# THE GENERALIZED SYLVESTER'S AND ORCHARD PROBLEMS VIA DISCRIMINANTAL ARRANGEMENT 

Pragnya Das

Hokkaido University

20/03/2023

## Objective

- We aim at elucidating the connection between the generalised Sylvester's and Orchard Problem and the combinatorics of discriminantal arrangement $\mathcal{B}(n, k, \mathcal{A})$.
- We answer the above question for a special case of arrangement of 12 lines in $\mathbb{P}^{2} \mathbb{R}$.
- An arrangement of lines is a finite collection of lines in a plane. The point where $r$ lines intersect is called a multiplicity of $r$ intersection.


## The generalised Sylvester's Problem

When posed in its dual form leads to the question: given an arrangement of $n$ lines in $\mathbb{C}^{2}$ what is the minimum number of multiplicity 2 intersections.


Arrangement of 5 lines with? 10 multiplicity 2 intersections


Arrangement of 5 lines with 4 (minimum) multiplicity
2 intersections

Figure 1: Examples of arrangement with 5 lines

## The generalised Orchard Problem

When posed in its dual form leads to the question: given an arrangement of $n$ lines in $\mathbb{C}^{2}$ what is the maximum number of multiplicity 3 intersections.


Figure 2: Examples of Orchard problem with $n$ lines and multiplicity 3 intersections

## Background

- Pappus's configuration is an arrangement of 6 lines with 3-collinearity conditions.
- Pappus's configuration with 3-collinearity conditions is denoted by $\mathcal{P}_{\infty}$.
- Pappus's configuration with 4-collinearity conditions is denoted by $\mathcal{P}_{\infty}^{c}$.


Figure 3: Pappus's configurations

## Geometrical Approach

In our problem we consider a Pappus's configuration where the three classical collinearities are concurrent.
Six new lines are added to the 6 lines in Pappus's configuration in the following way to get the arrangement of 12 lines:

1. lines $I_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}$ are the three concurrent lines corresponding to the three Pappus's collinearities;
2. lines $I_{4}^{\prime}, I_{5}^{\prime}, I_{6}^{\prime}$ are added so that each one of them contains exactly two different multiplicity 2 intersection of $\mathcal{P}_{\infty}^{c}$ (resp. $\left.\mathcal{P}_{\infty}\right)$ and that each multiplicity 2 intersection is contained in only one line $I_{i}^{\prime}, i=1, \ldots, 6$.

## Arrangement of 12 lines in $\mathbb{P}^{2} \mathbb{R}$



Figure 4: Arrangement of 12 lines with 6 multiplicity 2 intersections in $\mathbb{P}^{2} \mathbb{R}$ where the black lines depict the Pappus's configuration.

## Arrangement of 12 lines in $\mathbb{P}^{2} \mathbb{R}$



Figure 5: Arrangement of 12 lines with 19 multiplicity 3 intersection in $\mathbb{P}^{2} \mathbb{R}$ where the black lines depict the Pappus's configuration.

## Discriminantal Arrangement

- The discriminantal arrangement $\mathcal{B}(n, k, \mathcal{A})$ is an arrangement of hyperplanes, constructed from a generic arrangement $\mathcal{A}$, generalizing the classical braid's arrangement.
- $\mathcal{A}=\left\{H_{1}^{0}, \ldots, H_{n}^{0}\right\}, i=1, \ldots, n$, is a generic arrangement in $\mathbb{C}^{k}$.
- $\mathbb{S}(\mathcal{A})$ denotes the spaces of parallel translates of $\mathcal{A}$.
- The closed subset of $\mathbb{S}(\mathcal{A})$ formed by the collection of hyperplanes which fail to form a generic arrangement is a union of hyperplanes $D_{L}$.
- Each hyperplane $D_{L}$ corresponds to a subset $L=\left\{i_{1}, \ldots, i_{k+1}\right\} \subset[n]\{1, \ldots, n\}$ and it consists of $n$-tuples of translates of hyperplanes $H_{1}^{0}, \ldots, H_{n}^{0}$ in which translates of $H_{i_{1}}^{0}, \ldots, H_{i_{k+1}}^{0}$ fail to form a general position arrangement.
- The arrangement $\mathcal{B}(n, k, \mathcal{A})$ of hyperplanes $D_{L}$ is called discriminantal arrangement.


## Combinatorial Approach

- A permutation $\sigma$ in a symmetric group $S_{n}$ composed of disjoint transpositions is said to act strongly on the elements in the intersection lattice of $\mathcal{A}$ if it fixes non trivial collinearlities in $\mathcal{A}$.
- Six new lines $I_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{6}^{\prime}$ added to the Pappus's configuration are obtained such that:
- $l_{i}^{\prime}$ is the line $P \sigma . P$ where $P$ is a multiplicity 2 intersection in the Pappus's configuration.
- For any point $P$ in intersection in the Pappus's configuration there exists exactly one line $I_{i}^{\prime}$ such that $P \in I_{i}^{\prime}$.
- The arrangement formed by the new lines $l_{1}^{\prime}, \ldots, l_{6}^{\prime}$ is called $\sigma$ completion of $\mathcal{P}_{\infty}^{c}\left(\right.$ resp. $\left.\mathcal{P}_{\infty}\right)$ and denoted by $\left(\mathcal{P}_{\infty}^{c}\right)^{\sigma}$ (resp. $\left.\mathcal{P}_{\infty}^{\sigma}\right)$.


