Satake's Good Basic Invariants for Finite Reflection Groups

Yukiko Konishi (Tsuda Univ.)

March 20, 2023@OIST

Symmetric Polynomials

Let S_n be the symmetric group of degree n. S_n acts on $\mathbb{R}[x_1, \ldots, x_n]$ by permuting the variables. A polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]$ is <u>symmetric</u> if f is invariant under the S_n -action.

Example

The Elementary Symmetric Functions:

$$E_1 = \sum_{i=1}^n x_i, \quad E_2 = \sum_{1 \le i < j \le n} x_i x_j, \quad E_3 = \sum_{1 \le i < j < k \le n} x_i x_j x_k, \quad \dots$$

Theorem (Fundamental thm of Symmetric Functions) E_1, \ldots, E_n are algebraically independent, and

$$\mathbb{R}[x_1,\ldots,x_n]^{S_n} = \mathbb{R}[E_1,\ldots,E_n] \; .$$

This theorem is generalized to finite reflection groups.

Yukiko Konishi (Tsuda Univ.)

Good Basic Invariants

Finite Reflection Groups

Let V be a Euclidean space of dimension n.

Definition

- A <u>reflection</u> is a linear transformation s which sends some nonzero vector to its negative while fixing the hyperplane orthogonal to the vector. Such a vector is called a root of the reflection.
- **2** A finite subgroup of GL(V) generated by reflections is called a finite reflection group.

Irreducible finite reflection groups were classified, and they are called

$$A_n (\cong S_{n+1}), B_n, D_n, E_6, E_7, E_8, F_4, G_2, H_3, H_4, I_2(m)$$

Basic Invariants

Let G be a finite reflection group acting on a Euclidean space V of dimension n.

Denote by S the algebra of polynomial functions on V. The G-action on V induces an actiton on S. An element $g \in G$ acts on $f \in S$ by

$$(gf)(v) = f(g^{-1}v) \quad (v \in V) .$$

 $f \in S$ is <u>G-invariant</u> if gf = f holds for all $g \in G$. The subalgebra of G-invariant polynomials is denoted S^G .

Theorem (Chevalley 1955)

 S^{G} is generated by n homogeneous algebraically independent polynomials of positive degrees.

Such a set of generators is called a set of <u>basic invariants</u>. The degrees d_1, \ldots, d_n of generators f_1, \ldots, f_n are uniquely determined by G. We assume that $d_1 \leq d_2 \leq \ldots \leq d_n$.

Example: A_{n-1}

Define the linear action of S_n on \mathbb{R}^n by

$$\sigma \boldsymbol{e}_i = \boldsymbol{e}_{\sigma(i)} \quad (1 \le i \le n)$$

where $\{e_1,\ldots,e_n\}$ is the standard basis of \mathbb{R}^n .

- Each transposition (i, j) acts as the reflection w.r.t. the hyperplane x_i = x_j where x₁,..., x_n are the coordinates associated to {e₁,..., e_n}.
- **2** The S_n -action fixes the line $\mathbb{R}(e_1 + \cdots + e_n)$. Thus S_n acts on the orthogonal complement $V = \{x_1 + \cdots + x_n = 0\}$ and this action is irreducible.

 S_n together with its action on V is called the finite reflection group of type $A_{n-1}.$ For $A_{n-1},$

$$S = \mathbb{R}[x_1, \dots, x_n]/(x_1 + \dots + x_n), \quad S^G = \mathbb{R}[E_2, \dots, E_n] ,$$

and the degrees of A_{n-1} are $2, 3, \ldots, n$.

(日)

Remark

The choice of a set of basic invariants is not unique in general (even if up to constant).

For example, for A_{n-1} , you can take the power sums

$$P_{\alpha} = \sum_{i=1}^{n} x_i^{\alpha} \quad (2 \le \alpha \le n)$$

as a set of basic invariants.

So it is natural to ask whether there exists a "canonical" choice of basic invariants. This problem was studied by Saito–Yano–Sekiguchi in 1980.

History

In 1980, Saito–Sekiguchi–Yano wrote in an article:

So far, however, there has seldom been any attempt to distinguish one system of generators from any other. The main purpose of this article is to show that there exists a uniquely specified generator system f_1, \ldots, f_n for the ring S^G (up to constant factors) by adding a certain condition on f_1, \ldots, f_n .

