THE GENERALIZED SYLVESTER'S AND ORCHARD PROBLEMS VIA DISCRIMINANTAL ARRANGEMENT

Pragnya Das

Hokkaido University

20/03/2023

- We aim at elucidating the connection between the generalised Sylvester's and Orchard Problem and the combinatorics of discriminantal arrangement B(n, k, A).
- We answer the above question for a special case of arrangement of 12 lines in P²ℝ.
- An arrangement of lines is a finite collection of lines in a plane. The point where r lines intersect is called a multiplicity of r intersection.

The generalised Sylvester's Problem

When posed in its dual form leads to the question: given an arrangement of n lines in \mathbb{C}^2 what is the minimum number of multiplicity 2 intersections.

Figure 1: Examples of arrangement with 5 lines

The generalised Orchard Problem

When posed in its dual form leads to the question: given an arrangement of n lines in \mathbb{C}^2 what is the maximum number of multiplicity 3 intersections.

Figure 2: Examples of Orchard problem with n lines and multiplicity 3 intersections

Background

- Pappus's configuration is an arrangement of 6 lines with 3-collinearity conditions.
- Pappus's configuration with 3-collinearity conditions is denoted by $\mathcal{P}_{\infty}.$
- Pappus's configuration with 4-collinearity conditions is denoted by $\mathcal{P}^c_\infty.$

Figure 3: Pappus's configurations

Geometrical Approach

In our problem we consider a Pappus's configuration where the three classical collinearities are concurrent.

Six new lines are added to the 6 lines in Pappus's configuration in the following way to get the arrangement of 12 lines :

- 1. lines l'_1, l'_2, l'_3 are the three concurrent lines corresponding to the three Pappus's collinearities;
- 2. lines l'_4, l'_5, l'_6 are added so that each one of them contains exactly two different multiplicity 2 intersection of \mathcal{P}^c_{∞} (resp. \mathcal{P}_{∞}) and that each multiplicity 2 intersection is contained in only one line $l'_i, i = 1, \ldots, 6$.

Arrangement of 12 lines in $\mathbb{P}^2\mathbb{R}$

Figure 4: Arrangement of 12 lines with 6 multiplicity 2 intersections in $\mathbb{P}^2\mathbb{R}$ where the black lines depict the Pappus's configuration.

Arrangement of 12 lines in $\mathbb{P}^2\mathbb{R}$

Figure 5: Arrangement of 12 lines with 19 multiplicity 3 intersection in $\mathbb{P}^2\mathbb{R}$ where the black lines depict the Pappus's configuration.

Discriminantal Arrangement

- The discriminantal arrangement B(n, k, A) is an arrangement of hyperplanes, constructed from a generic arrangement A, generalizing the classical braid's arrangement.
- $\mathcal{A} = \{H_1^0, \dots, H_n^0\}, i = 1, \dots, n$, is a generic arrangement in \mathbb{C}^k .
- $\mathbb{S}(\mathcal{A})$ denotes the spaces of parallel translates of \mathcal{A} .
- The closed subset of S(A) formed by the collection of hyperplanes which fail to form a generic arrangement is a union of hyperplanes D_L.
- Each hyperplane D_L corresponds to a subset
 L = {i₁,..., i_{k+1}} ⊂ [n] {1,..., n} and it consists of n-tuples
 of translates of hyperplanes H⁰₁,..., H⁰_n in which translates of
 H⁰<sub>i_{k+1},..., H⁰<sub>i_{k+1} fail to form a general position arrangement.

 </sub></sub>
- The arrangement $\mathcal{B}(n, k, \mathcal{A})$ of hyperplanes D_L is called *discriminantal arrangement*.

Combinatorial Approach

- A permutation σ in a symmetric group S_n composed of disjoint transpositions is said to act strongly on the elements in the intersection lattice of A if it fixes non trivial collinearlities in A.
- Six new lines l_1', l_2', \ldots, l_6' added to the Pappus's configuration are obtained such that:
 - *I*[']_i is the line *P*σ.*P* where *P* is a multiplicity 2 intersection in the Pappus's configuration.
 - For any point P in intersection in the Pappus's configuration there exists exactly one line l'_i such that P ∈ l'_i.
- The arrangement formed by the new lines l'₁,..., l'₆ is called σ completion of P^c_∞ (resp. P_∞) and denoted by (P^c_∞)^σ (resp. P^σ_∞).

