
Prospects of Inter-brain Synchronization with a Virtual Agent: Preliminary
Considerations

Chen Lam Loh1† and Tom Froese1

1Embodied Cognitive Science Unit,
Okinawa Institute of Science and Technology Graduate University,

Okinawa, Japan
(E-mail: chen.loh@oist.jp, tom.froese@oist.jp)

Abstract: The recent discovery of the occurrence of inter-brain synchronization during social interaction tasks has led to interests
to investigate its benefits and mechanisms. This conceptual paper proposes a paradigm to study inter-brain synchronization in
a way that offers more control over hyperscanning methods. Specifically, this paradigm involves a human interacting with a
virtual agent (VA) endowed with a connectome-based model. Accordingly, the virtual agent (VA) tracks the human movement
and generates its next execution based on pre-simulated data. Furthermore, the VA has a connectome model which simulates
neurophysiological data that synchronizes with the human subject’s recorded neurophysiological data in real-time. Following the
proposal, we show our first step in an attempt to implement the paradigm without the neurophysiological component and report
example results of the implementation using a fingerpointing task. Then, we further discuss our views on the paradigm and the
next steps for realization.
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1. INTRODUCTION
Expansion in neuroimaging methodologies over the past

two decades has allowed the simultaneous neuroimaging,
otherwise termed hyperscanning of two individuals engaged
in social behaviour using techniques such as electroen-
cephalography (EEG) and functional magnetic resonance
imaging (fMRI) [1]. This has led to several significant find-
ings, one of which is the discovery that the neural signals
between interacting individuals exhibit phase synchroniza-
tion during interaction [2-4]. This has motivated a shift
in the philosophical framework of social cognitive neuro-
science to move from an internalist approach to an embod-
ied, interpersonal and interactive approach [5]. For exam-
ple, recently there has been a call to utilize multi-brain stim-
ulation to study social interaction in a multi-person frame-
work [10]. The exact mechanism for inter-brain synchrony
is yet to be clarified, although it can yield communicative,
predictive and affective benefits [6]. However, current evi-
dence points to the involvement of mirror-neurons and men-
talizing systems[11-13], and the findings of spatiotemporal
correspondences in inter-brain dynamics are usually task-
dependent[14].

There has been a substantial body of research in coordi-
nation dynamics since the development of the Haken-Kelso-
Bunz model [15]. Since coordination dynamics could play
an important role in dictating the inter-brain dynamics, the
study of inter-brain synchronization should go hand in hand
with the study of coordination dynamics. For instance,
there are interests to clarify the relationship between inter-
brain dynamics and behavioural dynamics[17-19]. More-
over, the recent development of a human-machine paradigm,
known as the human dynamic clamp (HDC) has permitted
the grounded, principled study of human neurophysiology
and behaviour[16]. This is achieved through the embedding

† Chen Lam Loh is the presenter of this paper.

of well-studied theoretical models into a machine and closing
the loop through real-time interaction with a human subject.

Individual brain dynamics is inherently complex, in the
sense that it is a mixture of both chaos and stochasticity [20,
21]. Thus, the investigation of inter-brain dynamics with two
real interacting humans would further complicate the pur-
pose of understanding inter-brain synchrony. Furthermore,
it would be difficult to have full control over the perturba-
tion of desired parameters. In a dynamical systems sense,
the perturbation of parameters is important for the study of
the transition between different patterns of behaviour, which
is also known as phase transition.

As an example, if we want to modulate a brain region at
a certain oscillatory frequency, we would need to stimulate
the brain using transcranial currents at that particular fre-
quency [10]. Although multi-brain stimulation may allow
us to study the causal effects of inter-brain synchronization,
there we are only indirectly controlling the oscillatory phase
and amplitude of the brain region. Our independent variable
would then be at best the frequency of the stimulation and
not the real oscillatory properties of the brain region. On
the other hand, despite assumptions that the neurophysiolog-
ical recording artifacts generated by transcranial alternating
current stimulation (tACS) could be corrected for[23], it i+s
difficult to determine whether all of the artifacts are com-
pletely rejected due to the non-linearity of the interaction
between the subject and the stimulation [22]. It could also
be argued that multi-brain stimulation is not the only way
to study the causal mechanism of inter-brain synchronization
[24]. As the research on inter-brain synchronization is still
at its early stage, a multitude of approaches is required for
the understanding of behavioural and neural dynamics which
will benefit the development of a general model for inter-
brain synchronization. A connectome-based model of inter-
brain synchronization was published in Dumas et al. (2012)
[28] which studied the relationship between anatomical con-
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Fig. 1. Conceptual Design of the Proposed Paradigm. The paradigm involves a human subject coupling with a virtual agent
(VA) through sensorimotor interactions. F (x) and G(y) transforms the inputs to and outputs from the connectome-based
model respectively. The EEG simulation of the VA and analysis of inter-brain synchrony can be done online or offline. The
human EEG and the simulated EEG can then be compared.

