On the d and M Conjecture

by John Lewis

Abstract

Let $n \geq 2$ be a positive integer, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ a point in Euclidean n space, \mathbb{R}^{n}, and let $|x|$ denote the norm of x. Put $B(x, r)=\{x:|x|<r\}$ when $r>0$. For fixed $n \geq 2$, let μ be a positive Borel measure on $\mathbb{S}^{n-1}=\{x:|x|=1\}$ with $\mu\left(\mathbb{S}^{n-1}\right)=1$. Fix $d \leq M$, and let \mathcal{F}_{d}^{M} denote the family of potentials p with $d \leq p \leq M$ satisfying (a) $\quad p(x)=\int_{\mathbb{S}^{n-1}}|x-y|^{2-n} d \mu(y), x \in \mathbb{R}^{n}$, when $n>2$, (b) $\quad p(x)=2 \int_{\mathbb{S}^{n}-1} \log \frac{1}{|x-y|} d \mu(y), x \in \mathbb{R}^{2}$.

Let \mathcal{H}^{n-1} denote surface area on \mathcal{S}^{n-1} and let Φ be an increasing convex function on \mathbb{R}. In this talk we discuss progress on the following conjecture:

Conjecture: If $\mathcal{F}_{d}^{M} \neq \emptyset$, then for $0<r<\infty$,

$$
\int_{\mathbb{S}^{n-1}} \Phi(p(r y)) d \mathcal{H}^{n-1} y \leq \int_{\mathbb{S}^{n-1}} \Phi(P(r y)) d \mathcal{H}^{n-1} y
$$

where $P=P(\cdot, d, M) \in \mathcal{F}_{d}^{M}$ is unique up to a rotation of \mathbb{S}^{n-1} (independently of Φ) and defined as follows: There exist (also unique) α, β with $-1 \leq \beta<\alpha \leq 1$, and
(a) $P(\cdot, d, M) \equiv M$ on $E_{1}=\left\{x \in \mathcal{S}^{n-1}: \alpha \leq x_{1} \leq 1\right\}$
(b) $\quad P(\cdot, d, M) \equiv d$ on $E_{2}=\left\{x \in \mathbb{S}^{n-1}:-1 \leq x_{1} \leq \beta\right\}$
(c) $\quad P(\cdot, d, M)$ is harmonic in $\mathbb{R}^{n} \backslash\left(E_{1} \cup E_{2}\right)$.

