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The generic modality of an algebraic group action G×X → X (X
is irreducible) is defined by

dG(X ) := tr.deg k(X )G .

Rosenlicht: dG(X ) is equal to the minimum codimension of a
G-orbit in X .

The modality of G×X → X is defined by

mod(G : X ) = max
Y⊆X

Y : irr., G-stable

dG(Y ).

Popov-Vinberg: mod(G : X ) = 0 iff G has only a finite number of
orbits.
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Example
The left multiplication action GL2(C) on Mat2(C) has an open
orbit. Hence, we have

dGL2(C)(Mat2(C)) = 0.

Note that Y := Mat2(C)\GL2(C) is an irreducible 3-fold. The
restriction of the action GL2(C)×Y → Y has infinitely many
maximal dimensional orbits but the minimum codimension of a
GL2(C)-orbit is 1. For example, we have the 2 dimensional orbit[

a b
c d

][
1 0
0 0

]
=

[
a 0
c 0

]
(ad−bc 6= 0).

In other words, we have dGL2(C)(Y ) = 1. It follows that

mod(GL2(C) : Mat2(C)) = 1.



Let G be a connected reductive group. Let G×X → X be an
algebraic group action, where X is a normal variety.

Definition
The complexity of G×X → X is defined by

cG(X ) := dB(X ),

where B ⊂ G is a Borel subgroup. If cG(X ) = 0 holds, then X is
called a spherical G-variety.

The condition cG(X ) = 0 is equivalent to B having an open orbit
in X .

Theorem (Brion, Vinberg)
X is a spherical G-variety iff B has only finitely many orbit in X.



In summary, if X is a normal G-variety, where G is a connected
reductive group, then the following are equivalent:

1 cG(X ) = 0.
2 k(X )B = k.
3 mod(B : X ) = 0.
4 X has only finitely many B-orbits.
5 If X is quasi-projective, then for every G-linearizable line

bundle L→ X , the G-module H0(X ,L) is multiplicity-free.
6 If X is affine, then k[X ] is multiplicity-free.

Here is the simplest general example.

Example
Every toric variety is a spherical T -variety for some torus T .



Now we can introduce the family of varieties that we are interested
in.
Definition
Let X be a normal G-variety, where G is a connected reductive
group. Let T ⊂ B be the maximal torus and a Borel subgroup of
G . We say that X is a nearly toric G-variety if the following two
conditions hold:

cT (X ) = 1 and cG(X ) = 0.



Example
Let X denote the space of degenerate 4×4 skew-symmetric
matrices. Then

X ∼=
2∧
C4 \ GL4(C) · v ,

where v ∈
∧2C4 is a 2-form in general position. It is well-known

that the following action is spherical:

GL4(C)×X −→ X
(A,B) 7→ ABA>

It is also easy to see that the restriction of the action of GL4(C) to
its maximal torus T has (maximal) 4 dimensional orbits. Since
dimX = 5, we see that

cT (X ) = dT (X ) = 5−4 = 1.

Therefore, X is a nearly toric GL4(C)-variety.



Standard notation:

• G : connected reductive group

• B : a Borel subgroup of G

• P : a standard parabolic subgroup of G

• T : maximal diagonal subgroup of B

• (W ,S) : the Coxeter system of (G ,B,T )

• WP : Weyl group of (L,T ), where P = LnRu(P) and T ⊂ L

• W P : minimal left coset representatives of WP in W

• ` : W → N : the length function

• G/B : flag variety

• G/P : partial flag variety



Definition
The T -fixed points of G/P are indexed by W P . For w ∈W P , the Zariski
closure

XwP := BẇP/P ⊂ G/P

is called a Schubert variety in G/P.

Schubert varieties are finite unions of B-orbits:

XwP =
⊔

v ≤ w in W P

Bv̇P/P,

where ≤ is the Bruhat-Chevalley order on W P .

Thus StabG(XwP) is a parabolic subgroup Q ⊂ G , and Levi factors of Q
are the maximal reductive subgroups of G that act on XwP .

