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Abstract: The present study focuses on evaluation of the underlying dynamics in two-agent, single-target pursuit within the
context of division of labor paradigm. Specifically, it aims at clarifying which of the two tracking strategies viz. equipping
agents with switching complementary roles versus designated specialization may result in increased information integration
between agents. Although our previous findings on this topic hinted at significantly higher benefit of the first strategy, they
suffered from the assumptions of linearity and independence of agents, imposed by our parametric Gaussian formulation of
information integration. Here we address these shortcomings through adaptation of non-parametric multivariate information
integration formalism. We show (1) that with this new formulation our previous results still hold, (2) that they also remain intact
if target is taken into account for quantification of agents’ information integration and (3) that the agents’ relation with respect
to the tracking task can be explained in terms of potential colinearity of their actions. We further discuss some of potential
issues that require careful consideration while studying such dynamics and conclude by highlighting recent advances that can
potentially help overcome such pitfalls.
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1. INTRODUCTION task independently, the specialists’ performance was tightly
dependent on cooperation with their partner. At the end of
evolutionary runs we calculated the agents’ individual and
joint neural information integration.

Division of labor is an important coordination strategy in
a variety of species of animals and insects [1], as well as in
robotic applications [2]. Recent research shows that in addi-
tion to a social function, it might also play a cognitive role
by helping individual agents offload part of the processing
onto others, thereby allowing for smaller and less energeti-
cally costly brains [3-5]. This idea can be called a collective
intelligence hypothesis. It predicts that individuals that en-
gage in division of labor exhibit less complex cognitive and
neural processing. It has sometimes also been argued that
joint action might lead to a formation of tight coupling be-
tween co-actors which could be better seen as a new emer-
gent “supra-personal system”. If this is the case, one could
wonder whether the formation of such a system could be cap-

In that study, we observed that the division of labor
paradigm leads to a lower level of individual neural infor-
mation integration in the specialists, compared to the gen-
eralists. To realize the joint information shared, we further
treated the agents as two independent multivariate normal
variables and computed their joint covariance matrix as the
sum of their respective covariance matrices. We then uti-
lized this joint covariance matrix to compute their joint neu-
ral information integration. Contrary to our prediction, we
observed that the agents’ joint shared information exactly
mirrored the individuals’ information integration.

tured by a measure of joint neural information integration - Considering these observations, a crucial point that ne-
that could also be called inter-brain synergy (but see Discus- cessitates further scrutiny of our previous results is the fact
sion). Should such a phenomenon occur, one would expect that our former treatment of the topic opted for parametric
this measure to be higher the tighter the cooperation and the formulation of information integration [7] where the agents’
more individual cognitive offloading is taking place.' data were assumed to follow normal distribution. This im-
We recently studied [6] this paradigm through a simula- posed two simplifying assumptions: (1) that agents” sensory,
tion setting in which artificial agents were evolved to jointly neural, and motor data were Gaussian (2) that the two agents’
control a tracker in order to follow a target moving in a one- actions were independent, given their common task.
dimensional environment. One of the agents in a pair was Given these assumptions, it could be argued that we pre-
responsible for moving the tracker in one direction while vented ourselves from finding what we set out to investigate.
the other agent moved it in the opposite direction. In our That is, we intended to capture the integration between the
study, we considered two division of labor strategies: “gen- two agents but in our measure assumed them to be indepen-
eralist” and “specialist” strategies. They differed in the dent systems. While this was an important preliminary step
amount of agents’ task specialization. Specifically, gener- in formulating our measure of joint information integration,
alist agents switched complementary roles between different the effect of simplifying assumptions on the results we orig-
trials, learning to perform both tasks. On the other hand, spe- inally obtained cannot be underestimated.
cialist agents evolved to always perform the same role. As a To address these limitations, in the present study, we
result, while the generalists could, in principle, perform their reevaluate our previous findings in two steps: (1) we elim-

- — — inate the need for normality of agents’ sensory, neural, and
1 Ekaterina Sangati is the presenter of this paper. . R h h th £ K |
1The first author does not support the ideas of “collective intelligence”, mou?r time Serle% t roug the u§e 0. non-p.arametnc, mul-
“supra-personal systems” or “tight coupling between interacting agents”. tivariate formulation of information integration measure (2)
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we compute three quantities, namely, multivariate mutual in-
formation (MI), conditional MI (i.e., cMI; conditioned on
agent-target distance), and the synergy, thereby eliminating
the assumption of agents’ independence.

