On the d and M Conjecture

by John Lewis

Abstract

Let $n \geq 2$ be a positive integer, $x = (x_1, x_2, \dots, x_n)$ a point in Euclidean n space, \mathbb{R}^n , and let |x| denote the norm of x. Put $B(x, r) = \{x : |x| < r\}$ when r > 0. For fixed $n \geq 2$, let μ be a positive Borel measure on $\mathbb{S}^{n-1} = \{x : |x| = 1\}$ with $\mu(\mathbb{S}^{n-1}) = 1$. Fix $d \leq M$, and let \mathcal{F}_d^M denote the family of potentials p with $d \leq p \leq M$ satisfying

(a)
$$p(x) = \int_{\mathbb{S}^{n-1}} |x - y|^{2-n} d\mu(y), x \in \mathbb{R}^n$$
, when $n > 2$,
(b) $p(x) = 2 \int_{\mathbb{S}^{n-1}} \log \frac{1}{|x-y|} d\mu(y), x \in \mathbb{R}^2$.

Let \mathcal{H}^{n-1} denote surface area on \mathcal{S}^{n-1} and let Φ be an increasing convex function on \mathbb{R} . In this talk we discuss progress on the following conjecture:

Conjecture: If $\mathcal{F}_d^M \neq \emptyset$, then for $0 < r < \infty$,

$$\int_{\mathbb{S}^{n-1}} \Phi(p(ry)) d\mathcal{H}^{n-1} y \le \int_{\mathbb{S}^{n-1}} \Phi(P(ry)) d\mathcal{H}^{n-1} y$$

where $P = P(\cdot, d, M) \in \mathcal{F}_d^M$ is unique up to a rotation of \mathbb{S}^{n-1} (independently of Φ) and defined as follows: There exist (also unique) α, β with $-1 \leq \beta < \alpha \leq 1$, and

(a)
$$P(\cdot, d, M) \equiv M$$
 on $E_1 = \{x \in \mathcal{S}^{n-1} : \alpha \le x_1 \le 1\}$

- (a) $P(\cdot, d, M) \equiv M$ on $E_1 = \{x \in \mathcal{C} : x \in \mathbb{Z} | x \in \mathbb{Z}\}$ (b) $P(\cdot, d, M) \equiv d$ on $E_2 = \{x \in \mathbb{S}^{n-1} : -1 \leq x_1 \leq \beta\}$ (c) $P(\cdot, d, M)$ is harmonic in $\mathbb{R}^n \setminus (E_1 \cup E_2)$.