One may ask whether one can find a generator system f_1, \ldots, f_n such that $\frac{\partial}{\partial f_n} (\langle df_i, df_j \rangle)_{i,j}$ is a constant matrix.

Here \langle , \rangle denotes a metric on the cotangent bundle TV^* induced from the Euclidean inner product on V. Such a set of basic invariants is called a set of <u>flat</u> invariants.

- In the article, Saito-Yano-Sekiguchi proved the uniqueness of a set of flat invariants for irreducible finite reflection groups.
- They also showed the existence by explicitly constructing flat invariants except E₇, E₈.
- **③** For E_7 , a set of flat invariants was constructed by Yano in 1981.
- The existence for all irreducible finite reflection groups was proved by Saito in an article published in 1993.

Example: calculation of flat invariants for A_3

Since the degrees of A_3 are 2, 3, 4, up to constant mutiple, basic invariants must be of the form

$$f_1 = E_2, \quad f_2 = E_3, \quad f_3 = E_4 + cE_2^2.$$

If we impose Saito-Yano-Sekiguchi's condition

$$rac{\partial}{\partial f_3} (\langle df_i, df_j
angle)_{i,j} =$$
 a constant matrix,

we obtain

$$c = -\frac{1}{8}$$

1

In 2020, Satake proposed a notion of good basic invariants which are defined using a Coxeter element. He proved that good basic invariants are flat invariants.

To explain his definition, I recall the root system, the simple system and the Coxeter element.

Root System and Simple System

Let G be an irreducible finite reflection group acting on a Euclidean space V of dimension n.

A root system Φ of G is a finite subset of V and it is constructed as follows. For each reflection $s \in G$, take a root α_s , and consider the set

 $\Phi = \{ \pm \alpha_s \mid s \text{ is a reflection in } G \}.$

Here, the lengths of the roots must be chosen so that $G(\Phi) = \Phi$. A simple system Δ is a subset of a root system Φ satisfing:

- Δ is a basis of V.
- Each $\alpha \in \Phi$ is either a nonnegative linear combination of Δ or a nonpositive linear combination of Δ .

A simple system exists and any two simple systems are conjugate under G_{\cdot}

G is generated by reflections corresponding to the roots in Δ .

- 34

Coxeter Elements

Given a simple system Δ , a Coxeter element is constructed as follows. Enumerate elements of Δ as $\alpha_1, \ldots, \alpha_n$. Let $s_1, \ldots, s_n \in G$ be the corresponding reflections. Then

$$g = s_1 \cdots s_n$$

is called a <u>Coxeter element</u>.

Any two Coxeter elements are conjugate under G.

The order of a Coxeter element is called the <u>Coxeter number</u> of G and it is equal to the highest degree d_n .

Properties of Coxeter elements

Take a Coxeter element g of an irreducible finite reflection group G and let $h(=d_n)$ be the Coxeter number. To deal with eigenvectors of g, we consider the complexification $V_{\mathbb{C}}$ of V.

Theorem

- g has a primitive h-th root of unity ζ as an eigenvalue. The eigenspace is one-dimensional and eigenvectors are regular (i.e. do not lie on any reflection hyperplanes).
- 2 N eigenvalues of g are $\zeta^{1-d_{\alpha}}$, where d_1, \ldots, d_n are the degrees of G.

Definition (Satake 2020)

A triple (g, ζ, q) is called an admissible triplet. Here $g \in G$ is a Coxeter element, $\zeta \in \mathbb{C}$ is an eigenvalue of g which is a primitive h-th root of unity and whose eigenvector $q \in V_{\mathbb{C}}$ is regular.