Our contributions are threefold. First, we show that, after
switching to non-parametric formulation of information in-
tegration, our previous results still hold. This clarifies that
our previous observations were not due to some potential
under/over-estimation imposed by normality and indepen-
dence assumptions, but indeed stem from the dynamics of
division of labor paradigm, as formulated in these types of
simulations. Second, we further consolidate this observation
by showing that our result hold after conditioning the agents’
shared information on their task (i.e., target’s movement). In-
terestingly, this conditioning also reveals that such shared in-
formation reduces once the target’s behaviour is taken into
consideration. In other words, it implies that agents’ relation
with respect to the tracking task can be explained in terms of
potential colinearity of their actions. Third, we verify such
correlation-based nature of agents’ relation through the use
of the measure, referred to as synergy [8].

2. METHODS

2.1. Task and simulation

Data analyzed in the present article comes from the simu-
lation reported in our previous work [6]. Consult this refer-
ence for details about the model implementation. Here we re-
produce the figures that show the task that agents performed
(Figure 1) and their internal architecture (Figure 2).

2.2. Present measures

In [6], we simulated 100 seeds, per generalist and special-
ist settings. We observed that 41 out of 100 seeds for gen-
eralists and 99 out of 100 for specialists converged. There-
fore, we use all converged seeds in the case of generalists
along with the first 41 (i.e., out of 99) converged seeds for
specialists. Furthermore, and similar to [6], we only con-
sider the output of agents’ sensory and neural nodes (i.e.,

C ®
tracker target

tracker eye

tracker wheel

Fig. 1. Experimental setup. The target moves horizontally
on a 1D line and reverses at fixed points. The tracker is
controlled by two agents to move on the same line. The
agents are evaluated for being able to keep the tracker
on top of the target as much as possible throughout the
trial. Both agents perceive the distance to the target with
"eyes’ positioned on two sides of the tracker and propel
the tracker by means of two wheels that output left and
right velocity. This figure is adapted from [6].
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Fig. 2. Network architecture. S;, S> are sensory nodes,
N1, Ny are inner nodes (brain), M7, M are motor nodes.
The brain is implemented as Continuous Time Recurrent
Neural Network. The network parameters are evolved
via a real-valued mixed genetic algorithm. The mapping
from motor node activation to tracker wheels determines
the type of agents. Generalists have their left motor out-
put connected to the left wheel of the tracker on half of
the trials while the right motor output is ignored and their
right motor output connected to the right wheel on the
other half of the trials while the left motor output is ig-
nored. A compatible mapping is implemented for their
co-acting agent. For the specialists the mapping is sim-
ilar but they never experience a switch, thereby half of
the agents in the population always controlling the right
and the other half always the left wheel. This figure is
adapted from [6].

wheel
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wheel
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Si,N;, ¢ = 1,2, in Figure 2).

We reevaluate our previous findings in two steps.

First, we eliminate the need for normality of agents’
time series data. We achieve this through the use of non-
parametric, multivariate formulation of this measure i.e.,
Kraskov-Stogbauer-Grassberger (KSG) [9]. KSG estimation
builds on the non-linear and model-free capabilities of kernel
estimation with bias correction, thereby resulting in a bet-
ter data efficiency and accuracy as well as being effectively
parameter-free. It is considered to provide best solution for
(among other information-theoretic measures) mutual infor-
mation (MI) and conditional mutual information (cMI) [11].
We use JIDT [10] implementation of KSG while computing
MI and cMI.

Second, we eliminate the assumption of agents’ indepen-
dence through the use of two additional measures:

« conditional MI (cMI): in which we compute the agents’
non-parametric, multivariate shared information, condi-
tioned on agent-target distance.

« synergy (S): in which we examine whether agents indeed
collectively (as hypothesized by “collective intelligence hy-
pothesis”) perform their task or their relation is purely corre-
lational in nature.

For the case of synergy computation, we follow its original
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formulation by Schneidman et al. [8] i.e.,

S(A,B) = MI(A,B|r)— MI(A, B), (1)

where A and B represent the two agents and 7 is the target.

