LECTURE 1. INTRODUCTION.

1. Duar MODELS

In the 1960s physicists were trying to understand experimental data, obtained from studies
of strong interactions. There were observed many particles ( resonances) with growing spins.
It was necessary to bring these data into some kind of system.

The observations showed that masses of the resonances where were linearly growing with
spins i.e., there was a relation

o o
m- = — 4o
o
with o/ ~ 1GeV 2. This relation has been checked up to spin J = %
1.1. s-t duality. Let us consider a scattering of two hadrons on two hadrons. This scattering
is described by Mandelstam Variables
s=-(p1+p2)’, t=—(-p+p3)’, u=—(—p1+ps)’
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We have in the mostly ”+” signature /{\ )\ 4

PL+pa=p3+p, and p§="‘m?

Therefore

s=mi+m3—2pips, t=mi4+mi+2mps, w=mi+mi+inn

Adding them up
s+t+u=3mf +mi+mi+ms—2p1(~ps — ps+p2)

‘We finally get
4
s+t+u= me

i=1
1
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Let us assume that the scattering particles belong to an adjoint representation of the
favour group. That means that the quantum numbers of ‘th meson are described by the
corresponding matrix A;. The entire amplitude will have a factor tr(A1A2A3A4). But since
tr(} is invariant under cyclic permutations of the matrices, we should have the same symmetry
under permutation of the four momenta as well. This in turn means the symmetry between
s and t.

~(p+p2)® = —(p1 —pa)’ =t
—(-p1+p3)® = —(pa+pa) =—(p1+p)’ =5
In other words the amplitude should satisfy

A(s,t) = A(t, s)

Suppose that the external particles are scalars and internal particle (the one that is exchanged
by the external particles) has mass M and spin J. Then at high energies the amplitude in
the {- channel will have the form:
2 J
Asto)~ $ 50
This amplitude becomes more and more divergent for higher J. If we consider loop diagrams,
then we shall have the amplitude in four dimensions

A2
4
f“?

This expression is divergent if J > 1. On the other side, if one has an infinite number of
particles with different masses and spins then in the ¢ channel we have
2 J
AJ(S! t) ~ iJ_E ﬁsd')‘%
where g; are coupling constants and M are masses. They can depend on the spins. Then, in
principle, the amplitude can turn out to be finite. There is another argument why the number
of the particles must be infinite: the amplitude A(s,t) does not have poles in the s-channel.
Indeed, for the fixed ¢ the amplitude is an entire function of s. On the other hand, if the sum
is infinite, but each term is finite then the sum can be divergent for a finite value of 5. These
values of s will become poles in the s-channel.
If this duality indeed takes place, the situation is different from the one in the usual Quan-
- tum Field Theory. In the Quantum Field Theory we have to compute the amplitudes in both
s- and ¢- channels and sum them up. Here it is enough to consider only one channel, either s
or t.
In 1968 G.Veneziano postulated an amplitude

| D(—ofs))T(—a(t))
A = T als) = a)
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where I'(u) is the Gamma function
o0
D(u} = f t““le~tdt, for Re(u) > 0.
0
and a(s} = a{0) + o/s. Let us introduce also the Beta-function

1
B(z,y) = fo #2711 — )Lt = %

Then can write the Veneziano amplitude also in the form
A(s,t) = B{—als), —a(t))
Recall, that if u is a positive integer, then
Fluw=@w-1!, T1)=1

We have also
Flu+1)

U
This gives us a definition of the Gamma function for Re(u) > —1, since the right hand side of
the equation above is well defined in this area. Moreover, we can see, that I'(z) has a simple
pole in w = 0 and the residue is equal to 1.

I(u) =

Using n iterations we get

T(u+n)
T{u) =
® = S F D futn =D
for any positive n. In the area Re(u) > —n the functien I'(u + n) has a unique integral
representation. Therefore we managed to analytically continue the Gamma function to this
area. But since n is arbitrary, we can analytically continue the Gamma function to the entire
complex plane.
We have poles at 0, —1,...,u — n + 1. Near the poles
-1
u+n nl

Therefore we have
L) (1™ 1 "T{)
INCES) nl s+nl(t—n)

and
L't)
T(t — n)
From these relations we get for the Veneziano amplitude

As, ) ==Y ((a(t) + 1)) + 2)..a@®) +n) 1 )

nl a(s) —n

=(t—1)..(t—n+1){—n)

n=0
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or, equivalnetly

A(st) = — i ((a(s) +1)(als) + 2)(als) +n) 1 )

| —
owurd n! alt)—n
In this equation the poles correspond to exchanges of the intermediate particles with masses
2 _ (n—a(0))
M=

and with higher spins. These amplitudes can be obtained from theory of strings (Y.Nambnu,
T.Goto, H-B. Nielsen, L.Susskind). Let us consider interactions between open strings
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Apparently, this diagram can be continuously deformed to the diagram

N

7
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and this procedure makes the duality between s- and ¢- channels apparent.
However the theory of strings seemed problematic because
¢ The spectrum of the strings contained particles with negative mass squared (so called
tachyons).
» Some theories of strings contained a massless particle with spin 2.
# It was not clear how to introduce fermions

Moreover experimental data from SLAC was suggesting that at high energies hadrons
behaved like point particles, not like strings. Then the Quantum Chromodynamics (QCD)
was developed - an area of the Quantum Field Theory which today is commonly accepted as
a language describing the Strong Interactions.
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2. FIXED - ANGLE SCATTERING
Let us consider the case when
Mm=My=Mg=My =M

In the center of mass system the four momenta have the form

- (£3). m(£0). mo(£). n-(40

The scattering angle is the angle between the vectors & and [, Let us consider the limit
s/m?® — oo with s/t and s/u being fixed. There is also a Regge limit. In this limit we have
8/m? — co with t being fixed which, means that the scattering angle § — 0.

We have

t = —(5—52=—(E2+F-2E-ﬁ=_(§—m2+2-m2—2|famcose)=
= —(s—4m2)singg | i
since
S5, p2__ 2
4+k 4+l m

Because we take large s, we have
8

t~ —s-sin® =

2

Let us recall that in the limit £ = oo
D(z) ~ 25~ V2 g=%\/2x

Then we have

|I‘(—cu"s)l"(—a:)z’t)
I'(—a's — oft)

Therefore, when ¢ ~ —s - sin? & we have

larsl—a’slartl—a’t
|ofs + aft|—a's—ot”

| ~

| ain2 %la's-sin2 %

B(s,t) =

|C0$2 gl—oz’s-c::os2 g
Let us introduce a new variable z = sin® %. Then we have approximately
B(s,t) ~exp(a’s-zlnz +d’s- (1 — z)In(l — z))

In our case 0 < z < 1. As one can see, the amplitude falls exponentially in the minimum
when z = 1/2, since we have
exp(—a'sIn2)

Which is not correct for tree level scattering for hadrons.



