LECTURE 3. BOSONIC STRING. QUANTIZATION

1. CONSTRAINTS

Let us do the cannonical Quantization of the closed bosonic string. Consider commutation
relations )
w X7 N — ipk¥ ot
[#(1,0), 5rmgd®(r o)) = 8o — o)

Using
e2ni(a—a’)

o —o') = E—
we can obtain from this commutator commutation relations for the oscillators

[aﬁw le;;] =m n”V6m+n,0: [5’%: &:’1] = mnyufsm+n,0
(=6, 6] = ™, (G4, 0] =0
In order to get canonical commutation relations, we can redefine the oscillators as

ok, = ymak,, ot =moht, m>0

ah = vmak, &' =+vmakt, m>0
[ 0™ =16, [E &) = 00
Therefore ok, and &4, are annihilation operators, whereas of4" and &&™*
tors.
As in the Quantum Field Theory, the oscillators aow’[" and 61(,’71+ describe the states with a

negative norm

are creation opera-

ant10),  (Ole, ax*|0) < O
Recall, that we had

Tyi(€h) = 50r08)Orar),  Ton(€) = 5(0_a8) (O anp), Tio =0

Using the explicit form for z4f and z¥% we get

oQ =]
Tip= ) Loe¥™* T__ = > Lae®n

n=—od n=—0oa
where
‘ S G- 1 &
(1) Lp = 3 Z T 3 Z O Oy
m=—uo m=—00

These expressions are correct for n # 0, since the oscillators in each term of these expressions

commute among each other. The exception are Ly and Ly since o, (G*,,,) do not commute
1
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with ofn, {&m). Recall the Quantum Mechanics. If we have a classical expression which
contains a product of z and p, (for example zp}, then Quantum Mechanically we should write

&P 4 ¢ where ¢ is a constant. Here we have the same situation: define
- 1 [+] 1 [e0]
(2) L0=§ag-&5‘+2&*_‘m-d§—a, Lg=§a6‘-a6‘+2aﬁm-aﬂ—a
m=1 m=1
where a is a constant to be determined.
Let us notice also, that Ly + Lg is a Hamiltonian H for the Closed String. Recall that the

Hamiltonian density H is

— 1
H=gMl,-L= dnol ((Gom*)(Ooz) + (Or2*)(8r3u))
and -
H= f doH
0

Because zfy and ph satisfy the usual Heisenberg commutation relations, we can take a state

vector as
|k, 0} = t%|0)
L.e., the Hilbert space for the closed string is built using the following vacuum
vy |k, 0) = k*|k, 0},
alk,0) = &%k, 00 =0, for n>0

Let us recall the Dirac quantization procedure. In general we have a Lagrangian which is a
function of ¢; and ¢;. Let us perform the Legandre transformation H = p;§— L i.e., move from
the Lagrangian to Hamiltonian description. In this process we should express the momenta

bi
_ 8L

Pi= =
B4
. in terms of ¢; and ¢;. In this process sometimes we can find that some function(s) of the
coordinates and momenta is zero
) Fn(p’, 9"} =0
These functions are called primary constraints. When performing the Quantization, we should
require that the constraints annihilate the physical states

Fm@j,cjjﬂphys) =0

If the constraints satisfy an algebra with respect to the commutation relations [Fy,, Fy,| =
Ck F, they are called the first class constraints. Otherwise they are called the second class
constraints. The quantization of the systems which contain only first class constraints is
usually easier, than for the ones which contains the second class constraints. We can also
divide the constraints into two sets. The constraints from the first set satisfy

0 = (phys|Fpm,, m1=1,..,k
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and
Fp{phys) =0 ma=k+1,.,m

like it happens, for example, in the Electrodynamics.
In our case we have Virasoro constraints. One can show that

[Las Lim] = (7 = m) Lns + %(ni" — )00

[ Im] = (= m)nsm + 550 = )i
Here the constant ¢ equals to the number of space-time dimensions d. It is a central charge
and represents so called conformal anomaly. That means, the conformal symmetry which is
present at the classical level, is generally broken by quantum corrections.
Note: Two dimensional conformal symmetry is infinite dimensional. It has an infinite
number of generators. They are called Virasoro operators.
The quantization conditions are