nectivity and inter-brain synchronization. This connectome-
based model, combined with the HDC paradigm would allow
us to study empirically the causation structure of inter-brain
synchronization in a single-brain recording approach.

This conceptual paper proposes a paradigm which in-
volves a human interacting with a machine endowed with
a connectome-based model which is inspired by the HDC
paradigm. Since the inter-brain synchronization phe-
nomenon we are interested in is based in frequency, the con-
nectome model would be a model of EEG data as EEG has
finer temporal resolution than the other neuroimaging meth-
ods. Therefore, the experimental setup would involve a hu-
man subject interacting with a machine endowed with an
EEG model in real-time. The machine would accept inputs
from a sensor and provide outputs to the human subject via a
monitor or an robotic effector. This combination of an EEG
model with the HDC paradigm would grant us more control
over the coordination dynamics and allow us to more system-
atically study the causal effects of parameter perturbation in
the inter-brain dynamics.

2. CONCEPT OF THE HUMAN-MACHINE
SYNCHRONIZATION PARADIGM

The paradigm consists of a human subject interacting with
a simulated agent, also known as the virtual agent (VA). The
human subject is instructed to follow the movement of a vi-
sual output on a computer monitor screen. A sensor is used
to detect and track the motor movements of the human sub-
ject, x. x is then transformed into information which can be
used by the agent as inputs to a connectome-based model.
The outputs, y from this connectome-based model are trans-
formed into visual outputs on the computer screen. An ex-
ample of this paradigm using fingerpointing as the imitation
task is shown in Fig. 1.

Since we are interested in the neural activity synchroniza-
tion between the human subject and the VA, neurophysio-
logical recording of the human subject in the form of EEG is

carried out during the interaction. Similarly, the model in the
VA is used to simulate EEG activity at each time step. There
are several different ways of modelling the VA, one of which
is by using a connectome-based model. This allows us to
look at the degree of neural activity synchronization between
the human subject and the VA over time. The EEG simula-
tion of the VA and analysis of inter-brain synchrony can be
done online or offline.

3. IMPLEMENTATION OF THE PARADIGM
In this section we describe an ongoing work on how such

a paradigm can be realized using a fingerpointing task. As a
preliminary work, we have skipped the recording of neuro-
physiological activity from the human subject in this work.

3.1. Methods
A Leap motion controller (LMC) is used to track the fin-

ger motion of the human subject in real-time. LMC (Ultra-
leap) is a small and portable infrared motion-tracking device
which can be used to estimate 3D hand poses using their
provided software development kit (SDK). LMC is portable
and markerless which is beneficial for the tracking of natural
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Fig. 2. Procedure for the processing of data from the sensor
to the final visual output to the computer monitor.
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hand movement [25].
For our current purpose, we are interested in only the fin-

ger position data of the human subject. The XY-coordinates
(vertical and horizontal dimension) of the finger position es-
timated by the LMC is recorded at 100 Hz, smoothened with
Savitzky-Golay filtering and detrended. The phase angle, θ
in each of the dimensions is extracted using Hilbert trans-
form. The instantaneous frequency, ωsensor for each dimen-
sion is calculated using Eq. (1).

ωsensor(t) =
Θ(t)
2π

W
(1)

Θ(t) is unwrapped the phase angle and W is the fixed size
of the overlapping time window used to calculate ω. In other
words, ωsensor(t) is calculated using the processed finger po-
sition data from t−W to t. At each step, ωsensor is averaged
across the two dimensions to give a final instantaneous fre-
quency. We clarify that the frequency described here is de-
fined as the number of taps occurring within the time window
W in Hz which is different from the motion velocity.

