

Meta-Kazhdan–Lusztig combinatorics

joint work with M. De Visscher, A Hazi, E. Norton, N. Farrell, C. Stroppel

What Lie theoretic objects to we fully understand?

Take your favourite class of non-semisimple Lie theoretic objects:

- $\bullet~$ Category ${\cal O}$ for Lie algebras
- Polynomial representation of reductive groups
- Group algebras of Coxeter groups
- Finite-dimensional representations of supergroups
- (Quiver) Hecke algebras
- Quantum groups
- Khovanov arc algebras
- Anti-spherical Hecke categories...

What can you say about their structure?

Characters of simples/composition factors of Verma modules?

, **O**

But what if we want more detail?

- Submodule structure of Verma modules? $\mathrm{SL}_2(\Bbbk)$ and symmetric powers.
- Gabriel-style presentations by Ext-quiver and relations? $\&\mathfrak{S}_p$ and its Schur algebra.

That's all?!

Section 1

Character theory and p-Kazhdan-Lusztig combinatorics

What is *p*-Kazhdan–Lusztig theory?

Step 1: Label the simple/Verma modules

We let (*P_{m,n}*, ≤) denote the poset of partitions which fit into an (*m* × *n*)-rectangle ordered by inclusion. For example, let *m* = 3 and *n* = 2. Then

The poset $(\mathcal{P}_{m,n}, \leq)$ is important for many categories of interest...

Step 1: Label the simple/Verma modules

The simple and Verma modules of rational representations of supergroups $\operatorname{GL}_{m|n}(\mathbb{C})$, categories of perverse sheaves on Grassmannians, blocks of walled Brauer algebras, certain level 2 quiver Schur algebras, Khovanov arc algebras, and anti-spherical Hecke categories (of $\mathfrak{S}_m \times \mathfrak{S}_n \leq \mathfrak{S}_{m+n}$) are of the form

$$\{L(\lambda) \mid \lambda \in (\mathcal{P}_{m,n}, \leq)\} \qquad \{\Delta(\lambda) \mid \lambda \in (\mathcal{P}_{m,n}, \leq)\}$$

these categories are highest weight with respect to \leq .

A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

• Let P be a Dyck path on the boxes of $\mu = (8^3, 7, 4^2, 3)$,

A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

• Let P be a Dyck path on the boxes of $\mu = (8^3, 7, 4^2, 3)$,

A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

• Let P be a Dyck path on the boxes of $\mu = (8^3, 7, 4^2, 3)$,

A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

• Let P be a Dyck path on the boxes of $\mu = (8^3, 7, 4^2, 3)$,

A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

• Let P be a Dyck path on the boxes of $\mu = (8^3, 7, 4^2, 3)$,

A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

• Let P be a Dyck path on the boxes of $\mu = (8^3, 7, 4^2, 3)$,

A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

• Let P be a Dyck path on the boxes of $\mu = (8^3, 7, 4^2, 3)$,

A Dyck path is a path in NE/SE/NW/SW directions, finishing at the height at which it started, never dropping below this height:

• Let P be a Dyck path on the boxes of $\mu = (8^3, 7, 4^2, 3)$,

- We say that a pair of Dyck paths P and Q on µ are good if the rightmost box of P is not NW/SW of the leftmost box of Q.
- If $\lambda < \mu$ is such that $\mu \lambda$ is tile-able by (pairwise) good Dyck paths, then we define

$$n_{\lambda,\mu}=q^{\sharp \{ ext{good Dyck paths in tiling of }\mu-\lambda \}}$$

Otherwise we set $n_{\lambda,\mu} = 0$.

