 1 and r ≡ 2s (mod e). Then

(i) ψrv(1, . . . , s, r + 2, as+2, . . . , aje) = v(1, . . . , s, r, as+2, . . . , aje);

(ii) ψrv(1, . . . , s− 1, r, r + 1, as+2, . . . , aje) = v(1, . . . , s− 1, r − 1, r, as+2, . . . , aje).

Proof. (i) We have

ψrv(1, . . . , s, r + 2, as+2, . . . , aje)

= ψrψ
r+1

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= (ψrψr+1ψr(s, s− 1, s))ψ
r−1

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= (ψr+1ψrψr+1 + 1)ψ
r−1

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= ψr+1ψrψr+1v(1, . . . , s, r, as+2, . . . , aje) + v(1, . . . , s, r, as+2, . . . , aje),

and ψr+1v(1, . . . , s, r, as+2, . . . , aje) = 0 by Lemma 6.8(ii).

(ii) We have

ψrv(1, . . . , s− 1, r, r + 1, as+2, . . . , aje)
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= ψrψ
r−1

↓
s

r

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= (ψrψr−1ψr(s− 1, s, s− 1))ψ
r−2

↓
s

r−1

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= (ψr−1ψrψr−1 + 1)ψ
r−2

↓
s

r−1

↓
s+1

ψ
as+2−1

↓
s+2

. . .
aje−1

↓
je

zλ

= ψr−1ψrψr−1v(1, . . . , s− 1, r − 1, r, as+2, . . . , aje) + v(1, . . . , s− 1, r − 1, r, as+2, . . . , aje),

and the first term is 0 by Lemma 6.8(i) since r − 1 6≡ 2s (mod e).

Lemma 6.10. Let 1 6 s 6 i 6 r < n, s + r − i 6 je, as−1 < i, and i 6≡ x (mod e) for any
x ∈ {2s− 2, 2s− 1, . . . , 2s+ r − i}. Then

ψ
r

↓
i

v(a1, . . . , as−1, i+ 1, i+ 2, . . . , r + 1, as+r−i+1, . . . , aje)

= v(a1, . . . , as−1, i, i+ 1, . . . , r, as+r−i+1, . . . , aje).

Proof. Suppose that as+l−i−1 < l for all l ∈ {i, i+ 1, . . . , r}. Then the result follows directly from the
KLR relations since, for all l,

ψlv(a1, . . . , as+l−i−1, l + 1, as+l−i+1, as+l−i+2, . . . , aje)

= ψ
a1−1

↓
1

. . .
as+l−i−1−1

↓
s+l−i−1

ψ2
l (s+ l − i− 1, i− s)ψ

l−1

↓
s+l−i

ψ
as+l−i+1−1

↓
s+l−i+1

as+l−i+1−1

↓
s+l−i+1

. . .
aje−1

↓
je

zλ

= ψ
a1−1

↓
1

. . .
as+l−i−1−1

↓
s+l−i−1

v(1, . . . , s+ l − i− 1, l, as+l−i+1, as+l−i+2, . . . , aje)

if i 6≡ 2s+ l − i− 2, 2s+ l − i− 1, 2s+ l − i (mod e).

Corollary 6.11. Suppose that 1 6 s 6 i 6 r < n, s + r − i < je, as−1 6 i − 2, i ≡ 2s (mod e) and
r − i+ 2 < e. Then

ψ
r

↓
i

v(a1, . . . , as−1, i, i+ 1, i+ 2, . . . , r + 1, as+r−i+2, . . . , aje)

= v(a1, . . . , as−1, i− 1, i, i+ 1, . . . , r, as+r−i+2, . . . , aje).

Proof. Since i ≡ 2s (mod e), we apply Corollary 6.9(ii) to give us

ψ
r

↓
i+1

ψiv(a1, . . . , as−1, i, i+ 1, i+ 2, . . . , r + 1, as+r−i+2, . . . , aje)

= ψ
r

↓
i+1

v(a1, . . . , as−1, i− 1, i, i+ 2, . . . , r + 1, as+r−i+2, . . . , aje).

We now obtain our desired result by applying Lemma 6.10 since i + 1 6≡ x (mod e) for all x ∈
{2s, 2s+ 1, . . . , 2s+ r − i+ 1} (note that x runs over r − i+ 2 < e terms).

Lemma 6.12. Let 1 6 r 6 je. If r 6≡ 1 (mod e), then yrψrψr+1 . . . ψjezλ = 0.

Proof. We proceed by induction on `(wT), where the minimal length is obtained when r = je.
For r = je, we have

(yjeψje(−1, 0))zλ = ψjeyje+1zλ = 0.

Now assuming that r < je,

(yrψr(r − 1, 0))ψr+1ψr+2 . . . ψjezλ = ψryr+1ψr+1ψr+2ψr+3 . . . ψjezλ = 0

by induction if r 6≡ 0 (mod e). If r ≡ 0 (mod e), then this term becomes

ψr(yr+1ψr+1(0, 0))ψr+2ψr+3 . . . ψjezλ = ψr(ψr+1yr+2 + 1)ψr+2ψr+3 . . . ψjezλ.

The second term becomes ψr+2ψr+3 . . . ψje(ψrzλ) = 0, whilst the first term is 0 by induction.
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Lemma 6.13. Let 1 6 s < i 6 r < n and s < je, and suppose that r ≡ 2s (mod e) and r− i+ 2 < e.
Then

ψ
r

↑
i

v(1, . . . , s, r + 2, as+2, . . . , aje) = v(1, . . . , s, i, as+2, . . . , aje).

Proof. The proof is similar to the proof of Corollary 6.11.

Lemma 6.14. Let 0 6 s 6 je− e and vT = v(a1, . . . , aje). Then

(i) If as+e = r for some 1 6 r 6 n such that r 6≡ 2s, 2s + 1 (mod e) and r − 1, r + 1, r + 2, r +
3, . . . , r + e− 2 6∈ {a1, . . . , aje}, then yr−1vT = 0.

