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Symmetric Polynomials
Let Sn be the symmetric group of degree n.
Sn acts on R[x1, . . . , xn] by permuting the variables.
A polynomial f ∈ R[x1, . . . , xn] is symmetric if f is invariant under
the Sn-action.

Example
The Elementary Symmetric Functions:

E1 =
n∑

i=1

xi, E2 =
∑

1≤i<j≤n

xixj, E3 =
∑

1≤i<j<k≤n

xixjxk, . . .

Theorem (Fundamental thm of Symmetric Functions)

E1, . . . , En are algebraically independent, and

R[x1, . . . , xn]
Sn = R[E1, . . . , En] .

This theorem is generalized to finite reflection groups.
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Finite Reflection Groups

Let V be a Euclidean space of dimension n.

Definition
1 A reflection is a linear transformation s which sends some

nonzero vector to its negative while fixing the hyperplane
orthogonal to the vector. Such a vector is called a root of the
reflection.

2 A finite subgroup of GL(V ) generated by reflections is called a
finite reflection group.

Irreducible finite reflection groups were classified, and they are called

An(∼= Sn+1), Bn, Dn, E6, E7, E8, F4, G2, H3, H4, I2(m) .
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Basic Invariants
Let G be a finite reflection group acting on a Euclidean space V of
dimension n.
Denote by S the algebra of polynomial functions on V . The G-action
on V induces an actiton on S. An element g ∈ G acts on f ∈ S by

(gf)(v) = f(g−1v) (v ∈ V ) .

f ∈ S is G-invariant if gf = f holds for all g ∈ G.
The subalgebra of G-invariant polynomials is denoted SG.

Theorem (Chevalley 1955)

SG is generated by n homogeneous algebraically independent
polynomials of positive degrees.

Such a set of generators is called a set of basic invariants. The
degrees d1, . . . , dn of generators f1, . . . , fn are uniquely determined
by G. We assume that d1 ≤ d2 ≤ . . . ≤ dn.

Yukiko Konishi (Tsuda Univ.) Good Basic Invariants March 20, 2023@OIST 4 / 19



Example: An−1
Define the linear action of Sn on Rn by

σei = eσ(i) (1 ≤ i ≤ n)

where {e1, . . . , en} is the standard basis of Rn.
1 Each transposition (i, j) acts as the reflection w.r.t. the

hyperplane xi = xj where x1, . . . , xn are the coordinates
associated to {e1, . . . , en}.

2 The Sn-action fixes the line R(e1 + · · ·+ en). Thus Sn acts on
the orthogonal complement V = {x1 + · · ·+ xn = 0} and this
action is irreducible.

Sn together with its action on V is called the finite reflection group
of type An−1. For An−1,

S = R[x1, . . . , xn]/(x1 + · · ·+ xn), SG = R[E2, . . . , En] ,

and the degrees of An−1 are 2, 3, . . . , n.
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Remark

The choice of a set of basic invariants is not unique in general (even
if up to constant).
For example, for An−1, you can take the power sums

Pα =
n∑

i=1

xα
i (2 ≤ α ≤ n)

as a set of basic invariants.
So it is natural to ask whether there exists a “canonical” choice of
basic invariants. This problem was studied by Saito–Yano–Sekiguchi
in 1980.
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History

In 1980, Saito–Sekiguchi–Yano wrote in an article:� �
So far, however, there has seldom been any attempt to distinguish
one system of generators from any other. The main purpose of
this article is to show that there exists a uniquely specified gener-
ator system f1, . . . , fn for the ring SG (up to constant factors) by
adding a certain condition on f1, . . . , fn.
· · ·
One may ask whether one can find a generator system f1, . . . , fn

such that
∂

∂fn
(⟨dfi, dfj⟩)i,j is a constant matrix.

� �
Here ⟨ , ⟩ denotes a metric on the cotangent bundle TV ∗ induced
from the Euclidean inner product on V .
Such a set of basic invariants is called a set of flat invariants.
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1 In the article, Saito–Yano–Sekiguchi proved the uniqueness of a
set of flat invariants for irreducible finite reflection groups.

2 They also showed the existence by explicitly constructing flat
invariants except E7, E8.

3 For E7, a set of flat invariants was constructed by Yano in 1981.

4 The existence for all irreducible finite reflection groups was
proved by Saito in an article published in 1993.

Yukiko Konishi (Tsuda Univ.) Good Basic Invariants March 20, 2023@OIST 8 / 19



Example: calculation of flat invariants for A3

Since the degrees of A3 are 2, 3, 4, up to constant mutiple, basic
invariants must be of the form

f1 = E2, f2 = E3, f3 = E4 + cE2
2 .

If we impose Saito–Yano–Sekiguchi’s condition

∂

∂f3
(⟨dfi, dfj⟩)i,j = a constant matrix,

we obtain

c = −1

8
.
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Satake’s Good Basic Invariants

In 2020, Satake proposed a notion of good basic invariants which are
defined using a Coxeter element. He proved that good basic
invariants are flat invariants.
To explain his definition, I recall the root system, the simple system
and the Coxeter element.