3) Lolphys) =0, Lolphys) =0

(4) . L|phys) =0, Lu|phys) =0,

for m > 0 and Virasoro generators are defined in (1} and (2).
From (3} we get

(5} (Lo — Lo)lphys) = 0, and (Lo + Lo)|phys) =0

From (2) it is clear that masses of the states have the form

2 (o=, .
M? = 5 (Z(a’im @l ok, - alt) — 20,)
m=]
Let us introduce a notation .
=] . o
N=)ab, -ak, N=> o, -of
m=1 ; m=]

Then the first equation in (5) will give us the so called “level matching condition”

N=N
Before we move to the description of the quantum states, let us consider the case of an Open
String. Here we have oscillators of only one type. The zero mode is

af = V2o’ ph
The quantization conditions have the form

6) ' Lolphys) =0,

(7 L |phys) =0,
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(g e

Let us consider the case, when the physical state does not contain any oscillator (the zeroth
level) i.e., N = 0. Then for an Open String we have

and the masses of the states are

2 a
M=
and for the Closed String we have (N = N = 0)
4a
2
M=-3

If & > 0 then for both bpen and Closed Strings on the zeroth level we have a particle with a
negative mass square i.e., tachyons.

Let us consider the case when the vacuum for an Open String contains one oscillator N = 1.
Then the corresponding state will have the form

[phys) = eu(k)ol, [k, 0)

The Virasoro conditions will give us the following equations. From (6) we get

M2=1—a

a!
and from (7) we get
keu (k) =0
Now let us determine the constant a. To this end let us move to the light cone coordinates
in the space-time. Then one can choose a gauge

t =zf + (2a')p*r

and decompose the index u, where g = 0,...d — 1 into (+,—,%) where ¢ = 1,...,d = 2. Then
from the Virasoro constraints T, = 0 one can express the o, and o, oscillators in terms of
o, oscillators.

The mass for the Closed String states is

2 e ) .
M? = 7 Z(a‘_m-ain+a“_m-a:")

and for the Open String

o0
Z ot ol
m#Q
We have

o0 o0 o0 oo

S G 8) =2 5 G+ S @) =2 36 ) 4 (=2 3o
— m=1

m#0 m=1 m=1 m=1



LECTURE 3. BOSONIC STRING. QUANTIZATION 5

The first term in the r.h.s is a number, whereas the second term is divergent and needs a
regularization. Let us regularize it as

[o 4] oo

d d 1 dfl1 1 1 1 1

—em _ _ % —em _ _ S - _ =1 ol el T

2 me PP del—e< de(e+2+126+ ) 2 1
m=1 m=1

The rest of the terms in the r.h.s vanish when ¢ — 0.

Therefore we drop the divergent term (regularization) and obtain for the mass for the
Closed String states

2 - d-2
2= i
(8) M o (N+I\ v )
and for the Open String
1 d—2
2—_ e perer—
(9 M = (N 71 )

Let us go back to the covariant quantization. In d dimensions a massless vector has d — 2
polarizations, whereas a massive vector has d — 1 polarizations. From the light cone quanti-
zation it follows, that we have d — 2 degrees of freedom, i.e., we must have a massless vector.
This means

a=1
Then from (8) and (9) we obtain
d=26

Twenty six dimensions are called the critical dimensions for the bosonic string. Classically
a. bosonic string is well defined in any dimensions, but the guantization is consistent only in

d = 26.
Let us notice that at the first excited level (N = 1) one can have a state which has a form
) = L_1|k, 0}
This state is orthogonal to all physical states
' (phys|L_1|k, 0) = (0, k| L_1|k,0) =0

These states should be removed from the spectrum. In other words, physical states are defined
as

Iphys) ~ lphys) + L_ml|A), for m>0
States, which have the form L_p,jA) for m > 0, are called spurious states.