(ii) If as+e = r for some 1 6 r 6 n such that r 6≡ 2s, 2s+1 (mod e) and r+1, r+2, r+3, . . . , r+e−2 6∈
{a1, . . . , aje}, then yrvT = 0.

(iii) If for some 1 6 r < n, we have as+i = r − e+ i for all i ∈ {1, . . . , e− 1}, as+e = r + 1, r ≡ 2s
(mod e) and r + 2, r + 3, . . . , r + e /∈ {as+e+1, . . . , aje}, then ψrvT = 0.

Proof. We proceed by simultaneous induction on r− s on each of the three statements. Note that we
apply Corollary 6.9 without further reference.

(i) Our base case is when r = s+ e+ 1, so that s 6≡ 0, 1 (mod e) and as+e−1 = s+ e− 1. We prove
this by induction on `(wT). For the base case, the minimal length is obtained when s+e+1 = je.
We thus have

yr−1vT = (yje−1ψje−1(−2, 0))ψ
aje−1

↓
je

zλ

= ψje−1ψ
aje−1

↓
je+1

(yjeψje(−1, 0))zλ = ψje−1ψ
aje−1

↓
je+1

ψjeyje+1zλ = 0.

Now suppose that s+ e+ 1 < je, and assume without loss of generality that vT = v(1, . . . , s+
e− 1, s+ e+ 1, s+ 2e, . . . , je+ e− 1). Then we have

yr−1vT = (ys+eψs+e(s− 1, 0))ψ
s+2e−1

↓
s+e+1

s+2e

↓
s+e+2

. . .
je+e−2

↓
je

zλ

= ψs+eys+e+1ψ
s+2e−1

↓
s+e+1

s+2e

↓
s+e+2

. . .
je+e−2

↓
je

zλ

= ψs+eψ
s+2e−1

↓
s+e+2

ys+e+1ψs+e+1ψ
s+2e

↓
s+e+2

s+2e+1

↓
s+e+3

. . .
je+e−2

↓
je

zλ

= ψs+eψ
s+2e−1

↓
s+e+2

ys+e+1v(1, . . . , s+ e, s+ e+ 2, s+ 2e+ 1, . . . , je+ e− 3)

= 0 by induction if s 6≡ −1 (mod e).

If s ≡ −1 (mod e), then

ψs+eψ
s+2e−1

↓
s+e+2

(ys+e+1ψs+e+1(−1, 0))ψ
s+2e

↓
s+e+2

s+2e+1

↓
s+e+3

. . .
je+e−2

↓
je

zλ

= ψs+eψ
s+2e−1

↓
s+e+1

ys+e+2ψ
s+2e

↓
s+e+2

s+2e+1

↓
s+e+3

. . .
je+e−2

↓
je

zλ

= ψs+eψ
s+2e−1

↓
s+e+1

ψ
s+2e

↓
s+e+3

(ys+e+2ψs+e+2(0, 0))ψ
s+2e+1

↓
s+e+3

s+2e+2

↓
s+e+4

. . .
je+e−2

↓
je

zλ

= ψs+eψ
s+2e−1

↓
s+e+1

ψ
s+2e

↓
s+e+3

(ψs+e+2ys+e+3 − 1)ψ
s+2e+1

↓
s+e+3

s+2e+2

↓
s+e+4

. . .
je+e−2

↓
je

zλ

= ψs+eψ
s+2e−1

↓
s+e+1

ψ
s+2e

↓
s+e+2

ψ
s+2e+1

↓
s+e+4

s+2e+2

↓
s+e+5

. . .
je+e−2

↓
je+1

ys+e+3ψs+e+3ψs+e+4 . . . ψjezλ
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− ψs+eψ
s+2e−1

↓
s+e+2

ψ
s+2e

↓
s+e+3

ψ
s+2e+1

↓
s+e+3

s+2e+2

↓
s+e+4

. . .
je+e−2

↓
je

ψs+e+1zλ

= 0 by Lemma 6.12.

Next, we assume that r > s+ e+ 1, and again argue by induction on `(wT). For the base case,
the minimal length is obtained when s+ e = je and vT = v(1, . . . , je− 1, r). Then

yr−1vT = (yr−1ψr−1(−1, r − 1))ψ
r−2

↓
je

zλ = 0.

Now for s+ e < je, we may assume by induction (on `(wT)) that vT = v(1, . . . , s+ e− 1, r, r +
e− 1, r + e, . . . , r + je− s− 2) and we have

yr−1vT = (yr−1ψr−1(s− 1, r − s− 1))ψ
r−2

↓
s+e

ψ
r+e−2

↓
s+e+1

r+e−1

↓
s+e+2

. . .
r+je−s−3

↓
je

zλ

= ψ
r−1

↓
s+e

ψ
r+e−2

↓
r+1

yrψ
r

↓
s+e+1

ψ
r+e−1

↓
s+e+2

r+e

↓
s+e+3

. . .
r+je−s−3

↓
je

zλ

= ψ
r−1

↓
s+e

ψ
r+e−2

↓
r+1

yrv(1, . . . , s+ e, r + 1, r + e, . . . , r + je− s− 2),

= 0 by induction if r 6≡ 2s+ 2 (mod e).

If r ≡ 2s+ 2 (mod e), then we have

ψ
r−1

↓
s+e

ψ
r+e−2

↓
r+1

(yrψr(s, s+ 1))ψ
r−1

↓
s+e+1

ψ
r+e−1

↓
s+e+2

r+e

↓
s+e+3

. . .
r+je−s−3

↓
je

zλ

= ψ
r−1

↓
s+e

ψ
r+e−2

↓
s+e+1

yr+1ψ
r+e−1

↓
s+e+2

r+e

↓
s+e+3

. . .
r+je−s−3

↓
je

zλ

= 0 if s+ e = je− 1.

