LECTURE 2. BOSONIC STRING. ACTION

1. RELATIVISTIC PARTICLE

Let us consider a point particle with mass m and with spin equal to zero, propagating
through a d- dimensional flat space-time. The metric is , = (-1,1,1...,1).
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The motion is described by a one dimensional worldline, which is parametrized by a proper
time 7. The length of the worldline is

(1) dl = (—ndz” dz¥)? = (—ds?)%

The action describing the motion of the spinless relativistic particle is

m
§= —mde\/—iﬁiy, where I = %

How do we know that this action describes a point particle? Let us consider equations of
motion. Recall, that in general the momentum conjugate to the coordinate x is

P= %
where L is the corresponding Lagrangian. In our case we have
o = mdH
hYy _:buj;‘y
The equation motion with respect to z* gives us
P =0
which means that we have a free motion. Apparently,

Ppy = —m?

and therefore the action described the motion of the free relativistic particle, with zero spin
and mass equal to m.
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The action is invariant under time reparametrizations

T = 7(7), % >0

because

dr dz# dr’ dz,, dr’ . dxt dx
—_ i e = "_ —_— _,U-_ — ! . — _‘i
drf = ##(T)du(r) = dr d‘?"\/ ey b N R =

This means, that we have gauge invariance. We can choose a gauge, when 2% = 7.. In this
gauge we have

S=—;rnfd7'\/1—v2,

where
d;
Ui="‘#, =1,...,d—1
Equations of motion are
. L my;
p; =0, where p;= —W

The action that we are considering has two drawbacks. First, it is nonlinear, i.e., it contains
a square root. Second, it is not good for description of massless particles. Instead, let us
consider the action

1 1da# dx

2 == IR,
@ Zfdf(ed'r dr me)
where we have introduced a new field e, often called an einbein. This field is introduced in
order to “remove” the square root and maintain the reparametrization invariance at the same
time. Indeed the action is invariant under the infinitesimal transformations with the local
parameter £(7)
d(xe) dxt

Sk = vyl
ar T T X

‘We can express the field e using its own equations of motion

1 da* dx
aarar T =0
in terms of time derivatives of z* and put this expression back into the action. In this way
we get the action we started with. It is easy to check that both actions (1) and (2) give us
the same equations of motion.
Let us notice also that e has a meaning of the one dimensional metric on the world line of
the particle. g, = €. Therefore we can writhe the action (2) as

_1 S T
S-zfd’?\@(g O dr m)
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2. ACTION FOR A BOSONIC STRING

We considered the motion of a peint particle with zero spin. A point particle is a zero-
dimensional object and it spans one dimensional surface {a line). Now let us consider a motion
of a two-dimensional object i.e., a motion of a string. It spans a two dimensional surface. For
example for an open string we have '
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This surface can be parametrized by a proper time and by the length of the string (7,0) =
(£9,€1). Usually o is taken to be 0 < ¢ < w. Therefore, now we shall have z#(, o), whereas
for a particle we had z#(7).

Similarly to what we had for a particle, let us write an action for a bosonic string {(this
action is called Polyakov action)

1

(3) §= dral

f 26V TR (B,) (Bo” Y

where J; = a%

‘We have two different metrics: the metric g on the two dimensional world-sheet, and the
metric in the d dimensional space time 7,,. Therefore we have a 1 + 1 dimensional Field
Theory, where the coordinates z# are considered as fields.

‘We can also consider the action

S =8+ 8y, where Sg= /d%v—hR

where R is a Ricci scalar on a two dimensional world sheet. But in two dimensions Einstein
equations are trivially satisfied ‘

1 1
Ruy — ShuR =0 W*(Ry, = ShyuyR) = 0

for any h,,. The term Sp is called a topological term. One can show that in two dimensions
this term is a total derivative, and therefore it does not affect the equations of motion.
The Polyakov action is invariant under local world-sheet reparametrizations

SR = x°B.h™ — (Box*)h? — (BeXP)R®,  6zH = x*0uz*,
‘We have also invariance under local Weyl transformations

Szt =0, Ohgp =e”Ehy
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In flat space-time we have ivariance under global Poincare transformations
oot = w,uumi/, 6hab = 03 Wup = —Wyy

Let us consider the equations of motion with respect to k. Recall that for any matrix h, we
have

Sht=—h"t.6h-n7Y, since h-h~l1=1
Also
3R = V=R (ha )k
Using these equations, we get the equation of motion with respect to hgp

1
@ T = (0a”) 06" Y = has (e )0 Y = 0

This equation can be written as Ty = 0, where T is the Energy-Momentum tensor.