2.3. Analysis

For each computed measure (i.e., MI, cMI, and S), we
perform Wilcoxon ranksum test between generalist and spe-
cialist groups. For each test, we report the test statistics and
the p-values. It is worthy of note that although we report the
original p-values, we only consider the p-values that survive
the Bonferroni-correction (i.e., ()éﬂ = 0.025, where 2 indi-
cates the number of groups) as significant. Additionally, we
provide the respective Wilcoxon ranksum tests’ effect-size
[12]:

r=J5 )

with W and N denoting the Wilcoxon statistics and the

sample size, respectively. r is considered [13] small when <
0.3, medium when 0.3 < r < 0.5, and large when > 0.5.

3. RESULTS

3.1. Mutual Information (MI)

We observed that (Figure 3) generalists were associated
with significantly higher MI than specialist (W= 5.6989, p <
1.21e7%%) and that such a difference was marked with a large
effect-size (r = 0.8900). Table 1 summarizes MI’s descriptive
statistics for generalist and specialist groups.

3.2. Conditional Mutual Information (cMI)

Similar to the case of MI, generalists showed (Figure 4)
significantly higher cMI than specialists (W = 5.6061, p <
2.07¢7%%) and that this difference exhibited a large effect-
size (r = 0.8755). cMTI’s descriptive statistics for generalist
and specialist groups are presented in Table 2.

MI
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Fig. 3. Mutual Information (MI) between two agents in gen-
eralist and specialist groups. In this plot, each dot repre-
sents MI for a specific trial that we carried out for each

group.
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Fig. 4. Conditional Mutual Information (cMI) between two
agents in generalist and specialist groups. In this plot,
each dot represents cMI for a specific trial that we carried

out for each group.

3.3. Synergy (S)

Generalists were associated (Figure 5) with significantly
smaller (i.e., more negatively inclined) synergy than special-
ists (W =-2.9723, p < 0.003). This significant difference
showed a medium effect size (r = 0.4642). Table 3 summa-
rizes the synergy’s descriptive statistics for these groups.

4. DISCUSSION

The central theme of the present study was to reevalu-
ate our earlier findings [6] about the underlying dynamics
in two-agent, single-target pursuit within the context of di-
vision of labor paradigm. In that study, we analyzed the na-
ture of such a dynamics in terms of degree of information
integration by the two agents while tracking the target. We
achieved this objective through the use of a parametric for-
mulation of information integration [7] in which agents’ time

Synergy

generalists specialists

Fig. 5. Synergy (S) between two agents in generalist and
specialist groups. In this plot, each dot represents S for a
specific trial that we carried out for each group.
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Mutual Information (MI)
Group Mean Standard Deviation Median Confidence Interval
Generalists 3.8479 0.2630 3.9025 [3.3728, 4.2736]
Specialists 3.3535 0.3809 3.3708 [2.4168, 4.0502]
Table 1. Mutual Information (MI). Descriptive statistics for generalist and specialist groups.
Conditional Mutual Information (cMI)
Group Mean Standard Deviation Median Confidence Interval
Generalists 1.5016 0.2053 1.4868 [1.1563, 1.8902]
Specialists 1.1749 0.2185 1.1994 [0.7642, 1.5167]

Table 2. Conditional Mutual Information (cMI). Descriptive statistics for generalist and specialist groups.

Synergy (S)
Group Mean Standard Deviation Median Confidence Interval
Generalists -2.3463 0.2162 -2.3475 [-2.7059, -2.0172]
Specialists -2.1786 0.2429 -2.1833 [-2.5750, -1.5997]

Table 3. Synergy (S). Descriptive statistics for generalist and specialist groups.

series data were assumed to be Gaussian and the agents’ ac-
tions while tracking the target were considered to be inde-
pendent from each other. These assumptions inevitably lim-
ited the scope and informativeness of our results as we were
unable to derive an informed conclusion on whether our ob-
servations were indeed due (at least partially) to the nature of
agents’ interaction (given our specific implementation of the
division of labor) or they were potentially confounded by our
simplifying assumptions.

To this end, the MI analysis in the present study (i.e., Fig-
ure 3) that was based on non-parametric formulation of in-
formation integration [9] provided evidence for the validity
of the finding in [6], thereby verifying that our previous ob-
servation was in fact a manifestation of the agents’ dynamics
(within the context of current implementation that is) and not
a potential artefact due to linear and independence assump-
tions imposed by parametric formulation of information in-
tegration. We observed that the generalists were associated
with significantly (with a large effect) higher information
integration than their specialists counterpart. Collectively,
these results challenge the “collective intelligence hypothe-
sis” by demonstrating that the generalists with their comple-
mentary role-switching are the group with the capacity for
higher information integration.