Question
Is there a characterization of w ∈W such that XwB is a toric variety
(w.r.t. T )?



Let w ∈W .
• w is called a Coxeter element if it is a product of all elements
of S in some order without repetition.

• w is called a Coxeter-like element if it is a product of some
elements of S in some order without repetition.

Theorem (Karuppuchamy)
With respect to T -action, XwB is a toric variety if and only if w is
a Coxeter element.

Said differently, cT (XwB) = 0 if and only if w is a Coxeter element.



1 Is there a characterization of w ∈W such that cT (XwB) = 1?
2 Is there a characterization of w ∈W such that cL(XwB) = 0?
3 Is there a characterization of w ∈W such that XwB is a nearly

toric Schubert variety?
4 If A⊂W is a particular subset, is there a good* answer for

w ∈ A?

* = combinatorial

In type A, there are explicit answers for the first three of these
questions. For the last one, which can be regarded as a general
combinatorial research area, there are some interesting families to
consider.



In type A:
1 Is there a characterization of w ∈W such that cT (XwB) = 1?

Answered: Lee-Park-Masuda (2021)
2 Is there a characterization of w ∈W such that cL(XwB) = 0?

Answered: Gaetz (2022) - proving the conjecture of
Gao-Hodges-Yong

3 Is there a characterization of w ∈W such that XwB is a nearly
toric Schubert variety?
Answer: Can-Diaz (2023)

4 If A⊂W is a particular subset, are there good answers to our
previous questions for w ∈ A?
Partially answered: Can-Diaz (2023)

In all types, Question 2 has been recently (April 2023) answered by
Gao-Hodges-Yong and Can-Saha.



Here is a sample answer for Question 4.

Let Sn denote the symmetric group on {1, . . . ,n}.

Theorem (Can-Diaz)
Let A⊂ Sn denote the set 312-avoding permutations. For w ∈ A, let π
denote the corresponding Dyck path. Then XwB is a spherical Schubert
variety if and only if π is a spherical Dyck path.

Here, we call a Dyck path π a spherical Dyck path if

• every connected component of π on the first diagonal is either an
elbow or a ledge, or

• every connected component of π on the second diagonal is an
elbow, or a ledge whose E extension is the initial step of a
connected component of π on the first diagonal.



(a) A ledge or an elbow of π(0).
π(0)

(b) An elbow or a ledge of π(1).

π(1)

Figure: Spherical Dyck paths



Here we describe our solution to Question 3. Let Sn denote the
symmetric group on {1, . . . ,n}.

Theorem (Can-Diaz)
The Schubert varieties XwB ⊂ GLn/B (w ∈ Sn) which are nearly toric are
characterized by the following properties:

1 If XwB is singular, then w ∈ Sn contains the pattern 3412 exactly
once and avoids the pattern 321.

2 If XwB is smooth, then w contains the pattern 321 exactly once and
avoids the following patterns:

P :=

24531 25314 25341 34521 35421
42531 52314 52341 54213 54231
53124 53142 53421 54123 3412

 .

Needless to say here the proof of this theorem is built on the works of
Lee-Masuda-Park and Gaetz.



Let w = (si1 , . . . ,sim) be a word from S. Let Pij := B∪BsijB for
j ∈ {1, . . . ,m}.

Definition
The BSDH-variety Xw is the quotient of Pi1 ×·· ·×Pim by the following
right action of Bm:

(p1, . . . ,pm) · (b1, . . . ,bm) = (p1b1,b−1
1 p2b2, . . . ,b−1

m−1pmbm).

If w = si1 · · ·sim , then the Schubert variety XwB is given by the image of

m : Xw −→ G/B
[p1, . . . ,pm] 7−→ p1 · · ·pmB.

If w is a reduced word, then m : Xw → XwB is a resolution of singularities.



Let w := (si1 , . . . ,sir ) be a word in S. We call G×B XwB is a G-Schubert
variety, and G×B Xw a G-BSDH variety.

If w is a reduced word, 1×m : G×B Xw → G×B XwB is a G-equivariant
resolution of singularities.