The final ωsensor(t) is used to infer from a table contain-
ing evolved coupling and natural frequency values from a
previous simulation [26]. Briefly, to understand how inter-
brain synchrony could occur, in the previous work we have
evolved six-node Kuramoto-oscillator models and optimized
the models to achieve higher synchronization index values
between the two ”brain” oscillators. The ωsensor(t) we have
obtained here corresponds to the natural frequency of the
sensory oscillator. The model with the closest value of the
corresponding sensory oscillator to the currently obtained
ωsensor(t) is referenced, along with all the coupling and nat-
ural frequency values for that model. This gives us the cou-
pling and natural frequency values for our VA. Importantly,
we obtain the frequency of the motor oscillator, ωmotor(t)
and the brain oscillator ωbrain(t) for our current model. This
procedure is illustrated in Fig. 2 for clarification.

To close the loop for mutual coupling between the human
subject and the VA, the VA provides output in the form of
virtual finger movement on a screen. The dynamics of the
virtual finger movement is described by a harmonic spring
oscillator system Eq. (2) which is adapted from [27].

ẋva = xω(t+ 1) + C(xhuman(t+ 1) − xva(t))
ẏva = yω(t+ 1) + C(yhuman(t+ 1) − yva(t))

ẋω = −ωmotor(t)xva(t)
ẏω = −ωmotor(t)yva(t)

(2)

Note that we have named the variables differently for the pur-
pose of our study, where xva and yva are the X and Y coor-
dinates of the VA respectively. C describes the directional
coupling strength from the VA to the human subject. In the
first two equations, the first term on the right describes the os-
cillatory motion of the VA without coupling and the second
term serves as an attractive coupling term which pulls the
VA output motion to the human subject motion. A higher C
value results in motion that very closely follows the human
motion, while a lower value generates self-oscillatory mo-
tion. The time-delayed form of xva and yva is removed since

it is not in our current interests to study the effect of delay on
anticipatory synchronization as in the original study[27].

The equations are integrated using the Euler integration
method with a time step size dt = 0.01. The setup is imple-
mented in MATLAB R2020a[29].

3.2. Preliminary Testing Results
In the current work, we report the preliminary results of

our implementation without any neurophysiological record-
ings. Here, the human subject is tasked with following a dot
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Fig. 3. Example data obtained with the fingertapping im-
plementation, with human-virtual agent(VA) coupling
strength C = 0.1 and C = 1.5. Here the human sub-
ject, yhuman tries to follow the movement of the VA, yva.
The VA calculates and extracts its ω from the human fin-
ger motion using pre-simulated data. With higher C, the
VA follows the human finger motion more closely. The
frequency values shown on the right are the overall fre-
quencies of yhuman and yva, and the mean frequencies
of each of the ω values. yhuman in C = 1.5 uses pre-
recorded data from C = 0.1 for reproducibility.
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Fig. 4. Comparison between (A) our previous 6-osc simulation model [26] and (B) the current implementation. In (A), each of
the nodes represents one Kuramoto oscillator. The fingers and the eyes represent sensorimotor oscillators, while the brain
represents neural activity. (B) In the virtual agent(VA), these are replaced with the motion tracker, connectome model and
screen display.

on the computer screen using the index finger. We further
constrain the task to be only in the Y-dimension, in other
words fingertapping motion. However, movement in both di-
mensions are still being recorded and the VA tracks closely
the human finger movement in both dimensions. Fig. 3
shows the raw yhuman, yva and the VA ω values obtained
over 30 s, with the first 5 s removed due to initialization.

Due to the coupling term, yhuman closely corresponds to
yva. With a small C value, yva maintains a stable oscillatory
motion using the extracted ωmotor at each time step. For
example, at around 10 s, even though yhuman stayed still,
yva continued to oscillate. Increasing C to 1.5 increases the
coupling from the human to the VA and results in VA motion
that tracks the human movement closer.

We also see that ωbrain changes over time based on
ωsensor. From our previous simulations, ωbrain can be inter-
preted as the frequency at which the VA and the human sub-
ject showed the highest synchronization index value given
the frequencies of the other sensorimotor oscillators. ωbrain

has a multimodal distribution with modes at around 24 Hz,
44 Hz and 64 Hz from our previous simulation.

4. DISCUSSION
This conceptual paper presented a human-machine EEG

paradigm which is based on the HDC paradigm, along with
an example of the implementation and results. As a first step,
we have used a model from our previous simulation study
[26] to provide model parameters to the VA in real-time. Fig.
4 shows a comparison between our previous model and the
current implementation. The VA detects the human finger
motion and calculates ωsensor which is then used to extract,
from pre-simulated data, the other parameters in the VA.