The aforementioned observation was further consolidated
by our finding based on cMI (i.e., Figure 4). There, we ob-
served that the generalists significantly higher information
integration was preserved (again, with a large effect) after the
target’s behaviour (i.e., a common confounding variable [15,
p- 138] affecting/influencing the two agents’ actions) was
accounted for. However, the more interesting implication of
this result was its verification of our original agents’ indepen-
dent actions assumption in [6]. Concretely, cMI result indi-
cated a decrease in information integration that was present
in both, generalist and specialist groups. In other words, the
introduction of target’s behvaiour (i.e., its one-dimensional
movement) substantially and significantly explained away

©ISAROB

27

(Appendix 4 along with Figures 6 and 7) the two agents’
information integration (i.e., shared information). This, in
turn, challenges the proposal, pertaining to the formation
of a tight coupling between agents in division of labor in
its present setting. Specifically, the explaining away of the
agents’ information integration by the target suggests that it
was more grounded on their individuals’ independent actions
(although closely resembling due to the nature of task) than
the outcome of any potential interaction. In other words,
the observed agents’ MI was not due to their coupling but
coincidental and potentially due to collinearity induced by
their task. This interpretation is further strengthened by the
result of two groups’ synergy (i.e., Figure 5) in which we
observed that the generalists with whose cMI significantly
higher than specialists were also the group with significantly
lower synergy values. Furthermore, the negative values in
both, generalists and specialists, highlight the collinearity of
agents’ actions by showing the greater redundancy (i.e., MI)
in agents’ informational space. In this regard, it is worthy
of note that although there are a number of valid concerns
regarding the interpretability of the information-based quan-
tities with negative values (i.e., from the information theory
perspective) [16], they are still highly useful for realizing the
degree of misinformation (e.g., [11, p. 171] and [17, p. 40])
and therefore a valuable safeguard against derivation of spu-
rious and/or detrimental conclusion where there is none.

In retrospect, and while reflecting on the notion of “syn-
ergy” as advocated in some of today’s research, there are a
couple of crucial points that are worth elaborating on. In
what follows, we present them from two different ground-
ings: one examining the “above-and-beyond” take on syn-
ergy, and the other from a simple and straightforward linear
perspective.

First, let us consider the case of XOR logic gate i.e., the
widely used example in the synergy literature (for a thor-
ough treatment of the topic, see [14]). Let x,y be the two
ii.d binary random variables that form the inputs to this
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gate. Let also 7 represent this gate’s output. Without loss
of generality, let assume, * = 1 and y = 0. It is appar-

ent that in such a setting 7 = 1. We know that MI(z,y) =

> ey P(, y)log(p’(’f;;(’;) ). Now, if we solely focus on the

two inputs viz. x and y, (i.e., discarding the value of 1), it is
apparent that the value of = does not provide any information
about what the value of y could be. In other words, the two
inputs remain independent (as they should be, by definition)
and therefore p(z,y) = p(x)p(y). As a result, the logarith-
mic term log(pi’iﬁa)) = 0 and hence MI(z = 1,y = 0) =
0 (it is straightforWard to examine all four combination of
binary values for z and y and verify that indeed MI(z,y) =
0,Vx,y € {0,1} for the case of XOR logic gate). However,
the situation changes drastically once we take into account
the information from the gate’s output 7, thereby comput-

ing the cMI(z,y|7) = >y, , P(2, Y, T)log(p[(f(’zlﬁ;;) ), where
p(ylz,7) = pr()”(”;"l;) Considering the case z = 1,y =
0,7 = 1 above, it is apparent that p(z = 1,y = 0|7 =

1) =05and p(x =1t =1) =p(z =1) =0.25. (z is an
ii.d and is, in principle, independent of 7). This means that
log(%) = 1 (assuming base 2 for the logarithm). We
also know that p(x = 1,y = 0,7 = 1) = 0.5, and hence we
have cMI(z = 1,y = 0|7 = 1) = 0.5 (i.e., 0.5 (from joint
probability term) x 1 (from logarithm term)). Summing over
all possible combination of x, y and 7 (i.e., XOR logic gate’s
table), we observe that cMI(z, y|7) = 1, as expected.