Now suppose that s+ e < je− 1. Then the above term becomes

ψ
r−1

↓
s+e

ψ
r+e−2

↓
s+e+1

ψ
r+e−1

↓
r+2

(yr+1ψr+1(s+ 1, s+ 1))ψ
r

↓
s+e+2

ψ
r+e

↓
s+e+3

r+e+1

↓
s+e+4

. . .
r+je−s−3

↓
je

zλ

= ψ
r−1

↓
s+e

ψ
r+e−2

↓
s+e+1

ψ
r+e−1

↓
r+2

(ψr+1yr+2 − 1)ψ
r

↓
s+e+2

ψ
r+e

↓
s+e+3

r+e+1

↓
s+e+4

. . .
r+je−s−3

↓
je

zλ

= 0 if s+ e = je− 2.

If s+ e < je− 2, the first term becomes

ψ
r−1

↓
s+e

ψ
r+e−2

↓
s+e+1

r+e−1

↓
s+e+2

ψ
r+e

↓
r+3

yr+2ψ
r+2

↓
s+e+3

ψ
r+e+1

↓
s+e+4

r+e+2

↓
s+e+5

. . .
r+je−s−3

↓
je

zλ

= ψ
r−1

↓
s+e

ψ
r+e−2

↓
s+e+1

r+e−1

↓
s+e+2

ψ
r+e

↓
r+3

yr+2v(1, . . . , s+ e+ 2, r + 3, r + e+ 2, . . . , r + je− s− 2),

= 0 by induction since r 6≡ 2s+ 3, 2s+ 4 (mod e).

Then the second term above becomes

− ψ
r−1

↓
s+e

ψ
r+e−2

↓
s+e+1

ψ
r

↓
s+e+2

ψ
r+e−1

↓
r+3

ψ
r+e

↓
r+4
(((

((((ψr+2ψr+3ψr+2ψ
r+1

↓
s+e+3

ψ
r+e+1

↓
s+e+4

r+e+2

↓
s+e+5

. . .
r+je−s−3

↓
je

zλ,

which is zero if s+ e = je− 3. If s+ e < je− 3, then we continue

− ψ
r−1

↓
s+e

ψ
r+e−2

↓
s+e+1

ψ
r

↓
s+e+2

r+1

↓
s+e+3

ψ
r+e−1

↓
r+3

r+e

↓
r+4

ψ
r+e+1

↓
s+e+4

r+e+2

↓
s+e+5

. . .
r+je−s−3

↓
je

zλ

=− ψ
r−1

↓
s+e

(
ψ
r+e−2

↓
r+2

r+e−1

↓
r+3

r+e

↓
r+4

)
ψr+1���

���(ψrψr−1ψr)ψ
r−2

↓
s+e+1

ψ
r−1

↓
s+e+2

ψ
r+1

↓
s+e+3

ψ
r+e+1

↓
s+e+4

r+e+2

↓
s+e+5

. . .
r+je−s−3

↓
je

zλ
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=− ψ
r−1

↓
s+e

(
ψ
r+e−2

↓
r+2

r+e−1

↓
r+3

r+e

↓
r+4

)
ψr+1v(1, . . . , s+ e, r − 1, r, r + 2, r + e+ 2, . . . , r + je− s− 2)

= 0 by the inductive hypothesis of part (iii) if e = 3.

We apply Lemma 6.13 without further reference. If e > 3, we have

− ψ
r−1

↓
s+e

(
ψ
r+e−2

↓
r+2

r+e−1

↓
r+3

r+e

↓
r+4

)
ψ

r−2

↓
s+e+1

r−1

↓
s+e+2

((((
(((((ψ2

r+1(s+ 2, s))ψ
r

↓
s+e+3

ψ
r+e+1

↓
s+e+4

r+e+2

↓
s+e+5

. . .
r+je−s−3

↓
je

zλ

=− ψ
r−1

↓
s+e

(
ψ
r+e−2

↓
r+3

r+e−1

↓
r+4

r+e

↓
r+5

r+e+1

↓
r+6

)
· ψ

r+4

↑
r+2

v(1, . . . , s+ e, r − 1, r, r + 1, r + 6, r + e+ 3, . . . , r + je− s− 2)

=− ψ
r−1

↓
s+e

(
ψ
r+e−2

↓
r+3

r+e−1

↓
r+4

r+e

↓
r+5

r+e+1

↓
r+6

)
· ψr+2v(1, . . . , s+ e, r − 1, r, r + 1, r + 3, r + e+ 3, . . . , r + je− s− 2)

= 0 by the inductive hypothesis of part (iii) if e = 4.

If e > 4, then we have

− ψ
r−1

↓
s+e

(
ψ
r+e−2

↓
r+3

r+e−1

↓
r+4

r+e

↓
r+5

r+e+1

↓
r+6

)
ψ

r−2

↓
s+e+1

r−1

↓
s+e+2

r

↓
s+e+3

((((
(((((ψ2

r+2(s+ 3, s))ψ
r+1

↓
s+e+4

ψ
r+e+2

↓
s+e+5

r+e+3

↓
s+e+6

. . .
r+je−s−3

↓
je

zλ

=− ψ
r−1

↓
s+e

(
ψ
r+e−2

↓
r+4

r+e−1

↓
r+5

. . .
r+e+2

↓
r+8

)
· ψ

r+6

↑
r+3

v(1, . . . , s+e, r−1, r, r+1, r+2, r+8, r+e+4, . . . , r+je−s−2)

=− ψ
r−1

↓
s+e

(
ψ
r+e−2

↓
r+4

r+e−1

↓
r+5

. . .
r+e+2

↓
r+8

)
· ψr+3v(1, . . . , s+e, r−1, r, r+1, r+2, r+4, r+e+4, . . . , r+je−s−2)

= 0 by the inductive hypothesis of part (iii) if e = 5.

Continuing in this fashion, we eventually obtain

− ψ
r−1

↓
s+e

ψ
r+2e−4

↑
r+e−2

v(1, . . . , s+e, r−1, r, . . . , r+e−3, r+2e−2, r+2e−1, . . . , je+r−s−2)

=− ψ
r−1

↓
s+e

ψr+e−2v(1, . . . , s+e, r−1, r, . . . , r+e−3, r+e−1, r+2e−1, . . . , je+r−s−2)

= 0 by the inductive hypothesis of part (iii).

