$$
0
$$

Meta-Kazhdan-Lusztig combinatorics

joint work with M. De Visscher, A Hazi, E. Norton, N. Farrell, C. Stroppel

What Lie theoretic objects to we fully understand?

Take your favourite class of non-semisimple Lie theoretic objects:

- Category \mathcal{O} for Lie algebras
- Polynomial representation of reductive groups
- Group algebras of Coxeter groups
- Finite-dimensional representations of supergroups
- (Quiver) Hecke algebras
- Quantum groups
- Khovanov arc algebras
- Anti-spherical Hecke categories...

What can you say about their structure?

- Characters of simples/composition factors of Verma modules?

But what if we want more detail?

- Submodule structure of Verma modules? $\mathrm{SL}_{2}(\mathbb{k})$ and symmetric powers.
- Gabriel-style presentations by Ext-quiver and relations? $\mathbb{k} \mathfrak{S}_{p}$ and its Schur algebra.

That's all?!

Section 1

Character theory and p-Kazhdan-Lusztig combinatorics

Step 1: Label the simple/Verma modules

- We let $\left(\mathcal{P}_{m, n}, \leq\right)$ denote the poset of partitions which fit into an ($m \times n$)-rectangle ordered by inclusion. For example, let $m=3$ and $n=2$. Then

The poset $\left(\mathcal{P}_{m, n}, \leq\right)$ is important for many categories of interest. . .

Step 1: Label the simple/Verma modules

The simple and Verma modules of rational representations of supergroups $\mathrm{GL}_{m \mid n}(\mathbb{C})$, categories of perverse sheaves on Grassmannians, blocks of walled Brauer algebras, certain level 2 quiver Schur algebras, Khovanov arc algebras, and anti-spherical Hecke categories (of $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$) are of the form

$$
\left\{L(\lambda) \mid \lambda \in\left(\mathcal{P}_{m, n}, \leq\right)\right\} \quad\left\{\Delta(\lambda) \mid \lambda \in\left(\mathcal{P}_{m, n}, \leq\right)\right\}
$$

these categories are highest weight with respect to \leq.

Step 2: Define the Kazhdan-Lusztig polynomials of type $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$

- A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

- Let P be a Dyck path on the boxes of $\mu=\left(8^{3}, 7,4^{2}, 3\right)$,

- We say that a pair of Dyck paths P and Q on μ are good if the rightmost box of P is not NW/SW of the leftmost box of Q.

Step 2: Define the Kazhdan-Lusztig polynomials of type $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$

- A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

- Let P be a Dyck path on the boxes of $\mu=\left(8^{3}, 7,4^{2}, 3\right)$,

- We say that a pair of Dyck paths P and Q on μ are good if the rightmost box of P is not NW/SW of the leftmost box of Q.

Step 2: Define the Kazhdan-Lusztig polynomials of type $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$

- A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

- Let P be a Dyck path on the boxes of $\mu=\left(8^{3}, 7,4^{2}, 3\right)$,

- We say that a pair of Dyck paths P and Q on μ are good if the rightmost box of P is not NW/SW of the leftmost box of Q.

Step 2: Define the Kazhdan-Lusztig polynomials of type $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$

- A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

- Let P be a Dyck path on the boxes of $\mu=\left(8^{3}, 7,4^{2}, 3\right)$,

- We say that a pair of Dyck paths P and Q on μ are good if the rightmost box of P is not NW/SW of the leftmost box of Q.

Step 2: Define the Kazhdan-Lusztig polynomials of type $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$

- A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

- Let P be a Dyck path on the boxes of $\mu=\left(8^{3}, 7,4^{2}, 3\right)$,

- We say that a pair of Dyck paths P and Q on μ are good if the rightmost box of P is not NW/SW of the leftmost box of Q.

Step 2: Define the Kazhdan-Lusztig polynomials of type $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$

- A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

- Let P be a Dyck path on the boxes of $\mu=\left(8^{3}, 7,4^{2}, 3\right)$,

- We say that a pair of Dyck paths P and Q on μ are good if the rightmost box of P is not NW/SW of the leftmost box of Q.

Step 2: Define the Kazhdan-Lusztig polynomials of type $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$

- A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

- Let P be a Dyck path on the boxes of $\mu=\left(8^{3}, 7,4^{2}, 3\right)$,

- We say that a pair of Dyck paths P and Q on μ are good if the rightmost box of P is not NW/SW of the leftmost box of Q.

Step 2: Define the Kazhdan-Lusztig polynomials of type $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$

- A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

- Let P be a Dyck path on the boxes of $\mu=\left(8^{3}, 7,4^{2}, 3\right)$,

- We say that a pair of Dyck paths P and Q on μ are good if the rightmost box of P is not NW/SW of the leftmost box of Q.
- If $\lambda<\mu$ is such that $\mu-\lambda$ is tile-able by (pairwise) good Dyck paths, then we define

$$
n_{\lambda, \mu}=q^{\sharp\{\operatorname{good} \text { Dyck paths in tiling of } \mu-\lambda\}}
$$

Otherwise we set $n_{\lambda, \mu}=0$.