## Intersection lattice of discriminantal arrangement

- An arrangement $\mathcal{A}$ is called a very generic arrangement if the number of intersections in the intersection lattice $\mathcal{L}(\mathcal{B}(n, k, \mathcal{A}))$ is the largest possible between all the discriminantal arrangements $B\left(n, k, \mathcal{A}^{\prime}\right)$, when $\mathcal{A}^{\prime}$ ranges between all generic arrangements of $n$ hyperplanes in $\mathbb{R}^{k}\left(\mathbb{C}^{k}\right)$. Otherwise it is called a non very generic arrangement.
- An element X is called a simple intersection in $\mathcal{B}(n, k, \mathcal{A})$ if $X=\cap_{i=1}^{m} D_{L_{i}},\left|L_{i}\right|=k+1$ and for every subset $I \subset[m],|I| \geq$ $2, \cap_{i \in I} D_{L_{i}} \neq D_{K} \in \mathcal{L}(\mathcal{B}(n, k, \mathcal{A})), K \subset[n],|K|>k+1$. In particular if $m>r$ we call $X$ a non very generic simple intersection.


## Intersection lattice of discriminantal arrangement

- The set containing all the permutations $\sigma$ that acts strongly on $\mathcal{A}$ is denoted by $S_{\mathcal{A}}$.
- Since each collinearity condition in $\mathcal{A}$ corresponds to a simple intersection of rank 2 and multiplicity 3 of $\mathcal{B}(n, 3, \mathcal{A})$ then permutation $\sigma$ acts strongly on $\mathcal{A}$ if and only if it fixes rank 2 and multiplicity 3 simple intersections of $\mathcal{B}(n, 3, \mathcal{A})$. We can say here that $\sigma$ acts strongly on $\mathcal{B}(n, 3, \mathcal{A})$.


## Intersection lattice of discriminantal arrangement

- If $\mathcal{P}_{\infty}$ and $\mathcal{P}_{\infty}^{c}$ satisfy the additional condition that the three collinearities of the classical Pappus's configuration are concurrent then for $\sigma \in S_{\mathcal{P}_{\infty}}$,

1. $\mathcal{P}_{\infty}^{c} \cup \mathcal{P}_{\infty}^{c} \sigma$ is an arrangement with the minimum number of multiplicity 2 intersection if and only if $\sigma \in S_{6}$ acts strongly on $\mathcal{P}_{\infty}^{c}$
2. $\mathcal{P}_{\infty} \cup \mathcal{P}_{\infty}^{\sigma}$ is an arrangement with the maximum number of multiplicity 3 intersection otherwise.

- Two simple intersections of multiplicity 3 and rank 2 in $\mathcal{B}(n, 3, \mathcal{A})$ are called independent if they do not share any hyperplane.
- A simple intersection of multiplicity 3 in rank 2 is called purely dependent if it is intersection of 3 hyperplanes each one containing exactly one independent intersection.


## Main Result

Let $\mathcal{B}(6,3, \mathcal{A})$ be a discriminantal arrangement with the maximum number of independent intersections in rank $2 \sigma \in S_{6}$ acts strongly on $\mathcal{B}(6,3, \mathcal{A})$, then:

1. The arrangement $\mathcal{A} \cup \mathcal{A}^{\sigma}$ is an arrangement with the minimum number of intersections of multiplicity 2 if and only if there exists a purely dependent intersection fixed by $\sigma$ in $\mathcal{B}(6,3, \mathcal{A})$ and $\mathcal{A}^{\sigma}$ is central.
2. $\mathcal{A} \cup \mathcal{A}^{\sigma}$ is an arrangement with the maximum number of intersections of multiplicity 3 if and only if $\mathcal{A}^{\sigma}$ belongs to a simple intersection of multiplicity 4 in rank 3.

## Conjecture

Let $\mathcal{B}(n, 3, \mathcal{A})$ be a discrimanantal arrangement with the maximum number of independent intersections in rank 2 and $\sigma \in S_{n}$ acts strongly on $\mathcal{B}(n, 3, \mathcal{A})$, then :

1. the arrangement $\mathcal{A} \cup \mathcal{A}^{\sigma}$ is an arrangement with the minimum number of intersections of multiplicity 2 if and only if purely dependent intersections in $(\mathcal{B}(n, 3, \mathcal{A}))$ are all fixed by $\sigma$ and they are in maximum number.
2. $\mathcal{A} \cup \mathcal{A}^{\sigma}$ is an arrangement with the maximum number of intersections of multiplicity 3 if and only if $\mathcal{A}^{\sigma}$ belongs to a is simple intersection $X$ having the maximum multiplicity in rank $n-3$.

## Thank You!!!

