THE GENERALIZED SYLVESTER’S AND ORCHARD PROBLEMS VIA DISCRIMINANTAL ARRANGEMENT

Pragnya Das

Hokkaido University

20/03/2023
Objective

• We aim at elucidating the connection between the generalised Sylvester’s and Orchard Problem and the combinatorics of discriminantal arrangement $B(n, k, A)$.

• We answer the above question for a special case of arrangement of 12 lines in $\mathbb{P}^2\mathbb{R}$.

• An arrangement of lines is a finite collection of lines in a plane. The point where r lines intersect is called a multiplicity of r intersection.
The generalised Sylvester’s Problem

When posed in its dual form leads to the question: given an arrangement of \(n \) lines in \(\mathbb{C}^2 \) what is the minimum number of multiplicity 2 intersections.

Figure 1: Examples of arrangement with 5 lines
The generalised Orchard Problem

When posed in its dual form leads to the question: given an arrangement of \(n\) lines in \(\mathbb{C}^2\) what is the maximum number of multiplicity 3 intersections.

Figure 2: Examples of Orchard problem with \(n\) lines and multiplicity 3 intersections
Background

- Pappus’s configuration is an arrangement of 6 lines with 3-collinearity conditions.
- Pappus’s configuration with 3-collinearity conditions is denoted by P_{∞}.
- Pappus’s configuration with 4-collinearity conditions is denoted by P_{∞}^c.

Figure 3: Pappus’s configurations
In our problem we consider a Pappus’s configuration where the three classical collinearities are concurrent. Six new lines are added to the 6 lines in Pappus’s configuration in the following way to get the arrangement of 12 lines:

1. lines l'_1, l'_2, l'_3 are the three concurrent lines corresponding to the three Pappus’s collinearities;

2. lines l'_4, l'_5, l'_6 are added so that each one of them contains exactly two different multiplicity 2 intersection of \mathcal{P}_∞^C (resp. \mathcal{P}_∞) and that each multiplicity 2 intersection is contained in only one line l'_i, $i = 1, \ldots, 6$.
Arrangement of 12 lines in $\mathbb{P}^2\mathbb{R}$

Figure 4: Arrangement of 12 lines with 6 multiplicity 2 intersections in $\mathbb{P}^2\mathbb{R}$ where the black lines depict the Pappus’s configuration.
Arrangement of 12 lines in $\mathbb{P}^2\mathbb{R}$

Figure 5: Arrangement of 12 lines with 19 multiplicity 3 intersection in $\mathbb{P}^2\mathbb{R}$ where the black lines depict the Pappus's configuration.
The discriminantal arrangement \(B(n, k, \mathcal{A}) \) is an arrangement of hyperplanes, constructed from a generic arrangement \(\mathcal{A} \), generalizing the classical braid’s arrangement.

\(\mathcal{A} = \{H_1^0, \ldots, H_n^0\}, i = 1, \ldots, n \), is a generic arrangement in \(\mathbb{C}^k \).

\(\mathcal{S}(\mathcal{A}) \) denotes the spaces of parallel translates of \(\mathcal{A} \).

The closed subset of \(\mathcal{S}(\mathcal{A}) \) formed by the collection of hyperplanes which fail to form a generic arrangement is a union of hyperplanes \(D_L \).

Each hyperplane \(D_L \) corresponds to a subset \(L = \{i_1, \ldots, i_{k+1}\} \subset [n] \{1, \ldots, n\} \) and it consists of \(n \)-tuples of translates of hyperplanes \(H_1^0, \ldots, H_n^0 \) in which translates of \(H_{i_1}^0, \ldots, H_{i_{k+1}}^0 \) fail to form a general position arrangement.

The arrangement \(B(n, k, \mathcal{A}) \) of hyperplanes \(D_L \) is called discriminantal arrangement.
Combinatorial Approach