An example for $m=n=2$

		Δ	Δ	θ	\rangle	\varnothing
\Leftrightarrow	1
\triangle	q	1
	.	q	1	.	.	.
	-	q	.	1	.	.
	q	q^{2}	q	q	1	.
\varnothing	q^{2}	.	.	.	q	1

A bigger example

- Let $\mu=\left(11^{7}, 8^{3}, 2^{2}\right)$ and $\lambda=\left(11,9,8,7,6,4,3^{2}, 2^{2}\right)$.
- Any tiling of $\mu-\lambda$ has 8 Dyck paths in it and so

$$
n_{\lambda, \mu}=q^{8} .
$$

- There are 12 different Dyck tilings of $\mu-\lambda$. Here are some of them:

A bigger example

- Let $\mu=\left(11^{7}, 8^{3}, 2^{2}\right)$ and $\lambda=\left(11,9,8,7,6,4,3^{2}, 2^{2}\right)$.
- Any tiling of $\mu-\lambda$ has 8 Dyck paths in it and so

$$
n_{\lambda, \mu}=q^{8} .
$$

- There are 12 different Dyck tilings of $\mu-\lambda$. Here are some of them:

Important fact 1

The Kazhdan-Lusztig polynomials $\lambda, \mu \in \mathcal{P}_{m, n}$ are

$$
n_{\lambda, \mu}= \begin{cases}q^{\sharp\{\operatorname{good} \text { Dyck paths in tiling of } \mu-\lambda\}} & \text { if } \mu-\lambda \text { is tile-able by good Dyck paths } \\ 0 & \text { otherwise }\end{cases}
$$

Important fact 2

The decomposition numbers of rational representations of supergroups $\mathrm{GL}_{m \mid n}(\mathbb{C})$, categories of perverse sheaves on Grassmannians, blocks of walled Brauer algebras, certain level 2 quiver Schur algebras, Khovanov arc algebras, and anti-spherical Hecke categories (of $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \leq \mathfrak{S}_{m+n}$) are of the form

$$
n_{\lambda, \mu}= \begin{cases}q^{\sharp\{\text { good Dyck paths in tiling of } \mu-\lambda\}} & \text { if } \mu-\lambda \text { is tile-able by good Dyck paths } \\ 0 & \text { otherwise }\end{cases}
$$

What are the limits to what Kazhdan-Lusztig combinatorics can tell us?

Instead of looking only at the sets of Dyck tableaux (which enumerate the p-Kazhdan-Lusztig polynomials) we want to look at the relationships for passing between these Dyck tableaux...

Section 2

Meta-Kazhdan-Lusztig combinatorics: Verma modules

A partial ordering on Dyck tableaux of shape λ

Let \mathbf{S} and \mathbf{T} be two Dyck tableau of shape λ. Let $\operatorname{deg}(\mathbf{S})=k$ and $\operatorname{deg}(\mathbf{T})=k+1$. We write $\mathbf{S} \rightarrow \mathbf{T}$ if either:

- $\mathbf{T}=\mathbf{S} \cup P$ for P an addable Dyck path.

- \mathbf{T} is obtained by splitting some $P \in \mathbf{S}$ into two distinct parts:

- We extend this to a partial ordering by transitivity.

Theorem (Bowman De Visscher Hazi Stroppel)

Let $(W, P)=\left(\mathfrak{S}_{n+m}, \mathfrak{S}_{n} \times \mathfrak{S}_{m}\right)$. The Alperin diagram for a Verma module for the anti-spherical Hecke category is given by the "add" and "split" operators on Dyck tableaux. Every Verma module has simple socle and is rigid.

Section 3

Meta-Kazhdan-Lusztig combinatorics: Ext-quivers and relations

By a famous theorem of Gabriel, every algebra is Morita equivalent to the path algebra of its Ext-quiver modulo relations. . .

Theorem (Bowman De Visscher Hazi Stroppel)
The Ext-quiver is given by the combinatorially defined "Dyck quiver" $D_{m, n}$ with arrows corresponding to single Dyck paths. For example

The basic algebra of the anti-spherical Hecke category for $\left(\mathfrak{S}_{m+n}, \mathfrak{S}_{n} \times \mathfrak{S}_{m}\right)$ is isomorphic to the quotient of the path algebra of $D_{m, n}$ modulo "Dyck relations"...

Cinching partitions

Let $P, Q \subseteq \mu$ be two distinct Dyck paths. We want to understand products $d_{\mu}^{\mu \pm P} d_{\mu \pm Q}^{\mu}$.

