Reminders about the nit-Hecke algeba Work over a feel $\mathbb{k}$, later char $k \neq 2$

Will use diagrans!

$$
\begin{array}{lll}
x_{i}=\left.|\ldots|_{\mid \ldots}^{\ldots}\right|_{i} \ldots n & \text { Locally: } & X=0, \\
\tau_{i}=\mid \ldots X_{1} \ldots i & X & X \\
X_{i+1} \ldots n
\end{array} \quad X=X, X-X=1 \mid
$$

(plus "interchange" if far apart)
Move tricks:

$$
a+b=n
$$

 all are $1_{n}$ identity

Special cases $\alpha=\rho_{n}=(n-1, n-2, \ldots, 1,0)$ will drop subserpot $n$ when on strong. of thickness $n$
$\alpha=\omega_{r, n}=(\underbrace{(1, \ldots, 1,0, \cdots, 0)}_{r}$ fundamental weight
$f=e_{r, n}=\sum_{1 \leqslant i_{1}<\cdots<i_{r} \leqslant n} x_{i_{1}, \ldots x_{i_{r}}}$; elementary symmetric polynomial in $x_{1, \ldots, x_{n}}$
$f=S_{\lambda, n}$ : Schur polynomial in $x_{1}, \ldots, x_{n}$ nidexed by partition $\lambda, l(\lambda) \leq n$
ry


$$
n=3
$$

etc...
homogeneous
If is well known that this is a primitive /idempolet in $N H_{n}\left\{\begin{array}{l}x_{i} \text { degree } 2 \\ \tau_{i} \text { degree -2 }\end{array}\right.$ (and all such are conjugate to this one)
$N H_{n} G \quad \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \quad x_{i}$ acts by mult., $\tau_{i}$ acts by Demazure $\tau_{i} \cdot f=\frac{s_{i}(f)-f}{x_{i+1} x_{i}}$ $\left.{ }^{\omega} \longleftrightarrow q^{-n(n-1)}\right|_{n} ^{\leftarrow}$ (f) the left action becomes actoin "on top" of diagan
Aho $\Lambda_{n}=\mathbb{k}\left[x_{1},-1, x_{n}\right]^{s_{n}}=Z\left(N H_{n}\right)$ and $\mathbb{K}\left[x_{1, \ldots,}, x_{n}\right]$ is fiee $\Lambda_{n}$-module, baris $x^{\alpha}$

$$
\Rightarrow N H_{n} \simeq \text { End }_{\Lambda_{n}}\left(\mathbb{K}\left[x_{k-7} x_{n}\right]\right) \cong \operatorname{Mat}_{n!}\left(\Lambda_{n}\right)
$$

Fundameital theoren
of Schubet calculas

You decluce that i $\rho$ acts as 1 on $x^{\rho}, 0$ on other $x^{\alpha}(0 \leqslant \alpha i \leqslant n-i)$
$\Rightarrow$ earker clains abut this prinitue idempotect

$$
S_{a} \times S b
$$

$\Lambda_{a, b}:=\mid K\left[x_{1, \cdots}, x_{n}\right]^{s_{a} \times b}$ is equivarait colonology of $\operatorname{Gr}_{a}^{n} \quad(n=a+b)$ $\Lambda_{n}$ frobenuis exterión

$$
\exists \text { non-deg. symm }
$$



Theorem impleed

$\Rightarrow$ required dual bases for $\Lambda_{a, b}$ as free $\Lambda_{n}$-module (Schubert clasces!))

Corollary (KLMS)

as a sum of muthally orthogonal, prinitwe homogereous idempotents.

Nil-Bramer and the i-quantum group of suk I
I use * for tersor/honizontal comp.
$N B_{t}$ strict $1 k$-liear greded monoidal categary, defued by generators e nelation Geverating object $B, 1_{B}=\mid\left(\operatorname{obs} B^{* n} \leftrightarrow \mathbb{N}\right)$ Relations
Gereating mopphoms $\phi, X, \cap, U$

$$
X=0, X-X=11-\check{n}
$$

$$
\operatorname{deg} 2 \operatorname{deg}-2 \quad \operatorname{deg} 0
$$

Here $t \in \mathbb{K}$ is parancter.
Actually $t=0$ or $t=1$ else frivial!

$$
X=X, \quad N=1=M
$$

Proof: $X-X=\int-0$
$\cap=-M, \quad \cap=X$

$$
{ }_{0}^{11} \quad \therefore \bigcirc^{2}=\bigcirc \quad \therefore t^{2}\|=t\| \quad \therefore t=0 \text { or } t=1
$$