Example: A_3

A root system and a simple system:

 $\Phi = \{ \pm (e_i - e_j) \mid 1 \le i < j \le 4 \}, \quad \Delta = \{ e_1 - e_2, e_2 - e_3, e_3 - e_4 \}$

The reflections s_1, s_2, s_3 corresponding to the simple roots and the coxeter element $g = s_1 s_2 s_3$:

$$s_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad g = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

The order of g is four and the eigenvalues are -i,-1,i,1 with eigenvectors

$$q_1 = \begin{pmatrix} i \\ -1 \\ -i \\ 1 \end{pmatrix}, \quad q_2 = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \quad q_3 = \begin{pmatrix} -i \\ -1 \\ -i \\ 1 \end{pmatrix}, \quad q_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

The last one corresponds to the fixed line $\mathbb{R}(e_1 + \cdots + e_4)$ and hence is irrelevant to A_3 . q_1, q_3 are regular (while q_2 is not). Therefore (g, i, q_3) is an admissible triplet.

Yukiko Konishi (Tsuda Univ.)

Good Basic Invariants

Fix an admissible triplet (g, ζ, q) and take a basis $\{q_1, q_2, \ldots, q_n = q\}$ of $V_{\mathbb{C}}$ consisting of eigenvectors of the Coxeter element g with

$$gq_{\alpha} = \zeta^{1-d_{\alpha}}q_{\alpha}.$$

Let z_1,\ldots,z_n be the associated linear coordinates of $V_{\mathbb C}.$ Set

$$I_{\alpha} = \{ (a_1, \dots, a_n) \in \mathbb{Z}_{\geq 0}^n \mid a_1 d_1 + \dots + a_n d_n = d_{\alpha}, a_1 + \dots + a_n \geq 2 \}$$

for $1 \leq \alpha \leq n$.

Definition (Satake 2020)

A set of basic invariants f_1,\ldots,f_n is good w.r.t. the admissible triplet (g,ζ,q) if f_1,\ldots,f_n satisfy

$$\frac{\partial^a f_\alpha}{\partial z^a}(q) = 0 \quad (1 \le \alpha \le n, a \in I_\alpha) \ .$$

Here,

$$rac{\partial^a}{\partial z^a} := \prod_{eta=1}^n rac{\partial^{a_eta}}{\partial z^{a_eta}_eta}$$

for $a = (a_1, \ldots, a_n) \in \mathbb{Z}_{\geq 0}^n$.

Theorem (Satake 2020)

- For a given admissible triplet, a set of good basic invariants exists.
- The vector subspace of S^G spanned by a set of good basic invariants depends neither on the choice of admissible triplet, nor on the choice of coordinates z₁,..., z_n.

Example: A_3

The relationship between the standard coordinates of \mathbb{R}^4 (restricted to $V = \{x_1 + \cdots + x_4 = 0\}$) and the new coordinates z_1, z_2, z_3 associated to q_1, q_2, q_3 is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = z_1 q_1 + z_2 q_2 + z_3 q_3.$$

Substituting this into E_2, E_3, E_4 , we have

$$E_2 = -2z_2^2 - 4z_1z_3, \quad E_3 = 4z_1^2z_2 + 4z_2z_3^2,$$

$$E_4 = -z_1^4 + z_2^4 - 4z_1z_2^2z_3 + 2z_1^2z_3^2 - z_3^4.$$

Given that $d_1 = 2, d_2 = 3, d_3 = 4$, $I_1 = I_2 = \emptyset$ and $I_3 = \{(2, 0, 0)\}$. For $f_1 = E_2, f_2 = E_3, f_3 = E_4 + cE_2^2$ to satisfy the goodness condition,

$$\frac{\partial^2 f_3}{\partial^2 z_1^2}(q_3) = 4 + 32c = 0 \quad \therefore c = -\frac{1}{8}$$

Remarks

- Kyoji Saito's flat structure contains not only flat invariants but also a product structure on TV. In 2020, Satake also found a formula expressing the product in terms of the good basic invariants and its derivatives.
- Satake's definition of good basic invariants includes finite complex reflection groups. In that case, a Coxeter element must be replaced by a d_n-regular element.
- In the joint work with Minabe, we showed the existence and the uniqueness of good basic invariants for duality groups, and also obtained a formula for the product (work in progress).

References

- Saito-Yano-Sekiguchi, On a certain generator system of the ring of invariants of a finite reflection group. Comm. Algebra 8 (1980),
- Humphreys, Reflection groups and Coxeter groups. Cambridge University Press (1990)
- Ikuo Satake, Good Basic Invariants and Frobenius Structures, arXiv:2004.01871.