LECTURE 5. PARTITION FUNCTION ON TORUS. PART II

However, we have a certain gauge invariance, which we should fix, when performing inte-
gration over 7.

We can obtain a torus by identifying the points on a complex plane as
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Here A; and A2 are two complex numbers. Their ratio is called the complex structure of
the torus
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We can choose the pair A and Ag differently and it still can describe the same lattice. If two
different choices describe the same lattice then we have
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In order to the inverse matrix to have an integer entries we impose
lad —be| =1

Apparently the lattice defined by (A1, Ag) is the same as (—X;, —A2). Therefore we have to
divide by the action of the group Z». Obtained transformations form a group which is called
PSL(2,Z) and is known as a modular group of a torus. The group is formed by 2 x 2 matrices

w=(22), (¢ 9)~(2 2)

whose elements are integer numbers and the determinant is equal to 1. We can choose Ay = 1
and Az = 7, therefore the modular transformations the parameter 7 transforms as
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Let us take coordinates on a torus as 0 € ¢33 < 1. The metric on a torus can be written
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The metric is parametrized by one complex variable 7, which is called a modular parameter.

as

1t parametrizes unequivalent tori. The line element on a torus is

dwdi
T2

ds® = gapdogdoy, =

where w = g1 + 702. The coordinates oy 2 are periodic, which translates into periodicity of
“the coordinates w:
oy ~otlow~w+1
co~oet+l—sw~w+T
Tori have diffeomorphisms that can not be made an identity by continuous deformations.
They are expressed as
(o1,02) = (aoy + bog, coy + dog)
The constants a, b, ¢ and d are integer.

1. PARTICULAR CASES

l.a=1,b=1,¢=0,d=1. We have

) 1 1
- 1, M=
T—=T7+ (0 1)

These transformations are called T-transformations.
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Apparently, the new torus is equivalent to the old one, due to the periodicity of o1 and 3.

On the other side the new torus corresponds to + + 1. Therefore, we have invariance under
T=7+4+1.
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2. Let us consider another choice of the defining parallelogram with A\; =1+, and Ay = 7
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We can rescale the both sides of the parallelogram by the factor T—_}_—I in order to bring
it te the original form. Then we get a torus with the modulus 777 These are called U
transformations
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however it is more convenient to consider S transformations defined as

'r—>—£, M= 0 1
T -1 0

which corresponds to a =0,b=1,¢c= -1, d=0. The § and T transformations generate the
modular group. We also have

SP=(T¥=1, S=UT"WU

Since we established the invariance of the integral under PSL(2,Z) group, the next step is
to define the integration area with respect to the parameter 7. Let us consider the following
domain on the complex half-plane '

Im(r}>0, |r>1, —% < Re(r) <

R =

1

_ F_ i l_f,l__ iy
This domain (often denoted as Fy) is called the fundamental domain of the torus. One can
prove two important statements:

» Any point on the complex half-plane, which is outside 7y can be brought inside Fy
using the modular group transformations.
e For any point zg which is inside Fy, and for any element g # 1 of the modular group,
the point gz is outside Jp.
To obtain the moduli space of the torus we impose the further identifications: The bound-
aries with Im(r) = '—% and Im(7r) = % are identified under the equivalence 7 ~ 7 + 1. The
points with |r| = 1 are identified because of 7 ~ —%. This means that the moduli space of
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the tori (moduli are the parameters of a Riemann surface, in general) is the folding of the
fundamental domain along the imaginary axis and gluing the boundaries.

Therefore in the previous lecture we almost obtained a correct partition function on the
torus. We did not have a correct integration domain with respect to 7. We have derived a
correct integration domain in the present lecture. It is a fundamental domain of the torus.

1.1. Partition Function. Again. Let us recall, that for path integrals in Quantum Me-
chanics we have

Z= /]D}q ¢S5 = Tpe—FH

Here ¢(t) is a coordinate and we consider the time interval 0 < ¢ < 3 and ¢(0) = ¢(8). this
can be generalized to the case of the closed string on the torus. Consider a point on the
string which we put on the real axis, going upwards in time! 2m75. This is generated by the
Hamiltonian H = Ly + Ly — 2. At the same time this point undergoes a shift 277 generated
by the momentum P = Ly — Ly. Putting this together, we get
Z=f d2ri_fd24pe"ﬂgﬁTr(qN§N)
Fo g

Let us see, how the vacuum energy transforms under the modular transformations. Notice,

that under the modular transformations the Dedekind function transforms as
tr+1) = efn(r), n(=2) = (-inbner)

d—’;g—"—’ is invariant and #(7)n(F) is invariant. Therefore
2 A

Under T transformations the measure
T's is invariant.

Under S transformations
drd7

(v7)2
which means that the measure is invariant. The expression /7an(7)n(#) is invariant as well.
Therefore, the vacuum energy is invariant under S- transformations as well.

] _
Té = —, dT’dT’ =
TT

1.2. Closed Bosonic string spectrum. Using

- q—%(l + g +'...)

n(g)

one can evaluate
1

[7(7)n(7)]4 -
from this expression one can read the spectrum of the closed bosonic string. The rules are:

1
= q_cf(l +24{(g+q) +24 x 24¢gg + ...)

e A power of g or § gives as the corresponding mass (i.e. the eugenvalue of N or N).
o The coefficient in front of ¢ or § gives us the number of physical degrees of freedom.

1Note, we restored the factor of 27
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For example:

The first term qiq has N = N = —1, therefore it is a tachyon. The coeflicient is 1, i.e., it is
a scalar.

The term % is not a physical state. Indeed, it has N = —1 and N = 0 and it does not
satisfy the level matching condition N = N,

The expression % means that we have 24 x 24 degrees of freedom on the zero mass
level. They correspond to the graviton g¢;;, to the antisymmetric field B;; and to the dilaton.

Therefore we have built a modular invariant expression for the vacuum energy for the closed

bosonic string. This expression is also called a partition function.