(ii) If r = s+ e, then the term ψ
r−1

↓
s+e

is trivial so that

yrvT = ys+eψ
as+e+1−1

↓
s+e+1

. . .
aje−1

↓
je

zλ = ψ
as+e+1−1

↓
s+e+1

. . .
aje−1

↓
je

ys+ezλ = 0.

We now suppose that r > s + e, and assume without loss of generality that vT = v(1, . . . , s +
e− 1, r, r + e− 1, r + e, . . . , je− s+ r − 2). Then

yrvT

= (yrψr−1(s− 1, r − s− 1))ψ
r−2

↓
s+e

ψ
r+e−2

↓
s+e+1

r+e−1

↓
s+e+2

. . .
je−s+r−3

↓
je

zλ,

= ψr−1yr−1ψ
r−2

↓
s+e

ψ
r+e−2

↓
s+e+1

r+e−1

↓
s+e+2

. . .
je−s+r−3

↓
je

zλ
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=

{
0 if r = s+ e+ 1

ψr−1yr−1v(1, . . . , s+ e− 1, r − 1, r + e− 1, . . . , je− s+ r − 2) if r > s+ e+ 2

= 0 by induction if r 6≡ 2s+ 2 (mod e).

If r > s+ e+ 2 and r ≡ 2s+ 2 (mod e), then

ψr−1(yr−1ψr−2(s− 1, s))ψ
r−3

↓
s+e

ψ
r+e−2

↓
s+e+1

. . .
je−s+r−3

↓
je

zλ

= ψr−1ψr−2(yr−2ψr−3(s− 1, s− 1))ψ
r−4

↓
s+e

ψ
r+e−2

↓
s+e+1

. . .
je−s+r−3

↓
je

zλ

=

0 if r = s+ e+ 2

ψr−1ψr−2(ψr−3yr−3 + 1)ψ
r−4

↓
s+e

ψ
r+e−2

↓
s+e+1

. . .
je−s+r−3

↓
je

zλ if r > s+ e+ 3.

Assuming r > s+ e+ 3, the first term of this is

ψr−1ψr−2ψr−3yr−3v(1, . . . , s+ e− 1, r − 3, r + e− 1, . . . , je− s+ r − 2) = 0 by induction.

If je = s+ e, then the second term becomes

ψr−1ψr−2ψ
r−4

↓
je

zλ = ψr−1ψ
r−4

↓
je

ψr−2zλ = 0.

Now suppose that je > s+ e. Then the second term becomes

ψr−1ψ
r−4

↓
s+e

ψ
r+e−2

↓
r
((((

(((ψr−2ψr−1ψr−2ψ
r−3

↓
s+e+1

ψ
r+e−1

↓
s+e+2

r+e

↓
s+e+3

. . .
je−s+r−3

↓
je

zλ

= ψr−1ψ
r+e−2

↓
r+1

ψ
r−4

↓
s+e

r−3

↓
s+e+1

ψ
r+e−1

↓
r+2

��
���ψrψr+1ψrψ

r−1

↓
s+e+2

ψ
r+e

↓
s+e+3

r+e+1

↓
s+e+4

. . .
je−s+r−3

↓
je

zλ

= ψ
r+e−2

↓
r+1

ψ
r+e−1

↓
r+2

ψr−1v(1, . . . , s+ e− 1, r − 3, r − 2, r, r + e+ 1, . . . , je− s+ r − 2)

= 0 by the inductive hypothesis of part (iii) if e = 3.

From here, the proof concludes in a similar manner to the proof of part (i).

(iii) Our base case is when r = s+ e, so that s ≡ 0 (mod e). We prove this by induction on `(wT),
and assume without loss of generality that vT = v(1, . . . , s+ e− 1, s+ e+ 1, s+ 2e+ 1, s+ 2e+
2, . . . , je+ e). For the base case, the minimal length is obtained when s+ e = je.

ψrvT = (ψ2
s+e(−1, 0))zλ = (ys+e − ys+e+1)zλ = 0.

Now suppose that s+ e < je. Then we have

ψrvT = (ψ2
s+e(−1, 0))ψ

s+2e

↓
s+e+1

s+2e+1

↓
s+e+2

. . .
je+e−1

↓
je

zλ

= (ys+e − ys+e+1)ψ
s+2e

↓
s+e+1

s+2e+1

↓
s+e+2

. . .
je+e−1

↓
je

zλ

= 0− ψ
s+2e

↓
s+e+2

(ys+e+1ψs+e+1(0, 0))ψ
s+2e+1

↓
s+e+2

s+2e+2

↓
s+e+3

. . .
je+e−1

↓
je

zλ

= −ψ
s+2e

↓
s+e+2

(ψs+e+1ys+e+2 − 1)ψ
s+2e+1

↓
s+e+2

s+2e+2

↓
s+e+3

. . .
je+e−1

↓
je

zλ.

The first term becomes

−ψ
s+2e

↓
s+e+1

ψ
s+2e+1

↓
s+e+3

s+2e+2

↓
s+e+4

. . .
je+e−1

↓
je+1

ys+e+2ψs+e+2ψs+e+3 . . . ψjezλ = 0 by Lemma 6.12.
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The second term becomes

ψ
s+2e

↓
s+e+3

s+2e+1

↓
s+e+4 ((

((((
(((

((
ψs+e+2ψs+e+3ψs+e+2ψ

s+2e+2

↓
s+e+3

s+2e+3

↓
s+e+4

. . .
je+e−1

↓
je

zλ

= ψ
s+2e

↓
s+e+3

ψ
s+2e+1

↓
s+e+5

s+2e+2

↓
s+e+6 ((

((((
((((

(
ψs+e+4ψs+e+5ψs+e+4ψs+e+3ψ

s+2e+3

↓
s+e+4

s+2e+4

↓
s+e+5

. . .
je+e−1

↓
je

zλ

= ψ
s+2e

↓
s+e+4

s+2e+1

↓
s+e+5

s+2e+2

↓
s+e+6

ψs+e+3v(1, . . . , s+ e+ 2, s+ e+ 4, s+ 2e+ 4, . . . , je+ e)

= 0 by induction if e = 3.