The current implementation could give us the tools to
investigate how inter-brain synchronization frequency dy-
namically (ωbrain) changes over time (See Fig. 3). How-
ever, there still lies the main problem of how close does
our simulated frequencies and couplings resemble the val-
ues recorded in real human-human interaction. Previous hy-
perscanning experiments involving hand or finger tracking
reported inter-brain synchronization in different frequency

bands, for example in the alpha-mu (8-12 Hz), beta(13-
30 Hz), and gamma(31-48 Hz) bands between the centro-
parietal and parieto-occipital regions in a finger imitation
task [3], and in the theta (4-7.5 Hz) and beta (12-30 Hz)
bands in the centro-parietal and frontoparietal networks in
a still finger pointing task [30]. Dumas et al. (2020) [31]
reported a decrease in mu-alpha (10-13 Hz) power and in-
crease in gamma (30-60 Hz) in the right temporoparietal re-
gion in single individuals in a HDC task. In a self-paced
dyadic rhythmic finger movement task, it was reported that
the phi component (9.2-11.5 Hz) in the centro-parietal region
increased in power [11]. In another pilot leader-follower fin-
gerpointing study conducted in our lab (unpublished and full
study required for validation, N = 1), we found delta (2-3.8
Hz) inter-brain synchronization in the fronto-parietal region,
theta (4-7.8 Hz) in the frontal region, alpha (8-12 Hz) in the
temporo-parietal region and beta (13-30 Hz) in the parieto-
occipital region.

Nonetheless, all of the currently reported results of inter-
brain synchronization during hand-motion tasks are time-
aggregated results over the whole trial. It would be ben-
eficial to study the changing temporal dynamics of inter-
brain synchrony during a fingerpointing task, as the inter-
action patterns are also changing throughout the interaction.
An example of dynamic inter-brain synchrony was recently
published in a functional near-infrared spectroscopy (fNIRS)
study [32], which segmented inter-brain synchrony using a
sliding window approach and characterized the segments into
brain dynamic brain states. A similar method could also be
applied to a fingerpointing task to allow for comparison with
the simulated synchronization frequencies.

Although the purpose of the current paradigm is for the
investigation of inter-brain synchrony, it can also be used
to improve human-machine,-robot or -computer interaction
(HMI, HRI or HCI) by relying on a connectome model that
simulates human neural activity, albeit one that is more lim-
ited in its range and simplicity of tasks, namely rhythmic co-
ordination. To make the interaction more natural, modifica-
tions which would make the VA movements more human-
like could be added to the motion equation. For example, a
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previous study proposed a noise term that randomly triggers
a forced exit from synchrony when it reaches a threshold [7],
as it is believed that coordination breaking could serve both
short- and long-term beneficial functions. Although their
motion equations involved velocity instead of position, our
model could be modified accordingly. By making the VA
output dynamics more natural, this could also support more
coordinated activity between the human and the VA, such
that they would form a self-organised macroscopic dynami-
cal system as in accordance to the concept of interpersonal
synergies [33] and participatory sense-making [8, 9]. These
concepts presume that a coordinated interaction does not re-
quire the interacting agents to have similar internal models
and to mindread each other. Instead, as mentioned in our
previous work [26], the control parameter could be low-level
processes such as the interaction itself. This macroscopic
control parameter could then be studied and compared be-
tween human-human and human-machine paradigms or per-
turbed between different states of interaction [34].

On the other hand, the increased coordination between the
human and the VA could support the development of more
natural interactions between a human and an interface. For
example, the concepts of dynamic interactive artificial intel-
ligence (dAI) [35] and parasitic humanoid (PH) [36], though
differing in their implementation, hopes to improve the de-
grees of freedom of human behavioural interaction through
the integration with intelligent interfaces. In addition, dAI
proposed the reverse self-organising approach to search for
parameter sets that allows coordination, which is similar to
the method we used here to infer pre-evolved parameters.

The first step for the proposed paradigm mainly involved
finding a minimal method for implementation. The next step
involves running an EEG experiment in conjunction with
the implementation in hopes that we could identify the dy-
namic relationship between the neurophysiological and be-
havioural data, where connectome models could be con-
strained and pre-evolved. We could also do the opposite in
which Kuramoto models could be used to model recorded
neurophysiological data. One of the challenges for realizing
the paradigm is then to find biologically relevant methods to
constrain the couplings between the Kuramoto model and the
motor oscillator in the VA.
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