What this example signifies is that the (desirable) relation
between x and y is indeed utterly defined by the output and
has no tangible interpretation/utility unless and until the out-
come of the process is explicitly and clearly specified. Put
another way, this context-specificity requirement shows that
the synergy is rather a bi-product than transcendental (e.g.,
above-and-beyond viewpoint) aspect of a given interaction.
This, in turn, appears to resonate with Simon’s note (while
picturing an ant on a challenging beach terrain) [18, p. 52]
that “the apparent complexity of its behavior over time is
largely a reflection of the complexity of the environment in
which it finds itself.”

Second, and potentially more pressing issue, that the ex-
ample above underlines is the detrimental effect that any hid-
den relation between input-output can play in observing spu-
rious relation between the inputs. To appreciate the issue,
let us consider it from a pure linear perspective.? Precisely,
let us define a new hypothetical measure (while following
the Schneidman et al. [8] formalism in Section 2.2, equa-
tion (1)) that is purely based on correlation between z, y, and
7: C(z,y) = corr(z,y|T) — corr(z,y), where the first and
second terms quantify the partial (i.e., with respect to 7) and

the ordinary correlations between x and y. We know that the
Pry — (p.'m—py‘r )
V1-p2/1-p3."
Pzy = corr(z,y). Discarding the denominator (i.e., the nor-
malizing term), it is quite evident that all one needs to attain

partial correlation between x and y is where

2This transformation can be better appreciated once one realizes the close
correspondence between mutual information and correlation. For instance,
MI for two Gaussian random variables is —%log(l — p?) [19] where p is
the correlation coefficient of these variables.
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C(z,y) > 0is to ensure that the product p,-p, < 0 which
is satisfied when one of x or y maintains an anti-correlation
with 7 (while the other correlates positively). In fact, the z, y
own relation (i.e., the second term corr(x,y) and p,, in the
first term’s numerator) is completely irrelevant for this pur-
pose: corr(x,y) = pgy = 0 and one would still obtain a
positive C'(z, y) as long as one of z or y is negatively corre-
lated with 7. 3 From the synergy and information integration
perspective, the implication of this example is as follows. We
know that for non-binary, non-Gaussian variables, MI can be
high while correlation is low and vice versa [11, p. 39, foot-
note 2]. As aresult, it is legitimate to consider a hypothetical
but plausible scenario in which while the agents maintain a
low MI, one of the two agent achieves a high (negative) cor-
relation with the task, resulting in an increase in cMI (and
consequentially S > 0 in equation (1)), thereby providing a
misleading evidence for agents’ “synergistic” interaction.

Although above examples serve as words of caution
against light adaptation/interpretation of these measures and
subsequently overstatement of their quantitative power, they
should certainly not be taken as a testimony that all efforts for
better understanding and quantification of the unfolding dy-
namics among interacting agents are in vain. In fact, there
are a number of advances and progressive results [14, 16,
20] that aim at more refined decomposition of information in
such interactions (for an engaging review of the topic with a
comprehensive list of references, see [21]). Despite their cur-
rent limitations (e.g., they are applicable for binary data with
small number of variables in multivariate settings), these ap-
proaches can prove valuable in providing insights about the
nature of interactions in such settings as division of labor.
Therefore, their utilization for further analysis of the results
presented in this study as well as its variations is a desirable
ambition for the future research. This is in particular intrigu-
ing for the case of present setup of division of labor, given
the agents’ low data-dimensionality (i.e., six dimensions with
two for each of sensory, neural, and motor nodes).
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APPENDIX
A. GENERALIST: MI VERSUS cMI

Conditioning on target resulted in significant reduction
of integration information within generalist group (Figure 6,
W= 7.7948, p < 6.45¢~1%) with a large effect (r = 1.2173).
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Fig. 6. Generalists. Difference between MI and cMI.

B. SPECIALIST: MI VERSUS cMI

Similar to the case of generalists, Conditioning on target
resulted in significant reduction of integration information
within specialist group (Figure 7, W=7.7948, p < 6.45¢ 1)
with a large effect (r = 1.2173).
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Fig. 7. Specialists. Difference between MI and cMI.