Intersection lattice of discriminantal arrangement

- An arrangement A is called a very generic arrangement if the number of intersections in the intersection lattice
 \$\mathcal{L}(\mathcal{B}(n, k, \mathcal{A}))\$ is the largest possible between all the discriminantal arrangements \$B(n, k, \mathcal{A}')\$, when \$\mathcal{A}'\$ ranges between all generic arrangements of \$n\$ hyperplanes in \$\mathbb{R}^k(\mathcal{C}^k)\$. Otherwise it is called a non very generic arrangement.
- An element X is called a simple intersection in B(n, k, A) if X = ∩_{i=1}^mD_{Li}, |L_i| = k + 1 and for every subset I ⊂ [m], |I| ≥ 2, ∩_{i∈I}D_{Li} ≠ D_K ∈ L(B(n, k, A)), K ⊂ [n], |K| > k + 1. In particular if m > r we call X a non very generic simple intersection.

Intersection lattice of discriminantal arrangement

- The set containing all the permutations σ that acts strongly on A is denoted by S_A.
- Since each collinearity condition in \mathcal{A} corresponds to a simple intersection of rank 2 and multiplicity 3 of $\mathcal{B}(n,3,\mathcal{A})$ then permutation σ acts strongly on \mathcal{A} if and only if it fixes rank 2 and multiplicity 3 simple intersections of $\mathcal{B}(n,3,\mathcal{A})$. We can say here that σ acts strongly on $\mathcal{B}(n,3,\mathcal{A})$.

Intersection lattice of discriminantal arrangement

- If \mathcal{P}_{∞} and \mathcal{P}_{∞}^{c} satisfy the additional condition that the three collinearities of the classical Pappus's configuration are concurrent then for $\sigma \in S_{\mathcal{P}_{\infty}}$,
 - 1. $\mathcal{P}_{\infty}^{c} \cup \mathcal{P}_{\infty}^{c \sigma}$ is an arrangement with the minimum number of multiplicity 2 intersection if and only if $\sigma \in S_{6}$ acts strongly on \mathcal{P}_{∞}^{c} ,
 - 2. $\mathcal{P}_{\infty} \cup \mathcal{P}_{\infty}^{\sigma}$ is an arrangement with the maximum number of multiplicity 3 intersection otherwise.
- Two simple intersections of multiplicity 3 and rank 2 in $\mathcal{B}(n,3,\mathcal{A})$ are called independent if they do not share any hyperplane.
- A simple intersection of multiplicity 3 in rank 2 is called purely dependent if it is intersection of 3 hyperplanes each one containing exactly one independent intersection.

Main Result

Let $\mathcal{B}(6,3,\mathcal{A})$ be a discriminantal arrangement with the maximum number of independent intersections in rank 2 $\sigma \in S_6$ acts strongly on $\mathcal{B}(6,3,\mathcal{A})$, then:

- 1. The arrangement $\mathcal{A} \cup \mathcal{A}^{\sigma}$ is an arrangement with the minimum number of intersections of multiplicity 2 if and only if there exists a purely dependent intersection fixed by σ in $\mathcal{B}(6,3,\mathcal{A})$ and \mathcal{A}^{σ} is central.
- 2. $\mathcal{A} \cup \mathcal{A}^{\sigma}$ is an arrangement with the maximum number of intersections of multiplicity 3 if and only if \mathcal{A}^{σ} belongs to a simple intersection of multiplicity 4 in rank 3.

Conjecture

Let $\mathcal{B}(n,3,\mathcal{A})$ be a discrimanantal arrangement with the maximum number of independent intersections in rank 2 and $\sigma \in S_n$ acts strongly on $\mathcal{B}(n,3,\mathcal{A})$, then :

- 1. the arrangement $\mathcal{A} \cup \mathcal{A}^{\sigma}$ is an arrangement with the minimum number of intersections of multiplicity 2 if and only if purely dependent intersections in $(\mathcal{B}(n,3,\mathcal{A}))$ are all fixed by σ and they are in maximum number.
- 2. $\mathcal{A} \cup \mathcal{A}^{\sigma}$ is an arrangement with the maximum number of intersections of multiplicity 3 if and only if \mathcal{A}^{σ} belongs to a is simple intersection X having the maximum multiplicity in rank n-3.

Thank You!!!