If e > 3, then we have

ψ
s+2e

↓
s+e+4

s+2e+1

↓
s+e+5

s+2e+2

↓
s+e+6

���
���

�
(ψ2

s+e+3(2, 0))ψ
s+2e+3

↓
s+e+4

s+2e+4

↓
s+e+5

. . .
je+e−1

↓
je

zλ

= ψ
s+2e

↓
s+e+4

s+2e+1

↓
s+e+5

ψ
s+2e+2

↓
s+e+7

s+2e+3

↓
s+e+8 ((

((((
((((

(
ψs+e+6ψs+e+7ψs+e+6ψ

s+e+5

↓
s+e+4

ψ
s+2e+4

↓
s+e+5

s+2e+5

↓
s+e+6

. . .
je+e−1

↓
je

zλ

= ψ
s+2e

↓
s+e+4

ψ
s+2e+1

↓
s+e+6

s+2e+2

↓
s+e+7

s+2e+3

↓
s+e+8

��
���

��
(ψ2

s+e+5(3, 1))ψs+e+4ψ
s+2e+4

↓
s+e+5

s+2e+5

↓
s+e+6

. . .
je+e−1

↓
je

zλ

= ψ
s+2e

↓
s+e+5

s+2e+1

↓
s+e+6

s+2e+2

↓
s+e+7

s+2e+3

↓
s+e+8

ψs+e+4v(1, . . . , s+ e+ 3, s+ e+ 5, s+ 2e+ 5, . . . , je+ e)

= 0 by induction if e = 4.

If e > 4, then we have

ψ
s+2e

↓
s+e+5

s+2e+1

↓
s+e+6

s+2e+2

↓
s+e+7

s+2e+3

↓
s+e+8

���
���

�
ψ2
s+e+4(3, 0))ψ

s+2e+4

↓
s+e+5

s+2e+5

↓
s+e+6

. . .
je+e−1

↓
je

zλ

= ψ
s+2e

↓
s+e+5

s+2e+1

↓
s+e+6

s+2e+2

↓
s+e+7

ψ
s+2e+3

↓
s+e+9

s+2e+4

↓
s+e+10((

((((
((((

(
ψs+e+8ψs+e+9ψs+e+8ψ

s+e+7

↓
s+e+5

ψ
s+2e+5

↓
s+e+6

s+2e+6

↓
s+e+7

. . .
je+e−1

↓
je

zλ

= ψ
s+2e

↓
s+e+5

s+2e+1

↓
s+e+6

ψ
s+2e+2

↓
s+e+8

s+2e+3

↓
s+e+9

s+2e+4

↓
s+e+10

���
���

�
(ψ2

s+e+7(4, 2))ψ
s+e+6

↓
s+e+5

ψ
s+2e+5

↓
s+e+6

s+2e+6

↓
s+e+7

. . .
je+e−1

↓
je

zλ

= ψ
s+2e

↓
s+e+5

ψ
s+2e+1

↓
s+e+7

s+2e+2

↓
s+e+8

s+2e+3

↓
s+e+9

s+2e+4

↓
s+e+10

��
���

��
(ψ2

s+e+6(4, 1))ψs+e+5ψ
s+2e+5

↓
s+e+6

s+2e+6

↓
s+e+7

. . .
je+e−1

↓
je

zλ

= ψ
s+2e

↓
s+e+6

s+2e+1

↓
s+e+7

. . .
s+2e+4

↓
s+e+10

ψs+e+5v(1, . . . , s+ e+ 4, s+ e+ 6, s+ 2e+ 6, . . . , je+ e)

= 0 by induction if e = 5.

If e > 5, we continue in this way until we obtain

ψ
s+2e

↓
s+2e+1

s+2e+1

↓
s+2e+2

. . .
s+3e−1

↓
s+3e

ψs+2ev(1, . . . , s+ 2e− 1, s+ 2e+ 1, s+ 3e+ 1, . . . , je+ e) = 0

by induction.

We now suppose that r > s + e, and again we will use induction on `(wT), so we may assume
without loss of generality that vT = v(1, . . . , s, r− e+ 1, r− e+ 2, . . . , r− 1, r+ 1, r+ e+ 1, r+
e+ 2, . . . , je+ r − s).
For the base case, we assume that s + e = je and hence r ≡ s ≡ 0 (mod e). Applying
Corollary 6.11, we have

ψrvT = ψrv(1, . . . , je− e, r − e+ 1, r − e+ 2, . . . , r − 1, r + 1)

= ψrψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−2

↓
je−1

ψ
r

↓
je

zλ

= ψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−2

↓
je−1

(ψ2
r (−1, 0))ψ

r−1

↓
je

zλ
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= ψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−2

↓
je−1

(yr − yr+1)ψ
r−1

↓
je

zλ

= ψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−2

↓
je−1

yrψ
r−1

↓
je

zλ − 0

= ψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−2

↓
je−1

(yrψr−1(−1,−1))ψ
r−2

↓
je

zλ

= ψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−2

↓
je−1

(ψr−1yr−1 + 1)ψ
r−2

↓
je

zλ

= 0 + ψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−2

↓
je−1

ψ
r−2

↓
je

zλ by the inductive hypothesis of part (ii)

= ψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−3

↓
je−2��

��
�

ψr−2ψ
r−2

↑
r−3

ψ
r−4

↓
je−1

r−3

↓
je

zλ

= ψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−4

↓
je−3��

�
��
�

ψ
r−3

↓
r−4

ψ
r−3

↑
r−5

ψ
r−6

↓
je−2

r−5

↓
je−1

ψ
r−4

↓
je

zλ

= ψ
r−e
↓

je−e+1

r−e+1

↓
je−e+2

. . .
r−5

↓
je−4��

��
��

ψ
r−4

↓
r−6

ψ
r−4

↑
r−7

ψ
r−8

↓
je−3

r−7

↓
je−2

r−6

↓
je−1

ψ
r−5

↓
je

zλ

...