- If $P \sqcup Q$ admits two Dyck tilings, we set $P \wedge Q=P \sqcup Q$.

\qquad

- If there is just one Dyck tiling of $P \sqcup Q$ and $b(P)<b(Q)$, then we set $P \wedge Q=Q$.

- If $P \sqcup Q$ is not a Dyck tiling, we set $P \wedge Q$ to be the smallest removable Dyck path of μ containing $P \sqcup Q$.

Theorem (Bowman De Visscher Hazi Stroppel)

The anti-spherical Hecke category for $\left(\mathfrak{S}_{m+n}, \mathfrak{S}_{n} \times \mathfrak{S}_{m}\right)$ is the associative \mathbb{k}-algebra generated by the elements

$$
\left\{d_{\mu}^{\lambda}, d_{\lambda}^{\mu} \mid \lambda \subseteq \mu \text { are a Dyck pair of degree } 1\right\} \cup\left\{1_{\mu} \mid \mu \in{ }^{P} W\right\}
$$

subject to the following relations and their duals. The idempotent relations

$$
1_{\mu} 1_{\lambda}=\delta_{\lambda, \mu} 1_{\lambda} \quad 1_{\lambda} d_{\mu}^{\lambda} 1_{\mu}=d_{\mu}^{\lambda}
$$

For $P \neq Q$ then we have that

$$
d_{\mu}^{\mu-P} d_{\mu \pm Q}^{\mu}=(-1)^{\operatorname{sgn}(P \wedge Q)} d_{\mu-P \wedge Q}^{\mu-P} d_{\mu \pm Q}^{\mu-P \wedge Q}
$$

if $P \wedge Q$ is defined and 0 otherwise. For $P=\{[r, c], \ldots,[r+b, c-b]\}$ we have

$$
d_{\mu}^{\mu-P} d_{\mu-P}^{\mu}=\sum_{[r-1, c] \in Q}(-1)^{\operatorname{sgn}(Q)} d_{\mu-P-Q}^{\mu-P} d_{\mu-P}^{\mu-P-Q}+\sum_{[r+b, c-b-1] \in Q}(-1)^{\operatorname{sgn}(Q)} d_{\mu-P-Q}^{\mu-P} d_{\mu-P}^{\mu-P-Q}
$$

Summary I

We have complete understanding of the full algebra structure of the anti-spherical Hecke category for $\left(\mathfrak{S}_{m+n}, \mathfrak{S}_{n} \times \mathfrak{S}_{m}\right)$ in terms of explicit Dyck combinatorics.

Summary II

This presentation is characteristic-free and lifts to \mathbb{Z}.

Also 1

The anti-spherical Hecke category for $\left(\mathfrak{S}_{m+n}, \mathfrak{S}_{n} \times \mathfrak{S}_{m}\right)$ is isomorphic as a graded \mathbb{k}-algebra to the Khovanov arc algebra for \mathbb{k} an arbitrary field.

Also II

We have complete understanding of the structure of rational representations of supergroups $\mathrm{GL}_{m \mid n}(\mathbb{C})$, categories of perverse sheaves on Grassmannians, blocks of walled Brauer algebras, and certain level 2 quiver Schur algebras.

An example $\left(\mathfrak{S}_{4}, \mathfrak{S}_{2} \times \mathfrak{S}_{2}\right)$

The anti-spherical Hecke category of $\left(\mathfrak{S}_{4}, \mathfrak{S}_{2} \times \mathfrak{S}_{2}\right)$ is the path algebra of the quiver

modulo the following relations and their duals

$$
\begin{gathered}
d_{(1)}^{\varnothing} d_{(2)}^{(1)}=0=d_{(1)}^{\varnothing} d_{\left(1^{2}\right)}^{(1)} \quad d_{(2)}^{(1)} d_{(2,1)}^{(2)}=d_{\left(2^{2}\right)}^{(1)} d_{(2,1)}^{\left(2^{2}\right)}=d_{\left(1^{2}\right)}^{(1)} d_{(2,1)}^{\left(1^{2}\right)} \quad d_{\lambda}^{(1)} d_{(1)}^{\lambda}=-d_{\varnothing}^{(1)} d_{(1)}^{\varnothing} \\
d_{\left(2^{2}\right)}^{(2,1)} d_{(2,1)}^{\left(2^{2}\right)}=-d_{(2)}^{(2,1)} d_{(2,1)}^{(2)}-d_{\left(1^{2}\right)}^{(2,1)} d_{(2,1)}^{\left(1^{2}\right)}
\end{gathered}
$$

for all λ and for any pair $\lambda<\mu$ not of the above form, we have that $d_{\mu}^{\lambda} d_{\lambda}^{\mu}=0$.