What's End (11)? Have dotted bubbles Or

Recall Schur's $q$-functions $q_{r}=\sum_{s=0}^{r} e_{s} h_{r-s} \in \Lambda$ (algebor of symmetric functions)
They gereate sabalgebra $\Gamma=\mathbb{k}\left[q_{1}, q_{3}, q_{s}, \ldots\right]$ of $\Lambda$.
Theorem $\left(B \cdot\right.$.Warg-Webster) $\Gamma \xrightarrow{\sim}$ End $_{\sim g_{t}}(\eta), \quad q_{r} \mapsto-2(-1)^{r} \bigcirc r$
Each morphisin space $\operatorname{Hom}_{\mathrm{NB}_{t}}(n, m)$ is free al a $\Gamma$-module with "robrows" basis giver by reduced Bauer chagrins with dots at foxed posit on each sting
$\Rightarrow$ rake $\operatorname{Hom}_{N B_{t}}(n, m)=\frac{1}{\left(1-q^{-2}\right)^{\frac{m a n}{2}}} \sum q^{2 \# \text { trossiggs in } C) \quad(m \equiv n \text { (2) of course) })}$
chord dagan $C$ with

which by some combuatonis equals $\left(B^{n}, B^{m}\right)^{2}$
$\dot{n}$ the 2 -quaimm goop $U^{2}$ of rank ore!
$U^{2}=$ subalgeb $x$ of uncial $U_{q}\left(\mathrm{Sl}_{2}\right)$ generated by $B=F+q K^{-1} E$

$$
(u, v)^{2}=\lim _{\lambda \rightarrow \infty}\left(u \eta_{\lambda}, v \eta_{\lambda}\right) \quad \uparrow \quad{ }_{i n} \quad \mathbb{Q}_{\text {usual form on }\left(\left(q^{-1}\right)\right)} U_{q}\left(s l_{2}\right) \text {-module of } h / \omega \lambda \in \mathbb{N}, \eta_{\lambda}=h / \omega \text { eec. }
$$ introduced

Primitive idempotents in $N B_{t}$
NB $B_{t}$ has a lot in common with mit-ltecke, but $X-X_{a}=\overbrace{\mid-}$ much harder! It is no longer the that all symmetric polynomails are central but:
Also false :

But remarkably still have


Theorem $(B \omega w) e_{n}:=\int_{n}^{1} \rho$ is a primitive honogereous idempotent in $\mathcal{N} B_{t}$, and every such is conjugate to one of these. Moreover we decompose $B * e_{n}$ as a sam of conjugates of these.

If $n$ 丰 (2) we show
seems of mut. orthogonal primitive honogerears idemps.
If $n \equiv t$ (2) we show

$$
\begin{aligned}
& \int_{e_{n+1}} \\
& \text { (n+1 of these) } \\
& \text { ( } n \text { of these) }
\end{aligned}
$$

Now consider modules over $N B_{t}$ (graded Ik-linear fuctors to GVec).
Traditional to pass from category to its path algebra $N B=\bigoplus_{m, n \geqslant 0} \operatorname{Hom}(n, m)$
This is a locally withal graded algebra with system $1_{n}(n \in \mathbb{N})$ of mutually orthogonal idempotents.
$K_{0}(N B)=G$ ortherdieck $\mathbb{Z}\left[q q^{-1}\right]$-algebra of $f \cdot g \cdot$ graded projective left $N B$-modules $\begin{aligned} & \text { quack by grading } \\ & \text { shift functor }\end{aligned} \quad[P][Q]=[P \circledast Q]$ where $\circledast=$ induction product/Day convolution
Let $P(n)=q^{-\frac{1}{2} n(n-1)} N B e_{n} \quad$ (projective aroc. to primitive idempotent $e_{n}$ )

$$
\text { Corollary } B P(n):=P(1) \nrightarrow P(n)= \begin{cases}{[n+1] P(n+1) \oplus[n] P(n)} & n \neq t(2) \\ {[n+1] P(n+1)} & n \neq t(2)\end{cases}
$$

The recurrence relation here is the same as recurrence for Bao-Wang's 2-cononical basis $B_{t}^{(n)}(n \in \mathbb{N})$ for $U^{2}$ (which abo depends on choice of $t$ ). In fact, this is how we prove $e_{n}$ is primitive / $P(n)$ is idecomposable, for $\left(B_{t}^{(n)}, B_{t}^{(m)}\right) \equiv \delta_{n, m}\left(\bmod q^{-1} \mathbb{Q}\left[\left[q^{-1}\right]\right]\right)$ by the general theory. So:

Theorem $(B \omega \omega) \quad K_{0}(N B) \cong{ }_{22} U_{t}^{2}$ as a $\mathbb{Z}\left[q, q^{-1}\right]$-algebra

$$
[P(n)] \leftrightarrow B_{t}^{(n)}
$$

where ${ }_{2} U_{t}^{2}$ is the $\mathbb{Z}\left[q, q^{-1}\right]$.form generated by the $B_{t}^{(n)}$
1.e. Nb categories the split 2 -quantum group of rank 1 .

There's more interesthig structure to NB - it has a goaded triangular basis Sort of a weak triangular decomposition like in lie theory.
Canton role is played by

$$
\bigoplus_{n \geqslant 0}^{( } N H_{n} \underset{\mid k}{\otimes} \Gamma
$$ properties

let standard modules $\Delta(n)(n \in \mathbb{N})$, "affine highest weight category".
But $P(n)$ has a filtration

has submodules which are not finitely geoid

| $\Delta(n)$ |
| :---: |
| $\oplus q^{?} \Delta(n-2)$ |
| $\vdots$ |
| $\oplus q^{?} \Delta(1$ or 0$)$ |

$\leftarrow$ lagers are ifoicile duct sums / (known malts.) which is a new phenomenon for me
Kac-Moody 2-categories (cakegonfyig usual quantum groups) also have this sort of structure (not so explicit). in the highest weight story