= ψ
r−e
↓

je−e+1 ��
���

���ψ
r−e+1

↓
r−2e+4

ψ
r−e+1

↑
r−2e+3

ψ
r−2e+2

↓
je−e+2

r−2e+3

↓
je−e+3

. . .
r−e−1

↓
je−1

ψ
r−e
↓
je

zλ

= ψr−e
���

���
��

ψ
r−e−1

↓
r−2e+2

ψ
r−e−1

↑
r−2e+1

ψ
r−2e

↓
je−e+1

r−2e+1

↓
je−e+2

. . .
r−e−2

↓
je−1

ψ
r−e
↓
je

zλ

= ψ
r−2e

↓
je−e+1

r−2e+1

↓
je−e+2

. . .
r−e−2

↓
je−1

(ψ2
r−e(−1, 0))ψ

r−e−1

↓
je

zλ.

We repeat the above process s− j − 1 more times, until we reach

(ψ2
je(−1, 0))zλ = (yje − yje+1)zλ = 0.

We now suppose that s+ e < je. We thus have

ψrvT = ψrψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−2

↓
s+e−1

ψ
r

↓
s+e

ψ
r+e

↓
s+e+1

r+e+1

↓
s+e+2

. . .
je+r−s−1

↓
je

zλ

= ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−2

↓
s+e−1

(ψ2
r (s− 1, s))ψ

r−1

↓
s+e

ψ
r+e

↓
s+e+1

r+e+1

↓
s+e+2

. . .
je+r−s−1

↓
je

zλ

= ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−2

↓
s+e−1

(yr − yr+1)ψ
r−1

↓
s+e

ψ
r+e

↓
s+e+1

r+e+1

↓
s+e+2

. . .
je+r−s−1

↓
je

zλ. (†)

Applying the inductive hypothesis of part (ii), the first term of (†) becomes

ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−2

↓
s+e−1

(yrψr−1(s− 1, s− 1))ψ
r−2

↓
s+e

ψ
r+e

↓
s+e+1

r+e+1

↓
s+e+2

. . .
je+r−s−1

↓
je

zλ

= ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−2

↓
s+e−1

(ψr−1yr−1 + 1)ψ
r−2

↓
s+e

ψ
r+e

↓
s+e+1

r+e+1

↓
s+e+2

. . .
je+r−s−1

↓
je

zλ

= 0 + ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−3

↓
s+e−2

(((
((((ψr−2ψr−3ψr−2ψ

r−4

↓
s+e−1

ψ
r−3

↓
s+e

ψ
r+e

↓
s+e+1

r+e+1

↓
s+e+2

. . .
je+r−s−1

↓
je

zλ

= ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−4

↓
s+e−3

ψr−3((((
(((ψr−4ψr−5ψr−4ψ

r−6

↓
s+e−2

r−5

↓
s+e−1

ψ
r−3

↓
s+e

ψ
r+e

↓
s+e+1

r+e+1

↓
s+e+2

. . .
je+r−s−1

↓
je

zλ

= ψ
r−e
↓

r−e−2

r−e+1

↓
r−e−1

. . .
r−4

↓
r−6

ψr−3ψ
r−e−3

↓
s+1

r−e−2

↓
s+2

. . .
r−5

↓
s+e−1

ψ
r−3

↓
s+e

ψ
r+e

↓
s+e+1

r+e+1

↓
s+e+2

. . .
je+r−s−1

↓
je

zλ

= ψ
r−e
↓

r−e−2

r−e+1

↓
r−e−1

. . .
r−4

↓
r−6

ψr−3v(1, . . . , s, r−e−2, r−e−1, . . . , r−4, r−2, r+e+1, . . . , je+r−s)

= 0 by induction on r − s if e = 3.
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If e > 3, then by applying Corollary 6.11, we have(
ψ

r−e
↓

r−e−2

r−e+1

↓
r−e−1

. . .
r−4

↓
r−6

)
ψ
r−e−3

↓
s+1

r−e−2

↓
s+2

. . .
r−5

↓
s+e−1

((((
((((

((
(ψ2

r−3(s− 1, s− 3))ψ
r−4

↓
s+e

ψ
r+e

↓
s+e+1

r+e+1

↓
s+e+2

. . .
je+r−s−1

↓
je

zλ

=

(
ψ

r−e
↓

r−e−2

r−e+1

↓
r−e−1

. . .
r−5

↓
r−7

)
ψ
r−e−3

↓
s+1

r−e−2

↓
s+2

. . .
r−8

↓
s+e−4

ψr−4

· ψ
r−5

↓
r−6

v(1, . . . , s+ e− 4, r − 6, r − 5, r − 4, r − 3, r + e+ 1, . . . , je+ r − s)

=

(
ψ

r−e
↓

r−e−2

r−e+1

↓
r−e−1

. . .
r−5

↓
r−7

)
ψ
r−e−3

↓
s+1

r−e−2

↓
s+2

. . .
r−8

↓
s+e−4

· ψr−4v(1, . . . , s+ e− 4, r − 7, r − 6, r − 5, r − 3, r + e+ 1, . . . , je+ r − s)
= 0 by induction if e = 4.