	\bigotimes	\bigotimes	\diamond	\Diamond	\diamond	Ø
\bigotimes	1					
\bigotimes	q	1				
\diamond		q	1			
\Diamond		q		1		
\diamond	q	q^2	q	q	1	
Ø	q ²				q	1

A bigger example

- Let $\mu = (11^7, 8^3, 2^2)$ and $\lambda = (11, 9, 8, 7, 6, 4, 3^2, 2^2)$.
- ▶ Any tiling of $\mu \lambda$ has 8 Dyck paths in it and so

$$n_{\lambda,\mu} = q^8$$

• There are 12 different Dyck tilings of $\mu - \lambda$. Here are some of them:

A bigger example

- Let $\mu = (11^7, 8^3, 2^2)$ and $\lambda = (11, 9, 8, 7, 6, 4, 3^2, 2^2)$.
- ▶ Any tiling of $\mu \lambda$ has 8 Dyck paths in it and so

$$n_{\lambda,\mu} = q^8$$

• There are 12 different Dyck tilings of $\mu - \lambda$. Here are some of them:

Important fact 1

The Kazhdan–Lusztig polynomials $\lambda, \mu \in \mathcal{P}_{m,n}$ are

 $n_{\lambda,\mu} = \begin{cases} q^{\sharp \{\text{good Dyck paths in tiling of } \mu - \lambda \}} & \text{if } \mu - \lambda \text{ is tile-able by good Dyck paths} \\ 0 & \text{otherwise} \end{cases}$

Important fact 2

The decomposition numbers of rational representations of supergroups $\operatorname{GL}_{m|n}(\mathbb{C})$, categories of perverse sheaves on Grassmannians, blocks of walled Brauer algebras, certain level 2 quiver Schur algebras, Khovanov arc algebras, and anti-spherical Hecke categories (of $\mathfrak{S}_m \times \mathfrak{S}_n \leq \mathfrak{S}_{m+n}$) are of the form

 $n_{\lambda,\mu} = \begin{cases} q^{\sharp \{\text{good Dyck paths in tiling of } \mu - \lambda \}} & \text{if } \mu - \lambda \text{ is tile-able by good Dyck paths} \\ 0 & \text{otherwise} \end{cases}$

What are the limits to what Kazhdan-Lusztig combinatorics can tell us?

Instead of looking only at the sets of Dyck tableaux (which enumerate the p-Kazhdan–Lusztig polynomials) we want to look at the relationships for passing between these Dyck tableaux...

Section 2

Meta-Kazhdan-Lusztig combinatorics: Verma modules

A partial ordering on Dyck tableaux of shape λ

Let **S** and **T** be two Dyck tableau of shape λ . Let deg(**S**) = k and deg(**T**) = k + 1. We write **S** \rightarrow **T** if either:

• $\mathbf{T} = \mathbf{S} \cup P$ for *P* an addable Dyck path.

T is obtained by splitting some $P \in \mathbf{S}$ into two distinct parts:

We extend this to a partial ordering by transitivity.

Theorem (Bowman De Visscher Hazi Stroppel)

Let $(W, P) = (\mathfrak{S}_{n+m}, \mathfrak{S}_n \times \mathfrak{S}_m)$. The Alperin diagram for a Verma module for the anti-spherical Hecke category is given by the "add" and "split" operators on Dyck tableaux. Every Verma module has simple socle and is rigid.

Section 3

Meta-Kazhdan-Lusztig combinatorics: Ext-quivers and relations

By a famous theorem of Gabriel, every algebra is Morita equivalent to the path algebra of its ${\rm Ext}\mbox{-}{\rm quiver}$ modulo relations. . .

Theorem (Bowman De Visscher Hazi Stroppel)

The Ext-quiver is given by the combinatorially defined "Dyck quiver" $D_{m,n}$ with arrows corresponding to single Dyck paths. For example

The basic algebra of the anti-spherical Hecke category for $(\mathfrak{S}_{m+n}, \mathfrak{S}_n \times \mathfrak{S}_m)$ is isomorphic to the quotient of the path algebra of $D_{m,n}$ modulo "Dyck relations"...

Cinching partitions

Let $P, Q \subseteq \mu$ be two distinct Dyck paths. We want to understand products $d_{\mu}^{\mu \pm P} d_{\mu \pm Q}^{\mu}$. If $P \sqcup Q$ admits two Dyck tilings, we set $P \land Q = P \sqcup Q$.

▶ If there is just one Dyck tiling of $P \sqcup Q$ and b(P) < b(Q), then we set $P \land Q = Q$.