3. NaMBU-GOTO ACTION

The Nambu-Goto action for the bosonic string has the form

0 S =g [ &¢y/det((@u5)@u )

This action can be written as

§= ——27:'? dA, where dA= /7
and ‘
Yab = (0"} (Bpz" )Mur

is an induced metric on a two dimensional surface. In other words we embedded a two-
dimensional surface into a d— dimensional surface. The expression dA is an infinitesimal
element of the two- dimensional surface. :

IN GENERAL: We considered a zero -form {a particle), one- form (a string). We can
consider an n— form. An action will be proportional to the corresponding infinitesimal n + 1
dimensional volume.

4. EQUATIONS OF MOTION

Before considering the equations of motion, let us note that since Polyakov action is
reparametrization invariant
(r,0) = (7(r',0"),0(7', o))
and we have also symmetry under Weyl rescalings, we can choose the gauge, where the two
dimensional metric has the form

Rop = e#79) = (70 (_01 2)
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This form of the metric is achieved using the reparametrization invariance. This gauge is
called a conformal gauge.

If we insert the metric in the conformal gauge into the Polyakov action, then the conformal
factor will disappear and we shall obtain

() 5= [ P60

Therefore, the action does not depend on ¢{r, ¢). However, whenever one fixes the gauge in
the action (before the variation) one should be careful, since one can loose some equations
of motion. For example in Electrodynamics the component Ag of the vector potential 4, is
non-physical. But the variation of the action with respect to this component 3‘% gives the
Gauss law, which is physical.

Similarly, here we can choese the conformal gauge, but we should remember the corre-
sponding equations of motion Ty, = 0,. This equation is called Virasoro constraint.

An important note: We still have a left over invariance under transformations which keep
the world-sheet metric flat up to an overall factor. This is a conformal invariance, which is
an infinite dimensional symmetry in the case of two dimensions (world-sheet).

The equations of motion with respect to o* are

(7) Oz# = (82 — 82)z* =0
and also when varying the action we get a boundary term of the form
dx _
/ dr [a—:ax“|g=g]

Besides, we can have either Open or a Closed String. Let us consider a Closed String. Bound-
ary conditions are imposed on its endpoints, which in this case means periodicity conditions.

56‘:11
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Here the Closed String propagates from left to right. The motion can be considered as a
rectangle , where the boundary points (c = 0 and ¢ = «} are identified. Finally,

zH(7,0) = (1, m)

Ozt (7,0}  Oxk(r,w)
de ~  Oo
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The solution is
(o o] I3 ~ M

(8) (1, 0) = mg + 2a’p5‘1' +i /%’ Z (%em‘n(r—a) + %E—Zin(‘wa))
n#0

Let us note, that the equation of motion (7) can be written in terms of the light-cone coordi-
nates

‘ .
+ _ -
§ =7 a, 3:]: = 85_:13
The nonzero components of the world-sheet metric are
hy_=h_y= %, Rt~ =h"F =2,

The equations of motion (7} now are
3+3—m#(§+a;é_) =0
They have a general solution
oH(E4,67) = dh(€h) + olh(e)

The exact form for % (£7) and z%(¢*) depends on the boundary conditions. For example for
the Closed String we have

1 Ot" a 5.’“" et
(9) Th(€h) = Saf + o/ ppet +ig/ o D e HM
2 2 7
n#0
e 1 . ‘e .a'ooaﬁ—z‘f—
(10) Q?R(f )25.730 -I-ap0§ +1 -é_z#‘:)-ﬁ_e i
) n

The coordinate x*(£%,£~) must be real. Therefore, the constants zfj and pf are real and

(&ﬁ)* = &ﬁn? (aﬁ)* = C‘F—‘n

The constants z and pfy are coordinates of the center of mass of the string and its momentum.
Indeed we have '

: S~ | PE(O)02,) - CEQILEN

The momentum density is
pr 0L _ 1o,
Orxzy  2mal

Using (8) we can find the total momentum

p”=f0ﬂd0'P”=pg

The constants zjj and pl are called zero modes of the string. Obviously, except of the zero
modes all other terms have zero average.
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5. OPEN STRING

There are two options for the endpoints of the Open String.

¢ Neumann boundary conditions
dzH(r, o)

il
These boundary conditions mean that endpoints of the Open String can be anywhere
in the space. '

=0, at o=0,nw

» Dirichlet boundary conditions
Szt (7, o)
or
These boundary conditions mean that the position of endpoints is fixed in space. We
shall consider this situation in more details later.

=0, at o=0,7

L.

The solution will be

0o U
. o/ ;
@#(r,0) = af + 2a/phT +iv2e/ Y =~ cos(no)
n#0 n ‘
this solution satisfies Neumann boundary conditions.