As in parts (i) and (ii), we continue in this fashion for e > 4, until we eventually obtain

ψr−ev(1, . . . , s, r−2e+1, r−2e+3, . . . , r−e−1, r−e+1, r+e+1, . . . , je+r−s) = 0

by induction. Applying the inductive hypothesis of part (i), the second term of (†) becomes

− ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−1

↓
s+e

ψ
r+e

↓
r+2

(yr+1ψr+1(s, s))ψ
r

↓
s+e+1

ψ
r+e+1

↓
s+e+2

r+e+2

↓
s+e+3

. . .
je+r−s−1

↓
je

zλ

=− ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−1

↓
s+e

ψ
r+e

↓
r+2

(ψr+1yr+2 − 1)ψ
r

↓
s+e+1

ψ
r+e+1

↓
s+e+2

r+e+2

↓
s+e+3

. . .
je+r−s−1

↓
je

zλ

=− ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r−1

↓
s+e

ψ
r+e

↓
s+e+1

ψ
r+e+1

↓
r+3

yr+2v(1, . . . , s+e+1, r+3, r+e+3, . . . , je+r−s)

+ ψ
r+e

↓
r+3

ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r

↓
s+e+1

ψ
r+e+1

↓
r+4

(((
((((ψr+2ψr+3ψr+2ψ

r+1

↓
s+e+2

ψ
r+e+2

↓
s+e+3

r+e+3

↓
s+e+4

. . .
je+r−s−1

↓
je

zλ

= 0 + ψ
r+e

↓
r+3

r+e+1

↓
r+4

ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r+1

↓
s+e+2

ψ
r+e+2

↓
s+e+3

r+e+3

↓
s+e+4

. . .
je+r−s−1

↓
je

zλ

= ψ
r+e

↓
r+3

ψ
r+e+1

↓
r+5

ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r+1

↓
s+e+2

ψ
r+e+2

↓
r+6

((((
(((ψr+4ψr+5ψr+4ψ

r+3

↓
s+e+3

ψ
r+e+3

↓
s+e+4

r+e+4

↓
s+e+5

. . .
je+r−s−1

↓
je

zλ

= ψ
r+e

↓
r+4

r+e+1

↓
r+5

r+e+2

↓
r+6

ψ
r−e
↓
s+1

r−e+1

↓
s+2

r−e+2

↓
s+3

· ψr+3v(1, . . . , s+3, r−e+4, r−e+5, . . . , r+2, r+4, r+e+4, . . . , je+r−s)
= 0 by induction if e = 3.

If e > 3, then we have

ψ
r+e

↓
r+4

r+e+1

↓
r+5

r+e+2

↓
r+6

ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r+1

↓
s+e+2

((((
(((((ψ2

r+3(s+ 2, s))ψ
r+2

↓
s+e+3

ψ
r+e+3

↓
s+e+4

r+e+4

↓
s+e+5

. . .
je+r−s−1

↓
je

zλ

= ψ
r+e

↓
r+4

r+e+1

↓
r+5

ψ
r+e+2

↓
r+7

r+e+3

↓
r+8

ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r+2

↓
s+e+3

(((
((((ψr+6ψr+7ψr+6ψ

r+5

↓
s+e+4

ψ
r+e+4

↓
s+e+5

r+e+5

↓
s+e+6

. . .
je+r−s−1

↓
je

zλ

= ψ
r+e

↓
r+4

ψ
r+e+1

↓
r+6

r+e+2

↓
r+7

r+e+3

↓
r+8

ψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r+2

↓
s+e+3

(((
((((

(((
(ψ2

r+5(s+ 3, s+ 1))ψ
r+4

↓
s+e+4

ψ
r+e+4

↓
s+e+5

r+e+5

↓
s+e+6

. . .
je+r−s−1

↓
je

zλ

= ψ
r+e

↓
r+5

r+e+1

↓
r+6

ψ
r+e+2

↓
r+7

r+e+3

↓
r+8

ψ
r−e
↓
s+1

r−e+1

↓
s+2

r−e+2

↓
s+3

r−e+3

↓
s+4

· ψr+4v(1, . . . , s+4, r−e+5, r−e+6, . . . , r+3, r+5, r+e+5, r+e+6, . . . , je+r−s)
= 0 by induction if e = 4.

We continue for e > 4 in a similar manner until we reach

ψr+eψ
r−e
↓
s+1

r−e+1

↓
s+2

. . .
r+e−2

↓
s+2e−1

ψ
r+e

↓
s+2e

ψ
r+2e

↓
s+2e+1

r+2e+1

↓
s+2e+2

. . .
je+r−s−1

↓
je

zλ
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= ψr+ev(1, . . . , s, r−e+1, r−e+2, . . . , r+e−1, r+e+1, r+2e+1, r+2e+2, . . . , je+r−s)
= 0 by induction.

Proof of Proposition 4.12. (i) This in fact follows just like the proof of Proposition 3.5, with indices
shifted by the corresponding multiples of e. In fact, that proof gives that

ψ(r+1)e−1ψ(r+1)e−2 . . . ψreΨrv = −2ψ(r+1)e−1ψ(r+1)e−2 . . . ψrev,

since there we allow each component to be an arbitrary (small) hook, not just the trivial partition
(e). If we follow the proof, setting b = 0, it may be considerably shortened and in fact the prefix
of generators ψ(r+1)e−1ψ(r+1)e−2 . . . ψre+1 is not needed at all – the special case b = 0 of that
proof ends on page 32.

(ii) Without loss of generality, we will assume that Ψr+1Ψrv is reduced, i.e. v is a linear combination
of basis vectors indexed by standard tableaux that have brick r in the second component and
bricks r + 1 and r + 2 in the first. One can show that if brick r is in the first component,
the calculation of ΨrvT reduces to applying part (i) of the proposition to basis vectors of the
assumed form. If brick r is in the second component but bricks r + 1 and r + 2 are not both
in the first component, then the calculation of Ψr+1ΨrvT reduces to applying part (iii) of the
proposition to basis vectors of the assumed form.

By repeatedly applying Corollary 6.9(i), we have

ψreΨr+1Ψrv

= ψre

(
ψ
re+e

↓
re+1

re+e+1

↓
re+2

. . .
re+2e−1

↓
re+e

)(
ψ

re

↓
re−e+1

re+1

↓
re−e+2

. . .
re+e−1

↓
re

)
v

= ψreψ
re+e

↓
re−e+1

re+e+1

↓
re−e+2

. . .
re+2e−1

↓
re

v

= ψ
re+e

↓
re+2

((((
((ψreψre+1ψreψ

re−1

↓
re−e+1

ψ
re+e+1

↓
re−e+2

re+e+2

↓
re−e+3

. . .
re+2e−1

↓
re

v

= ψ
re+e

↓
re+3

ψ
re−1

↓
re−e+1

ψ
re+e+1

↓
re+4

(((
((((

((
ψre+2ψre+3ψre+2ψ

re+1

↓
re−e+2

ψ
re+e+2

↓
re−e+3

re+e+3

↓
re−e+4

. . .
re+2e−1

↓
re

v

...