Question
Let X := G×B Z for Z ∈ {XwB ,Xw}.

1 Under what conditions X is a spherical G-variety?

2 Under what conditions X is a wonderful variety?

3 If X is not a spherical G-variety, then does it possess any pleasant
properties at all?



We begin answering our question from last to first.

Proposition (Can-Saha)
Let w be a word in S. Let r be a nonnegative integer. Then we have

mod(G : G×B Xw ) = r ⇐⇒ mod(B : Xw ) = r .

In particular, if w is a reduced word of length l, then we have
mod(B : Xv ) = 0 for every subword v of length l−1 if and only if we
have mod(G : G×B Xw ) = 0.

Theorem (Can-Saha)
Let w be a word in S. Let w ∈W denote the associated element of W .
Let X denote either G×B Xw that is a G-BSDH variety or G×B XwB ,
that is a G-Schubert variety. If a B-stable divisor D in X contains a
G-orbit, then D is G-stable. In other words, X always behaves like a
spherical toroidal G-variety.



To answer the questions 1 and 2, we make use of the works of Avdeev,
Luna, and Karuppuchamy.

Theorem (Can-Saha)
Let w be a reduced word in S. Then the following statements are
equivalent:

1 Xw is a toric variety.

2 XwB is a toric variety.

3 G×B Xw is a spherical G-variety.

4 G×B XwB is a spherical G-variety.

Furthermore, G×B Xw is a wonderful variety iff XwB is a toric variety.



Let XwB ⊂ G/B. The stabilizer of XwB in G is the standard parabolic
subgroup PJ(w) generated by B and J(w) = {s ∈ S : `(sw)< `(w)}. We
set

L(w) := standard Levi factor of PJ(w), WJ(w) := the Weyl group of L(w).

Theorem (Can-Saha)
Let w ∈W. Then the associated Schubert variety XwB is a spherical
L(w)-variety such that dimBL(w) = dimXwB if and only if w can be
written as

w = w0,J(w)c,

where w0,J(w) is the longest element of WJ(w) and c is a Coxeter element
of W such that `(w) = `(w0,J(w))+ `(c).

Remark
The statement of our theorem was conjectured by Gao, Hodges and Yong
not so long ago. After proving our theorem, we learned that they proved
their conjecture at the same time as us.



We extend our previous result to the BSDH-varieties.

Let w = (si1 ,si2 , . . . ,sir ) be a reduced word, let (αi1 , . . . ,αir ) denote the
corresponding sequence of simple roots. Define J(w) as the set of simple
roots αij from the list (αi1 , . . . ,αir ) such that all of the simple roots αik
with 1≤ k ≤ j commute with sij . Define L(w) as the Levi determined by
J(w).

Theorem (Can-Saha)
Let w be a reduced word. Then Xw is a spherical L(w)-variety if and
only if w0,J(w)w is a product of distinct simple reflections, where w is the
element of W associated with w and w0,J(w) denotes the longest element
of WJ(w).

Corollary (Can-Saha)
Let w be a reduced word. Then, Xw is a spherical L(si1)-variety if and
only if si1w is a product of distinct simple reflections.



Another surprising application of the sphericality is on the singularities of
Schubert varieties.

Theorem (Can-Saha)
Let w ∈W. Let J be a subset of J(w). Let LJ denote the corresponding
standard Levi factor. We assume that XwB is a spherical LJ -variety such
that dimXwB = dimBLJ . Then the following are equivalent:

1 XwB is a (rationally) smooth Schubert variety in G/B,

2 Xc−1PJ
is a (rationally) smooth toric variety in G/PJ ,

3 |{r ∈ R : y ≤ ry ≤ vw0,J}|= `(w0,J)+ `(v)− `(y) for all
y ∈ [w0,J ,vw0,J ], where R is the union of all conjugates of S in W .

Part 3 of our theorem is where we used KL theory based on the works of
Carrell and Deodhar.

... AND THIS WAS THE END OF OUR TALK!
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