- A permutation σ in a symmetric group S_n composed of disjoint transpositions is said to act strongly on the elements in the intersection lattice of \mathcal{A} if it fixes non trivial collinearities in \mathcal{A}.
- Six new lines l'_1, l'_2, \ldots, l'_6 added to the Pappus’s configuration are obtained such that:
 - l'_i is the line $P_{\sigma}.P$ where P is a multiplicity 2 intersection in the Pappus’s configuration.
 - For any point P in intersection in the Pappus’s configuration there exists exactly one line l'_i such that $P \in l'_i$.
- The arrangement formed by the new lines l'_1, \ldots, l'_6 is called σ completion of \mathcal{P}_∞^c (resp. \mathcal{P}_∞) and denoted by $(\mathcal{P}_\infty^c)^\sigma$ (resp. $\mathcal{P}_\infty^\sigma$).
• An arrangement \mathcal{A} is called a *very generic arrangement* if the number of intersections in the intersection lattice $\mathcal{L}(\mathcal{B}(n, k, \mathcal{A}))$ is the largest possible between all the discriminantal arrangements $\mathcal{B}(n, k, \mathcal{A}')$, when \mathcal{A}' ranges between all generic arrangements of n hyperplanes in $\mathbb{R}^k(\mathbb{C}^k)$. Otherwise it is called a non very generic arrangement.

• An element X is called a simple intersection in $\mathcal{B}(n, k, \mathcal{A})$ if $X = \bigcap_{i=1}^{m} D_{L_i}, |L_i| = k + 1$ and for every subset $I \subset [m], |I| \geq 2, \bigcap_{i \in I} D_{L_i} \neq D_K \in \mathcal{L}(\mathcal{B}(n, k, \mathcal{A})), K \subset [n], |K| > k + 1$. In particular if $m > r$ we call X a non very generic simple intersection.
The set containing all the permutations σ that acts strongly on \mathcal{A} is denoted by $S_{\mathcal{A}}$.

Since each collinearity condition in \mathcal{A} corresponds to a simple intersection of rank 2 and multiplicity 3 of $\mathcal{B}(n, 3, \mathcal{A})$ then permutation σ acts strongly on \mathcal{A} if and only if it fixes rank 2 and multiplicity 3 simple intersections of $\mathcal{B}(n, 3, \mathcal{A})$. We can say here that σ acts strongly on $\mathcal{B}(n, 3, \mathcal{A})$.
Intersection lattice of discriminantal arrangement

• If P_∞ and P_∞^c satisfy the additional condition that the three collinearities of the classical Pappus’s configuration are concurrent then for $\sigma \in S_{P_\infty}$,

1. $P_\infty^c \cup P_\infty^c \sigma$ is an arrangement with the minimum number of multiplicity 2 intersection if and only if $\sigma \in S_6$ acts strongly on P_∞^c,

2. $P_\infty \cup P_\infty^\sigma$ is an arrangement with the maximum number of multiplicity 3 intersection otherwise.

• Two simple intersections of multiplicity 3 and rank 2 in $B(n, 3, A)$ are called independent if they do not share any hyperplane.

• A simple intersection of multiplicity 3 in rank 2 is called purely dependent if it is intersection of 3 hyperplanes each one containing exactly one independent intersection.
Main Result

Let $\mathcal{B}(6, 3, \mathcal{A})$ be a discriminantal arrangement with the maximum number of independent intersections in rank 2 $\sigma \in S_6$ acts strongly on $\mathcal{B}(6, 3, \mathcal{A})$, then:

1. The arrangement $\mathcal{A} \cup \mathcal{A}^\sigma$ is an arrangement with the minimum number of intersections of multiplicity 2 if and only if there exists a purely dependent intersection fixed by σ in $\mathcal{B}(6, 3, \mathcal{A})$ and \mathcal{A}^σ is central.

2. $\mathcal{A} \cup \mathcal{A}^\sigma$ is an arrangement with the maximum number of intersections of multiplicity 3 if and only if \mathcal{A}^σ belongs to a simple intersection of multiplicity 4 in rank 3.
Conjecture

Let $\mathcal{B}(n, 3, \mathcal{A})$ be a discriminantal arrangement with the maximum number of independent intersections in rank 2 and $\sigma \in S_n$ acts strongly on $\mathcal{B}(n, 3, \mathcal{A})$, then:

1. the arrangement $\mathcal{A} \cup \mathcal{A}^\sigma$ is an arrangement with the minimum number of intersections of multiplicity 2 if and only if purely dependent intersections in $(\mathcal{B}(n, 3, \mathcal{A}))$ are all fixed by σ and they are in maximum number.

2. $\mathcal{A} \cup \mathcal{A}^\sigma$ is an arrangement with the maximum number of intersections of multiplicity 3 if and only if \mathcal{A}^σ belongs to a simple intersection X having the maximum multiplicity in rank $n - 3$.

Thank You!!!