=

(
ψ
re+e

↓
re+3

ψ
re−1

↓
re−e+1

)(
ψ
re+e+1

↓
re+5

ψ
re+1

↓
re−e+2

)(
ψ
re+e+2

↓
re+7

ψ
re+3

↓
re−e+3

)
. . .

(
ψ
re+2e−4

↓
re+2e−5

ψ
re+2e−9

↓
re−3

)
·(

ψre+2e−3ψ
re+2e−7

↓
re−2

)(
ψ
re+2e−5

↓
re−1

)
(((

((((
(((

(((
ψre+2e−2ψre+2e−1ψre+2e−2ψ

re+2e−3

↓
re

v

=

(
ψ
re+e

↓
re+3

ψ
re+e+1

↓
re+5

ψ
re+e+2

↓
re+7

. . . ψ
re+2e−4

↓
re+2e−5

ψre+2e−3

)
ψ

re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

. . . ψ
re+2e−5

↓
re−1

ψ
re+2e−3

↓
re

v.

If e = 3, this becomes ψ3r+3ψ
3r−1

↓
3r−2

ψ
3r+1

↓
3r−1

ψ
3r+3

↓
3r

v. However, if e > 3, then by applying

Lemma 6.10, we have(
ψ
re+e

↓
re+3

ψ
re+e+1

↓
re+5

ψ
re+e+2

↓
re+7

. . . ψ
re+2e−4

↓
re+2e−5

)
ψ

re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

. . . ψ
re+2e−5

↓
re−1

���
��ψ2

re+2e−3

(
ψ
re+2e−4

↓
re

v

)
=

(
ψ
re+e

↓
re+3

ψ
re+e+1

↓
re+5

. . . ψ
re+2e−5

↓
re+2e−7

)
ψ

re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

. . .

. . . ψ
re+2e−7

↓
re−2 ���

���
���

ψ
re+2e−4

↓
re+2e−5

ψ
re+2e−4

↑
re+2e−5

(
ψ
re+2e−6

↓
re−1

re+2e−5

↓
re

)
v

=

(
ψ
re+e

↓
re+3

ψ
re+e+1

↓
re+5

. . . ψ
re+2e−6

↓
re+2e−9

)
ψ

re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

. . .

. . . ψ
re+2e−9

↓
re−3 ���

���
���

ψ
re+2e−5

↓
re+2e−7

ψ
re+2e−5

↑
re+2e−7

(
ψ
re+2e−8

↓
re−2

re+2e−7

↓
re−1

re+2e−6

↓
re

)
v
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...

= ψre+eψ
re−1

↓
re−e+1

ψ
re+1

↓
re−e+2 ��

���
���ψ

re+e−1

↓
re+3

ψ
re+e−1

↑
re+3

(
ψ

re+2

↓
re−e+3

re+3

↓
re−e+4

. . .
re+e−2

↓
re−1

)
ψ
re+e

↓
re

v.

For e > 3, the last terms become

ψ
re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

re+2

↓
re−e+3

. . .
re+e−2

↓
re−1

(ψ2
re+e(−1, 0))ψ

re+e−1

↓
re

v

= ψ
re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

re+2

↓
re−e+3

. . .
re+e−2

↓
re−1

(yre+e − yre+e+1)ψ
re+e−1

↓
re

v.

We know from Lemma 4.9 that the second term becomes zero, whilst the first term is

ψ
re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

re+2

↓
re−e+3

. . .
re+e−2

↓
re−1

(yre+eψre+e−1(−1,−1))ψ
re+e−2

↓
re

v

= ψ
re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

re+2

↓
re−e+3

. . .
re+e−2

↓
re−1

(ψre+e−1yre+e−1 + 1)ψ
re+e−2

↓
re

v.

Now the first term is

ψ
re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

re+2

↓
re−e+3

. . .
re+e−2

↓
re−1

ψre+e−1yre+e−1v(1, . . . , re− 1, re+ e− 1, are+1, . . . , are)

= 0 by Lemma 6.14(ii) since re+ e− 1 6≡ 0, 1 (mod e).

If e = 3, then applying Corollary 6.9(ii) to the second term yields

ψ
3r−1

↓
3r−2

ψ
3r+1

↓
3r−1

ψ
3r+1

↓
3r

v = ψ
3r−1

↓
3r−2

((((
((((ψ3r+1ψ3rψ3r+1ψ3r−1ψ3rv =((((

((((
(

ψ3r−1ψ3r−2ψ3r−1ψ3rv = ψ3rv.

If e > 3, then repeatedly applying Corollary 6.11 to the second term yields

ψ
re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

re+2

↓
re−e+3

. . .
re+e−3

↓
re−2 ��

���
���ψre+e−2ψ

re+e−2

↑
re+e−3

ψ
re+e−4

↓
re−1

re+e−3

↓
re

v

= ψ
re−1

↓
re−e+1

ψ
re+1

↓
re−e+2

re+2

↓
re−e+3

. . .
re+e−4

↓
re−3 ��

���
���ψ

re+e−3

↓
re+e−4

ψ
re+e−3

↑
re+e−5

ψ
re+e−6

↓
re−2

re+e−5

↓
re−1

re+e−4

↓
re

v

...

= ψ
re−1

↓
re−e+1 ��

���
���ψ

re+1

↓
re−e+4

ψ
re+1

↑
re−e+3

ψ
re

↑
re−e+2

v

=
��

���
���ψ

re−1

↓
re−e+2

ψ
re−1

↑
re−e+1

ψrev

= ψrev.

(iii) The proof proceeds analogously to part (ii), and is omitted for the sake of brevity.
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