Therefore the Open String describes a massless vector field - a photon at the level N = 1.
"The spurion describes a gauge degree of freedom (Lorentz gauge)

Ay~ A+ 0,8, OA=0

since 9*A,, = 0, according to the Virasoro conditions.
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For the Closed String at the first level N = N = 1 we have a state
Xy(k) &t odT 10, k)

From (8) it follows, that the mass of the field X;;(k) is zero. Recall that in d dimensions the
massless fields are characterized by the representations of SO{d — 2). This means that the
second rank tensor X;; should be decomposed according te the representations of the group
50(d — 2). We obtain ‘
) g(z-j), B[@-j], and TT(X,;_?') = ¢

We have a symmetrical field g;; - a graviton, anti- simmetrical field B;; and a scalar ¢, called
a dilaton.

Therefore at the massless level the Open String describes the Maxwell field, while the
Closed String describes Gravity. At the higher mass levels both Open and Closed Strings -
contain infinite towers of massive fields with masses linearly growing with the spins.

2. STATES AND OPERATORS

Let us move to the Euclidean signature on the world -sheet. To this end we replace T — ir.
Let us define the complex coordinate
2= e'r—ia

One can see, that for the Closed String a cylinder is mapped onto a complex Bkme.

g

A ;a: 3-16
< ! .E ' 2 oy 2
; | g ——
;E h
| |
<7 2
For the Open String
o
§
A ‘ 346
2z : -
rj‘ R - /“ A 1

0 '3 n
a strip is mapped onto an upper half;plane. For the energy momentum tensor we have a

Laurent series
o0

L
Tyi(z} = Z Z—mr_r:—g

m=—Co
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For the String coordinates we get

zh(2) = —mo—z\/ o: lnz-{-z\/ Z—-a” -
1 ! f 1
o%(z) = §$g - iﬂ%&ﬁ Inz+ 44/ %— Z H&ﬁi'”
n#£0
BzacL \/ Za’*‘z“” 1

n;éO

'
ezl (Z) = —iy/ 92- Z aktz—n1

ns£0

From these equatlons we can express the oscillators in terms of z#. For example for the Closed

String
dz o - dz __,
=y arjg o (2), L, =y E o2 0:2R(2),

Therefore the oscillators o, are obtained by taking the residue 8,z%(0), and the higher
modes o are obtained in terms of 87z% (0). In other words, we insert the operator into the
point z = ( and then take the contour integral.

The state which does not contain any oscillator i.e., the tachyon is described by the vertex
operator

Apparently

[0, k) — /dz : gike

The symbol :: means the normal ordering: since the exponential contains both creation
and annihilation operators we should write creation operators to the left of the annihilation
operators, when expanding the exponential in terms of the oscillators.

For the Closed String at the first level N = N = 1 we have

X,u‘.v.a'lil a’illk, 0) —* fdzz X,uu : Ozt azxve'ikz .
For the Open String at the first level N = 1 (the photon) we have
Eu OZ'L—Lllk) 0) — fdl €t (%93’“ eik:c :

where ! is a coordinate along the real axis and 8, is a tangential derivative with respect to
this axis.
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3. CHAN-PATON FACTORS -

Chan - Paton factors allow one to introduce a non-abelian gauge symmetry. Let us add
indices 4,7 = 1,.., N to the Open String endpoints

N

[
“_ -
*}
i

and require that the Hamiltonian which corresponds to this degrees of freedom is zero. This
means the corresponding degrees of freedom are constant in time.
Therefore we have for an Open string state
N

k,a) = > [k, i5) (T
i4=1
where (7%);; is a basis for N x N matrices. These matrices are called Chan-Paton factors.
The Open String vertex operators , which we introduced in the previous Section also get Chan
Paton-factors. For example, for the vector field we have

Vb = f dl (T%);; ey : Bpt e

The Chan - Paton symmetry is global one from the point of view of the String world-sheet,
but is a local symmetry from the point of view of the space-time. This is because we can
perform independent transformations at different points z#{e,7) of the space-time.