If P ⊔ Q is not a Dyck tiling, we set P ∧ Q to be the smallest removable Dyck path of µ containing P ⊔ Q.

Theorem (Bowman De Visscher Hazi Stroppel)

The anti-spherical Hecke category for $(\mathfrak{S}_{m+n},\mathfrak{S}_n\times\mathfrak{S}_m)$ is the associative k-algebra generated by the elements

$$\{d^{\lambda}_{\mu}, d^{\mu}_{\lambda} \mid \lambda \subseteq \mu \text{ are a Dyck pair of degree } 1\} \cup \{1_{\mu} \mid \mu \in {}^{P}W\}$$

subject to the following relations and their duals. The idempotent relations

$$1_{\mu}1_{\lambda} = \delta_{\lambda,\mu}1_{\lambda}$$
 $1_{\lambda}d_{\mu}^{\lambda}1_{\mu} = d_{\mu}^{\lambda}$

For $P \neq Q$ then we have that

$$d^{\mu-P}_\mu d^\mu_{\mu\pm Q} = (-1)^{ ext{sgn}(P\wedge Q)} d^{\mu-P}_{\mu-P\wedge Q} d^{\mu-P\wedge Q}_{\mu\pm Q}$$

if $P \wedge Q$ is defined and 0 otherwise. For $P = \{[r,c],\ldots,[r+b,c-b]\}$ we have

$$d_{\mu}^{\mu-P}d_{\mu-P}^{\mu} = \sum_{[r-1,c]\in Q} (-1)^{\text{sgn}(Q)} d_{\mu-P-Q}^{\mu-P}d_{\mu-P}^{\mu-P-Q} + \sum_{[r+b,c-b-1]\in Q} (-1)^{\text{sgn}(Q)} d_{\mu-P-Q}^{\mu-P}d_{\mu-P}^{\mu-P-Q}.$$

Summary I

We have complete understanding of the full algebra structure of the anti-spherical Hecke category for $(\mathfrak{S}_{m+n},\mathfrak{S}_n\times\mathfrak{S}_m)$ in terms of explicit Dyck combinatorics.

Summary II

This presentation is characteristic-free and lifts to $\ensuremath{\mathbb{Z}}.$

Also I

The anti-spherical Hecke category for $(\mathfrak{S}_{m+n}, \mathfrak{S}_n \times \mathfrak{S}_m)$ is isomorphic as a graded k-algebra to the Khovanov arc algebra for k an arbitrary field.

Also II

We have complete understanding of the structure of rational representations of supergroups $\operatorname{GL}_{m|n}(\mathbb{C})$, categories of perverse sheaves on Grassmannians, blocks of walled Brauer algebras, and certain level 2 quiver Schur algebras.

An example $(\mathfrak{S}_4, \mathfrak{S}_2 \times \mathfrak{S}_2)$

The anti-spherical Hecke category of $(\mathfrak{S}_4,\mathfrak{S}_2\times\mathfrak{S}_2)$ is the path algebra of the quiver

modulo the following relations and their duals

$$d_{(1)}^{\varnothing}d_{(2)}^{(1)} = 0 = d_{(1)}^{\varnothing}d_{(1^2)}^{(1)} \qquad d_{(2)}^{(1)}d_{(2,1)}^{(2)} = d_{(2^2)}^{(1)}d_{(2,1)}^{(2^2)} = d_{(1^2)}^{(1)}d_{(2,1)}^{(1^2)} \qquad d_{\lambda}^{(1)}d_{(1)}^{\lambda} = -d_{\varnothing}^{(1)}d_{(1)}^{\varnothing}$$

$$d^{(2,1)}_{(2^2)}d^{(2^2)}_{(2,1)} = -d^{(2,1)}_{(2)}d^{(2)}_{(2,1)} - d^{(2,1)}_{(1^2)}d^{(1^2)}_{(2,1)}$$

for all λ and for any pair $\lambda < \mu$ not of the above form, we have that $d^{\lambda}_{\mu}d^{\mu}_{\lambda} = 0$.