Yukiko Konishi (Tsuda Univ.) Good Basic Invariants March 20, 2023@OIST 10 / 19



Root System and Simple Sysetm

Let G be an irreducible finite reflection group acting on a Euclidean
space V of dimension n.
A root system Φ of G is a finite subset of V and it is constructed as
follows. For each reflection s ∈ G, take a root αs, and consider the
set

Φ = {±αs | s is a reflection in G}.

Here, the lengths of the roots must be chosen so that G(Φ) = Φ.
A simple system ∆ is a subset of a root system Φ satisyfing:

∆ is a basis of V ,

Each α ∈ Φ is either a nonnegative linear combination of ∆ or a
nonpositive linear combination of ∆.

A simple system exists and any two simple systems are conjugate
under G.
G is generated by reflections corresponding to the roots in ∆.
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Coxeter Elements

Given a simple system ∆, a Coxeter element is constructed as
follows. Enumerate elements of ∆ as α1, . . . , αn.
Let s1, . . . , sn ∈ G be the corresponding reflections. Then

g = s1 · · · sn

is called a Coxeter element.
Any two Coxeter elements are conjugate under G.
The order of a Coxeter element is called the Coxeter number of G
and it is equal to the highest degree dn.
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Properties of Coxeter elements
Take a Coxeter element g of an irreducible finite reflection group G
and let h(= dn) be the Coxeter number. To deal with eigenvectors of
g, we consider the complexification VC of V .

Theorem
1 g has a primitive h-th root of unity ζ as an eigenvalue. The

eigenspace is one-dimensional and eigenvectors are regular (i.e.
do not lie on any reflection hyperplanes).

2 N eigenvalues of g are ζ1−dα , where d1, . . . , dn are the degrees
of G.

Definition (Satake 2020)

A triple (g, ζ, q) is called an admissible triplet. Here g ∈ G is a
Coxeter element, ζ ∈ C is an eigenvalue of g which is a primitive h-th
root of unity and whose eigenvector q ∈ VC is regular.
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Example: A3
A root system and a simple system:

Φ = {±(ei−ej) | 1 ≤ i < j ≤ 4}, ∆ = {e1−e2, e2−e3, e3−e4}

The reflections s1, s2, s3 corresponding to the simple roots and the
coxeter element g = s1s2s3:

s1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , s2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , s3 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , g =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



The order of g is four and the eigenvalues are −i,−1, i, 1 with
eigenvectors

q1 =


i

−1
−i
1

 , q2 =


−1
1

−1
1

 , q3 =


−i
−1
−i
1

 , q4 =


1
1
1
1

 .

The last one corresponds to the fixed line R(e1 + · · ·+ e4) and
hence is irrelevant to A3. q1, q3 are regular (while q2 is not).
Therefore (g, i, q3) is an admissible triplet.
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Good Basic Invariants
Fix an admissible triplet (g, ζ, q) and take a basis {q1, q2, . . . , qn = q}
of VC consisting of eigenvectors of the Coxeter element g with

gqα = ζ1−dαqα.

Let z1, . . . , zn be the associated linear coordinates of VC.
Set

Iα = {(a1, . . . , an) ∈ Zn
≥0 | a1d1+ · · ·+andn = dα, a1+ · · ·+an ≥ 2}

for 1 ≤ α ≤ n.

Definition (Satake 2020)

A set of basic invariants f1, . . . , fn is good w.r.t. the admissible
triplet (g, ζ, q) if f1, . . . , fn satisfy

∂afα
∂za

(q) = 0 (1 ≤ α ≤ n, a ∈ Iα) .
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Here,
∂a

∂za
:=

n∏
β=1

∂aβ

∂z
aβ
β

for a = (a1, . . . , an) ∈ Zn
≥0.

Theorem (Satake 2020)
1 For a given admissible triplet, a set of good basic invariants

exists.

2 The vector subspace of SG spanned by a set of good basic
invariants depends neither on the choice of admissible triplet,
nor on the choice of coordinates z1, . . . , zn.

3 A set of good basic invariants is flat.
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Example: A3
The relationship between the standard coordinates of R4 (restricted
to V = {x1 + · · ·+ x4 = 0}) and the new coordinates z1, z2, z3
associated to q1, q2, q3 is(

x1
x2
x3
x4

)
= z1q1 + z2q2 + z3q3.

Substituting this into E2, E3, E4, we have

E2 = −2z22 − 4z1z3, E3 = 4z21z2 + 4z2z
2
3 ,

E4 = −z41 + z42 − 4z1z
2
2z3 + 2z21z

2
3 − z43 .

Given that d1 = 2, d2 = 3, d3 = 4, I1 = I2 = ∅ and I3 = {(2, 0, 0)}.
For f1 = E2, f2 = E3, f3 = E4 + cE2

2 to satisfy the goodness
condition,

∂2f3
∂2z21

(q3) = 4 + 32c = 0 ∴ c = −1

8
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Remarks

1 Kyoji Saito’s flat structure contains not only flat invariants but
also a product structure on TV . In 2020, Satake also found a
formula expressing the product in terms of the good basic
invariants and its derivatives.

2 Satake’s definition of good basic invariants includes finite
complex reflection groups. In that case, a Coxeter element must
be replaced by a dn-regular element.

3 In the joint work with Minabe, we showed the existence and the
uniqueness of good basic invariants for duality groups, and also
obtained a formula for the product (work in progress).
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